
z/OS

MVS Programming: Workload
Management Services

SA22-7619-03

���

z/OS

MVS Programming: Workload
Management Services

SA22-7619-03

���

Note
Before using this information and the product it supports, be sure to read the general information under Appendix D,
“Notices” on page 633.

Fourth Edition, October 2002

This edition applies to Version 1 Release 4 of z/OS (5694-A01), and Version 1 Release 4 of z/OS.e (5655–G52), and
to all subsequent releases and modifications until otherwise indicated in new editions.

Order publications through your IBM representative or the IBM branch office serving your locality. Publications are
not stocked at the address below.

IBM welcomes your comments. A form for readers’ comments may be provided at the back of this publication, or you
may address your comments to the following address:

IBM Deutschland Entwicklung GmbH
Department 3248
Schoenaicher Strasse 220
D-71032 Boeblingen
Federal Republic of Germany

FAX (Germany): 07031+16–3456
FAX (Other Countries): (+49)+7031–16–3456

Internet e-mail: s390id@de.ibm.com
World Wide Web: http://www.ibm.com/servers/eserver/zseries/zos/webqs.html

If you would like a reply, be sure to include your name, address, telephone number, or FAX number.

Make sure to include the following in your comment or note:
v Title and order number of this book
v Page number or topic related to your comment

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1988, 2002. All rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

http://www.ibm.com/servers/eserver/zseries/zos/webqs.html

Contents

Figures . xxi

Tables . xxiii

About This Document . xxv
Who Should Use This Document xxv
Where to Find More Information xxv
The WLM/SRM Web Page . xxvi

Accessing z/OS™ licensed documents on the Internet xxvi
Using LookAt to look up message explanations xxvi

How to Read a Syntax Diagram xxvii
How to read syntax diagrams xxvii

Summary of Changes . xxxi

Part 1. Using the Workload Management Services 1

Chapter 1. Introducing the Workload Management Services 3
Services for Subsystem Work Managers 3

Why Use the Work Manager Services 3
Why Use the Execution Delay Monitoring Services 4
Why Use the Enclave Services 6
Why Use the Queueing Manager Services 7
Why Use the Routing Manager Services 9
Why Use the Scheduling Environment Services 10
Why Use the Sysplex Routing Services 10
Why Use the Query System Information Service 11

Services for Performance Monitors 11
Why Use the Workload Reporting Services 12
Getting Information from SMF Type 99 13

Services for Application Programs 14

Chapter 2. Using The Subsystem Work Manager Services 15
Considerations Before Using the Services 15
Suggested Services for a Single Address Space Transaction Manager 16

Using the Execution Delay Monitoring Services 18
Suggested Services for a Work Manager Calling a Data Manager 20
Services for Multiple Address Space Work Managers 22

Execution Delay Monitoring Services for Multiple Address Space Work
Managers . 24

Services for Work Managers that Distribute Work Requests 26
Determining the Subsystem Name and Type 26
Using IWMWMCON When Distributing Work in a Sysplex 26

Chapter 3. Creating and Using Enclaves 29
Why Would You Use an Enclave? 29

SRBs in Enclaves . 30
Tasks in Enclaves . 30
Comparison of Enclaves and Execution Delay Services 31

Creating an Enclave . 31
Independent Versus Dependent Enclaves 31
Registering an Enclave . 32
Multisystem Enclaves . 33

© Copyright IBM Corp. 1988, 2002 iii

Scheduling an SRB in an Independent Enclave 34
Joining Tasks to an Independent Enclave 36
Using Dependent Enclaves 38
Using a Multisystem Enclave. 40
Performance Management of Address Spaces with Enclaves 43
Using ENQ/DEQ or Latch Manager Services with Enclaves 43

Enclave Resource Accounting 44
Managing the Performance of Work in Enclaves 46

Using Independent Enclaves 46
Using Dependent Enclaves 47

Querying an Enclave’s Classification Information 47
Querying a Dispatchable Unit’s Enclave Status 47
Deleting an Enclave . 47

Chapter 4. Using the Queueing Manager Services 49
Example of Using the Queueing Manager Services 49

Managing the Number of Server Instances per Server Address Space . . . 54
Directing Work Requests to a Specific Server Region. 55

Updating a Service Definition with Application Environment Information 56
Using the Queueing Manager Connect Exit 57

Exit Routine Environment . 57
Register Usage. 58
Restrictions . 58

Chapter 5. Using the Routing Manager Services 61
A Routing Manager Model . 61
Using the Routing Server Connect Exit 65

Exit Routine Environment . 65
Register Usage. 66

Chapter 6. Using the Scheduling Environment Services 67
Obtaining Scheduling Environment Definitions 67
Manipulating Resource State Settings 68
A Model Work Flow . 70

Chapter 7. Using the Sysplex Routing Services 73
Why Use the Sysplex Routing Services? 73
When to Use the Sysplex Routing Services 73

Registering as an Eligible Server 74
Determining Where to Route Work 74
Deregistering as an Eligible Server 75

Example of Using the Sysplex Routing Services. 75
WLM Sysplex Workload Distribution 76
Calculation of server weights . 77

Example . 77

Chapter 8. Using the Workload Reporting Services 79
When to Use the Workload Reporting Services 79
Using ENF Signals to Guide Data Collection 79

ENF Event Code 41 . 80
Using the IWMRCOLL Service 81

Using the Information in IWMWRCAA 81
Using the Subsystem Work Manager Delay State Information. 82
Using Delay States to Report Subsystem Interactions 84
Using the Response Time Information 86
Interpreting Report Class Data 87

iv z/OS V1R4.0 MVS Workload Management Services

||
||
||

Using the IWMRQRY Service 88

Chapter 9. Using the Administrative Application Services 91
Installing a Service Definition. 91

Mapping a Service Definition 91
Adding Program-Specific Extensions to a Service Definition 91
Checking a Service Definition Using IWMDINST 94
Recommended Validity Checking 94
Preventing Service Definition Overlays 95
Example of Using IWMDINST to Install a Service Definition 96

Extracting a Service Definition 97
Example of Using IWMDEXTR to Extract a Service Definition. 97

Activating a Service Policy . 97
Example of Activating a Policy using IWMPACT 98

Querying the Active Classification Rules 98
Example of IWMCQRY . 99

Chapter 10. Using SMF Record Type 99 101
When to Start SMF Record Type 99 102

Starting SMF Record Type 99 102
Identifying Work in SMF Type 99 Records 102

Identifying Server Service Classes 102
Identifying Internal Service Classes 103

Interpreting Trace Table Entries 103
Policy Adjustment . 103
Resource Adjustment . 104
Receivers and Donors. 104
Performance Index . 104
Receiver Value . 105
Net Value . 105
Small Processor Consumer 105
Storage Housekeeping . 105
Reverse Housekeeping . 105
Working Set Management 106

Interpreting Management Policy Data 106
Dispatching Priority . 106
MPL Targets . 106
Swap Protect Time . 107
Expanded Storage Policies 107
Storage Targets . 108
Cap Slices . 108
I/O Priority . 108
Number of Server Address Spaces 108

Interpreting Plots. 109
System Paging Delay Plot 109
Period MPL Delay Plot . 109
Period Ready User Average Plot 110
Period Swap Delay Plot . 110
Period Paging Rate Plot . 110
Period Proportional Aggregate Speed Plot 111
I/O Delay Plot . 111
Queue Delay Plot . 112
Address Space Paging Plots 112
I/O Velocity Plot . 113

Interpreting Priority Table Data 113
Interpreting Lack of Action . 114

Contents v

Examples of Interpreting SMF Record Type 99. 114
Action Trace Example . 115
MPL Policy Example . 117

Part 2. Reference: Workload Management Services 121

Chapter 11. IWMCLSFY – Assign Work Request to a Service Class . . . 123
Environment . 123
Programming Requirements 123
Restrictions. 123
Input Register Information . 124
Output Register Information. 124
Performance Implications . 124
Syntax . 125
Parameters . 126
ABEND Codes . 134
Return and Reason Codes . 134
Examples . 136

Chapter 12. IWMCNTN macro — WLM Contention Notification 137
Environment . 137
Programming Requirements 137
Restrictions. 137
Input Register Information . 137
Output Register Information. 138
Performance Implications . 138
Syntax . 138
Parameters . 139
ABEND Codes . 143
Return and Reason Codes . 143
Example . 144

Chapter 13. IWMCONN – Connecting to Workload Management 147
Environment . 147
Programming Requirements 148
Restrictions. 148
Input Register Information . 149
Output Register Information. 149
Performance Implications . 149
Syntax . 150
Parameters . 151
ABEND Codes . 158
Return and Reason Codes . 158
Examples . 163

Chapter 14. IWMCPAFN – WLM CPU Affinity Service 165
Environment . 165
Programming Requirements 166
Restrictions. 166
Input Register Information . 166
Output Register Information. 166
Performance Implications . 166
Syntax . 167
Parameters . 167
ABEND Codes . 169
Return and Reason Codes . 169

vi z/OS V1R4.0 MVS Workload Management Services

||
||
||
||
||
||
||
||
||
||
||
||

Example . 172

Chapter 15. IWMCQRY – Query Classification Attributes 173
Environment . 173
Programming Requirements 174
Restrictions. 174
Input Register Information . 174
Output Register Information. 174
Performance Implications . 175
Syntax . 175
Parameters . 175
ABEND Codes . 177
Return and Reason Codes . 177

Chapter 16. IWMDEXTR – Extract Service Definition 181
Environment . 182
Programming Requirements 182
Restrictions. 182
Input Register Information . 182
Output Register Information. 183
Performance Implications . 183
Syntax . 183
Parameters . 183
ABEND Codes . 185
Return and Reason Codes . 185

Chapter 17. IWMDINST – Install Service Definition 189
Environment . 190
Programming Requirements 190
Restrictions. 190
Input Register Information . 191
Output Register Information. 191
Performance Implications . 191
Syntax . 191
Parameters . 192
ABEND Codes . 195
Return and Reason Codes . 195

Chapter 18. IWMDISC – Disconnecting from Workload Management . . . 199
Environment . 199
Programming Requirements 199
Restrictions. 200
Input Register Information . 200
Output Register Information. 200
Performance Implications . 201
Syntax . 201
Parameters . 201
ABEND Codes . 203
Return and Reason Codes . 203

Chapter 19. IWMECQRY – Query Enclave Classification Attributes 207
Environment . 207
Programming Requirements 207
Restrictions. 207
Input Register Information . 208
Output Register Information. 208

Contents vii

Performance Implications . 208
Syntax . 209
Parameters . 209
ABEND Codes . 211
Return and Reason Codes . 211

Chapter 20. IWMECREA – Create an Enclave 213
Environment . 214
Programming Requirements 214
Restrictions. 214
Input Register Information . 215
Output Register Information. 215
Performance Implications . 215
Syntax . 216
Parameters . 216
ABEND Codes . 220
Return and Reason Codes . 220

Chapter 21. IWMEDELE – Delete an Enclave 223
Environment . 223
Programming Requirements 223
Restrictions. 224
Input Register Information . 224
Output Register Information. 224
Performance Implications . 224
Syntax . 224
Parameters . 225
ABEND Codes . 227
Return and Reason Codes . 227
Example . 228

Chapter 22. IWMEDREG — WLM Enclave Deregister Service 229
Environment . 229
Programming Requirements 229
Restrictions. 229
Input Register Information . 229
Output Register Information. 230
Performance Implications . 230
Syntax . 230
Parameters . 230
ABEND Codes . 232
Return and Reason Codes . 232
Example . 233

Chapter 23. IWMEJOIN – Join an Enclave 235
Environment . 235
Programming Requirements 235
Restrictions. 236
Input Register Information . 236
Output Register Information. 236
Performance Implications . 236
Syntax . 236
Parameters . 237
ABEND Codes . 238
Return and Reason Codes . 238
Example . 241

viii z/OS V1R4.0 MVS Workload Management Services

Chapter 24. IWMELEAV – Leave an Enclave 243
Environment . 243
Programming Requirements 243
Restrictions. 244
Input Register Information . 244
Output Register Information. 244
Performance Implications . 244
Syntax . 244
Parameters . 245
ABEND Codes . 246
Return and Reason Codes . 246
Example . 248

Chapter 25. IWMEQTME – Enclave CPU Time Query 251
Environment . 251
Programming Requirements 251
Restrictions. 251
Input Register Information . 251
Output Register Information. 251
Performance Implications . 252
Syntax . 252
Parameters . 252
ABEND Codes . 254
Return and Reason Codes . 254

Chapter 26. IWMEREG — WLM Enclave Register Service 255
Environment . 255
Programming Requirements 255
Restrictions. 255
Input Register Information . 256
Output Register Information. 256
Performance Implications . 256
Syntax . 256
Parameters . 257
ABEND Codes . 259
Return and Reason Codes . 259
Example . 260

Chapter 27. IWMERES macro — Change an Enclave 261
Environment . 261
Programming Requirements 261
Restrictions. 261
Input Register Information . 262
Output Register Information. 262
Performance Implications . 262
Syntax . 262
Parameters . 263
ABEND Codes . 265
Return and Reason Codes . 265
Example . 268

Chapter 28. IWMESQRY – Query Enclave State 269
Environment . 269
Programming Requirements 269
Restrictions. 269
Input Register Information . 269

Contents ix

Output Register Information. 269
Performance Implications . 270
Syntax . 270
Parameters . 270
ABEND Codes . 272
Return and Reason Codes . 272
Example . 273

Chapter 29. IWMEXPT – WLM Export Service 275
Environment . 275
Programming Requirements 275
Restrictions. 275
Input Register Information . 275
Output Register Information. 276
Performance Implications . 276
Syntax . 276
Parameters . 276
ABEND Codes . 278
Return and Reason Codes . 278
Example . 281

Chapter 30. IWMIMPT – WLM Import Service 283
Environment . 283
Programming Requirements 283
Restrictions. 283
Input Register Information . 283
Output Register Information. 283
Performance Implications . 284
Syntax . 284
Parameters . 284
ABEND Codes . 286
Return and Reason Codes . 287
Example . 289

Chapter 31. IWMMABNL – Record Abnormal Event 291
Environment . 291
Programming Requirements 291
Restrictions. 291
Input Register Information . 292
Output Register Information. 292
Performance Implications . 292
Syntax . 292
Parameters . 292
ABEND Codes . 294
Return and Reason Codes . 294
Example . 294

Chapter 32. IWMMCHST – Change State of Work Request Service 295
Environment . 295
Programming Requirements 295
Restrictions. 295
Input Register Information . 296
Output Register Information. 296
Performance Implications . 296
Syntax . 297
Parameters . 297

x z/OS V1R4.0 MVS Workload Management Services

ABEND Codes . 301
Return and Reason Codes . 301

Chapter 33. IWMMCREA – Create Monitoring Environment Service. . . . 303
Environment . 303
Programming Requirements 303
Restrictions. 303
Input Register Information . 304
Output Register Information. 304
Performance Implications . 304
Syntax . 305
Parameters . 305
ABEND Codes . 309
Return and Reason Codes . 309

Chapter 34. IWMMDELE – Delete Monitoring Environment 313
Environment . 313
Programming Requirements 313
Restrictions. 313
Input Register Information . 313
Output Register Information. 313
Performance Implications . 314
Syntax . 314
Parameters . 314
ABEND Codes . 315
Return and Reason Codes . 315
Example . 316

Chapter 35. IWMMEXTR – Delay Monitoring Extract Service 317
Environment . 317
Programming Requirements 317
Restrictions. 318
Input Register Information . 318
Output Register Information. 318
Performance Implications . 318
Syntax . 319
Parameters . 319
ABEND Codes . 322
Return and Reason Codes . 322

Chapter 36. IWMMINIT – Monitor Environment Initialization 323
Environment . 323
Programming Requirements 323
Restrictions. 324
Input Register Information . 324
Output Register Information. 324
Performance Implications . 325
Syntax . 325
Parameters . 326
ABEND Codes . 334
Return and Reason Codes . 334
Examples . 335

Chapter 37. IWMMNTFY – Notify of Work Execution Completion 337
Environment . 337
Programming Requirements 337

Contents xi

Restrictions. 337
Input Register Information . 338
Output Register Information. 338
Performance Implications . 339
Syntax . 339
Parameters . 339
ABEND Codes . 342
Return and Reason Codes . 342

Chapter 38. IWMMRELA – Relate Monitoring Environment Service 345
Environment . 345
Programming Requirements 345
Restrictions. 346
Input Register Information . 346
Output Register Information. 346
Performance Implications . 347
Syntax . 347
Parameters . 347
ABEND Codes . 350
Return and Reason Codes . 350
Example . 351

Chapter 39. IWMMSWCH – Switch Monitoring Environment 353
Environment . 353
Programming Requirements 353
Restrictions. 353
Input Register Information . 353
Output Register Information. 354
Performance Implications . 354
Syntax . 354
Parameters . 355
ABEND Codes . 357
Return and Reason Codes . 357
Example . 357

Chapter 40. IWMMXFER – Transfer Monitoring Environment 359
Environment . 359
Programming Requirements 359
Restrictions. 360
Input Register Information . 360
Output Register Information. 360
Performance Implications . 361
Syntax . 361
Parameters . 361
ABEND Codes . 364
Return and Reason Codes . 364

Chapter 41. IWMPACT – Activate Service Policy 367
Environment . 367
Programming Requirements 367
Restrictions. 368
Input Register Information . 368
Output Register Information. 368
Performance Implications . 368
Syntax . 368
Parameters . 369

xii z/OS V1R4.0 MVS Workload Management Services

ABEND Codes . 370
Return and Reason Codes . 371

Chapter 42. IWMPQRY – Query Active Service Policy 375
Environment . 375
Programming Requirements 375
Restrictions. 376
Input Register Information . 376
Output Register Information. 376
Performance Implications . 376
Syntax . 377
Parameters . 377
ABEND Codes . 379
Return and Reason Codes . 379

Chapter 43. IWMQDEL – Deleting a Request from the Queue for An
Execution Address Space 381

Environment . 381
Programming Requirements 381
Restrictions. 381
Input Register Information . 381
Output Register Information. 381
Performance Implications . 382
Syntax . 382
Parameters . 382
ABEND Codes . 384
Return and Reason Codes . 384
Example . 386

Chapter 44. IWMQINS – Inserting a Request Onto the Queue for An
Execution Address space 387

Environment . 387
Programming Requirements 387
Restrictions. 387
Input Register Information . 388
Output Register Information. 388
Performance Implications . 388
Syntax . 388
Parameters . 389
ABEND Codes . 392
Return and Reason Codes . 392
Example . 396

Chapter 45. IWMRCOLL – Collecting Workload Activity Data 399
Specifying the Answer Areas 399

Workload Activity Answer Area. 399
Environment . 400
Programming Requirements 400
Restrictions. 400
Input Register Information . 400
Output Register Information. 400
Performance Implications . 401
Syntax . 401
Parameters . 401
ABEND Codes . 403
Return and Reason Codes . 403

Contents xiii

Example . 404

Chapter 46. IWMRESET – Change a Job 405
Environment . 405
Programming Requirements 405
Restrictions. 405
Input Register Information . 405
Output Register Information. 406
Performance Implications . 406
Syntax . 407
Parameters . 407
ABEND Codes . 410
Return and Reason Codes . 410
Example . 412

Chapter 47. IWMRPT – Reporting on Work Request Completion 415
Environment . 415
Programming Requirements 415
Restrictions. 416
Input Register Information . 416
Output Register Information. 416
Performance Implications . 417
Syntax . 417
Parameters . 418
ABEND Codes . 422
Return and Reason Codes . 422

Chapter 48. IWMRQRY – Collecting Address Space Delay Information 425
Environment . 425
Programming Requirements 425
Restrictions. 426
Input Register Information . 426
Output Register Information. 426
Performance Implications . 426
Syntax . 427
Parameters . 427
ABEND Codes . 430
Return and Reason Codes . 430

Chapter 49. IWMSEDES – Scheduling Environments Determine Execution
Service . 433

Environment . 433
Programming Requirements 433
Restrictions. 433
Input Register Information . 434
Output Register Information. 434
Performance Implications . 434
Syntax . 434
Parameters . 435
ABEND Codes . 436
Return and Reason Codes . 436
Example . 438

Chapter 50. IWMSEQRY – Scheduling Environments Query Service . . . 439
Environment . 439
Programming Requirements 439

xiv z/OS V1R4.0 MVS Workload Management Services

Restrictions. 439
Input Register Information . 440
Output Register Information. 440
Performance Implications . 440
Syntax . 440
Parameters . 441
ABEND Codes . 442
Return and Reason Codes . 442
Example . 444

Chapter 51. IWMSESET – Scheduling Environments Set Resource 445
Environment . 445
Programming Requirements 445
Restrictions. 445
Input Register Information . 445
Output Register Information. 446
Performance Implications . 446
Syntax . 446
Parameters . 446
ABEND Codes . 448
Return and Reason Codes . 448
Example . 450

Chapter 52. IWMSEVAL – Scheduling Environments Validate Service 451
Environment . 451
Programming Requirements 451
Restrictions. 451
Input Register Information . 451
Output Register Information. 452
Performance Implications . 452
Syntax . 452
Parameters . 452
ABEND Codes . 454
Return and Reason Codes . 454
Example . 456

Chapter 53. IWMSINF — WLM Server Manager Inform Service 457
Environment . 457
Programming Requirements 457
Restrictions. 458
Input Register Information . 458
Output Register Information. 458
Performance Implications . 458
Syntax . 459
Parameters . 459
ABEND Codes . 462
Return and Reason Codes . 462
Example . 463

Chapter 54. IWMSLIM – Application Environment Limit Service 465
Environment . 465
Programming Requirements 465
Restrictions. 466
Input Register Information . 466
Output Register Information. 466
Performance Implications . 466

Contents xv

Syntax . 466
Parameters . 467
ABEND Codes . 469
Return and Reason Codes . 469
Example . 471

Chapter 55. IWMSRDNS – Get Sysplex Routing Location List 473
Environment . 473
Programming Requirements 473
Restrictions. 473
Input Register Information . 473
Output Register Information. 473
Performance Implications . 474
Syntax . 474
Parameters . 474
ABEND Codes . 476
Return and Reason Codes . 477
Example . 478

Chapter 56. IWMSRDRS – De-register a Server for Sysplex Routing . . . 479
Environment . 479
Programming Requirements 479
Restrictions. 479
Performance Implications . 480
Syntax . 481
Parameters . 481
ABEND Codes . 483
Return and Reason Codes . 483

Chapter 57. IWMSRFSV – Finding a Sysplex Routing Server 485
Environment . 485
Programming Requirements 485
Restrictions. 485
Input Register Information . 486
Output Register Information. 486
Performance Implications . 486
Syntax . 487
Parameters . 487
ABEND Codes . 489
Return and Reason Codes . 489
Example . 492

Chapter 58. IWMSRSRG – Register a Server for Sysplex Routing 493
Environment . 493
Programming Requirements 494
Restrictions. 494
Input Register Information . 494
Output Register Information. 494
Performance Implications . 495
Syntax . 495
Parameters . 495
ABEND Codes . 498
Return and Reason Codes . 498
Example . 500

Chapter 59. IWMSRSRS – Determine Where to Route Work. 501

xvi z/OS V1R4.0 MVS Workload Management Services

Environment . 501
Programming Requirements 502
Restrictions. 502
Input Register Information . 502
Output Register Information. 502
Performance Implications . 503
Syntax . 503
Parameters . 503
ABEND Codes . 506
Return and Reason Codes . 506
Example . 509

Chapter 60. IWMSSEL – Selecting a Request from a Caller’s Work
Manager Queue . 511

Environment . 511
Programming Requirements. 511
Restrictions . 511
Input Register Information . 511
Output Register Information. 512
Performance Implications . 512
Syntax . 512
Parameters . 513
ABEND Codes . 515
Return and Reason Codes . 515
Example . 517

Chapter 61. IWMSSEM – WLM Server Select Secondary Service 519
Environment . 519
Programming Requirements 519
Restrictions. 520
Input Register Information . 520
Output Register Information. 520
Performance Implications . 520
Syntax . 521
Parameters . 521
ABEND Codes . 522
Return and Reason Codes . 523
Example . 525

Chapter 62. IWMSTBGN – Beginning a Request from a Caller’s Work
Manager Queue . 527

Environment . 527
Programming Requirements 527
Restrictions. 528
Input Register Information . 528
Output Register Information. 528
Performance Implications . 528
Syntax . 529
Parameters . 529
ABEND Codes . 531
Return and Reason Codes . 531
Example . 534

Chapter 63. IWMSTEND – End a Request from a Caller’s Work Manager
Queue . 535

Environment . 535

Contents xvii

Programming Requirements 535
Restrictions. 535
Input Register Information . 535
Output Register Information. 535
Performance Implications . 536
Syntax . 536
Parameters . 536
ABEND Codes . 538
Return and Reason Codes . 538
Example . 540

Chapter 64. IWMTAFF — WLM Temporal Affinity Service 541
Environment . 541
Programming Requirements 541
Restrictions. 541
Input Register Information . 541
Output Register Information. 541
Performance Implications . 542
Syntax . 542
Parameters . 542
ABEND Codes . 544
Return and Reason Codes . 544
Example . 547

Chapter 65. IWMUEXPT – WLM Undo Export Service 549
Environment . 549
Programming Requirements 549
Restrictions. 549
Input Register Information . 549
Output Register Information. 549
Performance Implications . 550
Syntax . 550
Parameters . 550
ABEND Codes . 552
Return and Reason Codes . 552
Example . 554

Chapter 66. IWMUIMPT – WLM Undo Import Service 555
Environment . 555
Programming Requirements 555
Restrictions. 555
Input Register Information . 555
Output Register Information. 555
Performance Implications . 556
Syntax . 556
Parameters . 556
ABEND Codes . 558
Return and Reason Codes . 558
Example . 560

Chapter 67. IWMWMBCL — Build Classification Structures 561
Environment . 561
Programming Requirements 561
Restrictions. 561
Performance Implications . 562
Syntax . 562

xviii z/OS V1R4.0 MVS Workload Management Services

Parameters . 563
ABEND Codes . 566
Return and Reason Codes . 567

Chapter 68. IWMWMCON – Modify Connect Information 569
Environment . 569
Programming Requirements 569
Restrictions. 570
Input Register Information . 570
Output Register Information. 570
Performance Implications . 570
Syntax . 571
Parameters . 571
ABEND Codes . 573
Return and Reason Codes . 573
Examples . 575

Chapter 69. IWMWQRY – Query Service 577
Environment . 577
Programming Requirements 577
Restrictions. 577
Input Register Information . 577
Output Register Information. 578
Performance Implications . 578
Syntax . 578
Parameters . 578
ABEND Codes . 580
Return and Reason Codes . 580
Example . 580

Chapter 70. IWMWQWRK – Query Work Service 581
Environment . 581
Programming Requirements 581
Restrictions. 582
Input Register Information . 582
Output Register Information. 582
Performance Implications . 582
Syntax . 582
Parameters . 584
ABEND Codes . 586
Return and Reason Codes . 587
Example . 587

Chapter 71. IWMWSYSQ – Querying System Information. 589
Environment . 590
Programming Requirements 590
Restrictions. 590
Input Register Information . 590
Output Register Information. 590
Performance Implications . 591
Syntax . 591
Parameters . 591
ABEND Codes . 593
Return and Reason Codes . 593
Examples . 595

Contents xix

Part 3. Appendixes . 597

Appendix A. SMF Type 99 Action Codes 599

Appendix B. Application Validation Reason Codes 619

Appendix C. C Language Interfaces for Workload Management Services 629
Interfaces for Sysplex Routing Services 631
Interface for Querying a Virtual Server 631

Appendix D. Notices . 633
Programming Interface Information 634
Trademarks. 635

Appendix E. Accessibility . 637
Using assistive technologies 637
Keyboard navigation of the user interface. 637

Index . 639

xx z/OS V1R4.0 MVS Workload Management Services

Figures

1. Sequence of functions in a single address space transaction manager. 16
2. Work manager services for a single address space transaction manager. 17
3. Work manager and delay monitoring services for a single address space transaction manager. 19
4. Services for a work manager that uses a database manager. 21
5. Sequence of function in a multiple address space work manager. 23
6. Example of services that monitor work across multiple address spaces. 25
7. Creating an Independent Enclave and Scheduling an SRB 35
8. Creating an Enclave and Joining Tasks To It . 37
9. Using Dependent Enclaves . 39

10. Using a Multisystem Enclave . 41
11. Services for a queueing manager . 50
12. Exploiting IWMSINF. 55
13. Example of routing manager services . 62
14. Obtaining Scheduling Environments . 68
15. Manipulating Resource State Settings . 69
16. Scheduling Environment Flow . 70
17. Example of using sysplex routing services . 75
18. Using states for presenting CICS delay information 83
19. Combining state information for a sysplex view. 84
20. Combining state information for a service class. 85
21. Combining state information across subsystems. 86
22. Self-defining response time distributions . 87
23. Mixed-class-indication timestamp in relation to the time interval. 88
24. IWMSVDEF mapping for a service definition with workload extensions. 93

© Copyright IBM Corp. 1988, 2002 xxi

xxii z/OS V1R4.0 MVS Workload Management Services

Tables

1. Syntax examples . xxviii
2. Work manager services . 4
3. Execution delay monitoring services . 5
4. Enclave services . 6
5. Queueing manager services . 8
6. Routing manager services . 9
7. Scheduling Environment Services. 10
8. Sysplex routing services . 11
9. Summary of workload reporting services . 12

10. Adminstrative application services . 14
11. Enclave Characteristics and Resource Accounting 45
12. CPU consumption table . 78
13. Using ENF event code 41 to guide data collection for policy changes 80
14. Using IWMRCOLL with the workload reporting services on a single system 81
15. Using IWMRQRY with the workload reporting services 89
16. SERVD validation reason codes . 94
17. Return and Reason Codes for the IWMCLSFY Macro 134
18. Return and Reason Codes for the IWMCNTN Macro 143
19. Return and Reason Codes for the IWMCONN Macro 158
20. Return and Reason Codes for the IWMCPAFN Macro. 169
21. Return and Reason Codes for the IWMCQRY Macro 177
22. Return and Reason Codes for the IWMDEXTR Macro 186
23. Return and Reason Codes for the IWMDINST Macro 195
24. Return and Reason Codes for the IWMDISC Macro 203
25. Return and Reason Codes for the IWMECQRY Macro 211
26. Return and Reason Codes for the IWMECREA Macro 220
27. Return and Reason Codes for the IWMEDELE Macro. 227
28. Return and Reason Codes for the IWMEDREG Macro 232
29. Return and Reason Codes for the IWMEJOIN Macro 239
30. Return and Reason Codes for the IWMELEAV Macro 247
31. Return and Reason Codes for the IWMEQTME Macro 254
32. Return and Reason Codes for the IWMEREG Macro 259
33. Return and Reason Codes for the IWMERES Macro 266
34. Return and Reason Codes for the IWMESQRY Macro 272
35. Return and Reason Codes for the IWMEXPT Macro 279
36. Return and Reason Codes for the IWMIMPT Macro 287
37. Return and Reason Codes for the IWMMCHST Macro 301
38. Return and Reason Codes for the IWMMCREA Macro 309
39. Return and Reason Codes for the IWMMEXTR Macro 322
40. Return and Reason Codes for the IWMMINIT Macro 334
41. Return and Reason Codes for the IWMMNTFY Macro 343
42. Return and Reason Codes for the IWMMXFER Macro 365
43. Return and Reason Codes for the IWMPACT Macro 371
44. Return and Reason Codes for the IWMPQRY Macro 379
45. Return and Reason Codes for the IWMQDEL Macro 384
46. Return and Reason Codes for the IWMQINS Macro 392
47. Return and Reason Codes for the IWMRESET Macro. 410
48. Return and Reason Codes for the IWMRPT Macro 423
49. Return and Reason Codes for the IWMRQRY Macro 430
50. Return and Reason Codes for the IWMSEDES Macro 436
51. Return and Reason Codes for the IWMSEQRY Macro 443
52. Return and Reason Codes for the IWMSESET Macro 449
53. Return and Reason Codes for the IWMSEVAL Macro 454

© Copyright IBM Corp. 1988, 2002 xxiii

||

||

54. Return and Reason Codes for the IWMSINF Macro 462
55. Return and Reason Codes for the IWMSLIM Macro 469
56. Return and Reason Codes for the IWMSRDNS Macro 477
57. Return and Reason Codes for the IWMSRDRS Macro 483
58. Return and Reason Codes for the IWMSRFSV Macro. 489
59. Return and Reason Codes for the IWMSRSRG Macro 498
60. Return and Reason Codes for the IWMSRSRS Macro 507
61. Return and Reason Codes for the IWMSSEL Macro 515
62. Return and Reason Codes for the IWMSSEM Macro 523
63. Return and Reason Codes for the IWMSTBGN Macro 531
64. Return and Reason Codes for the IWMSTEND Macro 538
65. Return and Reason Codes for the IWMTAFF Macro 545
66. Return and Reason Codes for the IWMUEXPT Macro. 552
67. Return and Reason Codes for the IWMUIMPT Macro 558
68. Return and Reason Codes for the IWMWMBCL Macro 567
69. Return and Reason Codes for the IWMWMCON Macro 573
70. Return and Reason Codes for the IWMWSYSQ Macro 594
71. SMF Type 99 Action Codes . 599
72. SERVD validation reason codes . 619
73. C Language Interfaces . 629
74. C Language Interfaces for WLM Sysplex Routing Services 631

xxiv z/OS V1R4.0 MVS Workload Management Services

About This Document

This document supports z/OS (5694-A01) and z/OS.e (5655-G52). This document
describes the MVS workload management services. The services are intended for
programmers who write authorized programs.

This document is divided into two sections:

v Using the Workload Management Services

This section provides an overview of the services, and how to use them.

v Workload Management Services Reference

This section describes each service, its syntax, its parameters, and an example
of how to issue it.

Who Should Use This Document
Programmers using assembler language can use the macros described in this
document to invoke the services they need. This document includes some guidance
information, and detailed information, such as the function, the syntax, and
parameters needed to code the macros. To understand the information in this
document, programmer should have read z/OS MVS Planning: Workload
Management.

Where to Find More Information
Where necessary, this document references information in other documents, using
shortened versions of the document title. For complete titles and order numbers of
the documents for all products that are part of z/OS, see OS/390 Information
Roadmap.

Softcopy Title Used in This Document Title Order Number

z/OS MVS Planning: Workload Management z/OS MVS Planning: Workload Management SA22-7602

z/OS MVS Initialization and Tuning Guide z/OS MVS Initialization and Tuning Guide SA22-7591

z/OS MVS Initialization and Tuning Reference z/OS MVS Initialization and Tuning Reference SA22-7592

z/OS MVS Programming: Authorized
Assembler Services Guide

z/OS MVS Programming: Authorized
Assembler Services Guide

SA22-7608

z/OS MVS Programming: Authorized
Assembler Services Reference ENF-IXG

z/OS MVS Programming: Authorized
Assembler Services Reference ENF-IXG

SA22-7610

z/OS MVS Programming: Authorized
Assembler Services Reference SET-WTO

z/OS MVS Programming: Authorized
Assembler Services Reference SET-WTO

SA22-7612

z/OS MVS System Management Facilities
(SMF)

z/OS MVS System Management Facilities
(SMF)

SA22-7630

z/OS MVS Data Areas, Vol 1 (ABEP-DALT) z/OS MVS Data Areas, Vol 1 (ABEP-DALT) GA22-7581

z/OS MVS Data Areas, Vol 2
(DCCB-ITZYRETC)

z/OS MVS Data Areas, Vol 2
(DCCB-ITZYRETC)

GA22-7582

z/OS MVS Data Areas, Vol 3 (IVT-RCWK) z/OS MVS Data Areas, Vol 3 (IVT-RCWK) GA22-7583

z/OS MVS Data Areas, Vol 4 (RD-SRRA) z/OS MVS Data Areas, Vol 4 (RD-SRRA) GA22-7584

z/OS MVS Data Areas, Vol 5 (SSAG-XTLST) z/OS MVS Data Areas, Vol 5 (SSAG-XTLST) GA22-7585

z/OS C/C++ Run-Time Library Reference z/OS C/C++ Run-Time Library Reference SA22-7821

© Copyright IBM Corp. 1988, 2002 xxv

The WLM/SRM Web Page
For the latest information, see the WLM/SRM web page at:

http://www.ibm.com/servers/eserver/zseries/zos/wlm/

Accessing z/OS™ licensed documents on the Internet
z/OS licensed documentation is available on the Internet in PDF format at the IBM
Resource Link™ Web site at:
http://www.ibm.com/servers/resourcelink

Licensed documents are available only to customers with a z/OS license. Access to
these documents requires an IBM Resource Link user ID and password, and a key
code. With your z/OS order you received a Memo to Licensees, (GI10-0671), that
includes this key code. 1

To obtain your IBM Resource Link user ID and password, log on to:
http://www.ibm.com/servers/resourcelink

To register for access to the z/OS licensed documents:

1. Sign in to Resource Link using your Resource Link user ID and password.

2. Select User Profiles located on the left-hand navigation bar.

Note: You cannot access the z/OS licensed documents unless you have registered
for access to them and received an e-mail confirmation informing you that
your request has been processed.

Printed licensed documents are not available from IBM.

You can use the PDF format on either z/OS Licensed Product Library CD-ROM or
IBM Resource Link to print licensed documents.

Using LookAt to look up message explanations
LookAt is an online facility that allows you to look up explanations for most
messages you encounter, as well as for some system abends and codes. Using
LookAt to find information is faster than a conventional search because in most
cases LookAt goes directly to the message explanation.

You can access LookAt from the Internet at:
http://www.ibm.com/eserver/zseries/zos/bkserv/lookat/

or from anywhere in z/OS where you can access a TSO/E command line (for
example, TSO/E prompt, ISPF, z/OS UNIX System Services running OMVS). You
can also download code from the z/OS Collection (SK3T-4269) and the LookAt Web
site that will allow you to access LookAt from a handheld computer (Palm Pilot VIIx
suggested).

To use LookAt as a TSO/E command, you must have LookAt installed on your host
system. You can obtain the LookAt code for TSO/E from a disk on your z/OS
Collection (SK3T-4269) or from the News section on the LookAt Web site.

1. z/OS.e™ customers received a Memo to Licensees, (GI10-0684) that includes this key code.

xxvi z/OS V1R4.0 MVS Workload Management Services

http://www.ibm.com/servers/resourcelink
http://www.ibm.com/servers/resourcelink
http://www.ibm.com/servers/eserver/zseries/zos/bkserv/lookat/lookat.html

Some messages have information in more than one document. For those
messages, LookAt displays a list of documents in which the message appears.

How to Read a Syntax Diagram

How to read syntax diagrams
This section describes how to read syntax diagrams. It defines syntax diagram
symbols, items that may be contained within the diagrams (keywords, variables,
delimiters, operators, fragment references, operands) and provides syntax examples
that contain these items.

Syntax diagrams pictorially display the order and parts (options and arguments) that
comprise a command statement. They are read from left to right and from top to
bottom, following the main path of the horizontal line.

Symbols
The following symbols may be displayed in syntax diagrams:

Symbol Definition

��─── Indicates the beginning of the syntax diagram.

───� Indicates that the syntax diagram is continued to the next line.

�─── Indicates that the syntax is continued from the previous line.

───�� Indicates the end of the syntax diagram.

Syntax items
Syntax diagrams contain many different items. Syntax items include:

v Keywords - a command name or any other literal information.

v Variables - variables are italicized, appear in lowercase and represent the name
of values you can supply.

v Delimiters - delimiters indicate the start or end of keywords, variables, or
operators. For example, a left parenthesis is a delimiter.

v Operators - operators include add (+), subtract (-), multiply (*), divide (/), equal
(=), and other mathematical operations that may need to be performed.

v Fragment references - a part of a syntax diagram, separated from the diagram to
show greater detail.

v Separators - a separator separates keywords, variables or operators. For
example, a comma (,) is a separator.

Keywords, variables, and operators may be displayed as required, optional, or
default. Fragments, separators, and delimiters may be displayed as required or
optional.

Item type Definition

Required Required items are displayed on the main path of the horizontal
line.

Optional Optional items are displayed below the main path of the horizontal
line.

Default Default items are displayed above the main path of the horizontal
line.

Syntax examples
The following table provides syntax examples.

About This Document xxvii

Table 1. Syntax examples

Item Syntax example

Required item.

Required items appear on the main path of the horizontal
line. You must specify these items.

�� KEYWORD required_item �"

Required choice.

A required choice (two or more items) appears in a
vertical stack on the main path of the horizontal line. You
must choose one of the items in the stack.

�� KEYWORD required_choice1
required_choice2

�"

Optional item.

Optional items appear below the main path of the
horizontal line.

�� KEYWORD
optional_item

�"

Optional choice.

An optional choice (two or more items) appears in a
vertical stack below the main path of the horizontal line.
You may choose one of the items in the stack.

�� KEYWORD
optional_choice1
optional_choice2

�"

Default.

Default items appear above the main path of the
horizontal line. The remaining items (required or optional)
appear on (required) or below (optional) the main path of
the horizontal line. The following example displays a
default with optional items.

��
default_choice1

KEYWORD
optional_choice2
optional_choice3

�"

Variable.

Variables appear in lowercase italics. They represent
names or values.

�� KEYWORD variable �"

Repeatable item.

An arrow returning to the left above the main path of the
horizontal line indicates an item that can be repeated.

A character within the arrow means you must separate
repeated items with that character.

An arrow returning to the left above a group of repeatable
items indicates that one of the items can be selected, or a
single item can be repeated.

�� 'KEYWORD repeatable_item �"

�� '

,

KEYWORD repeatable_item �"

xxviii z/OS V1R4.0 MVS Workload Management Services

Table 1. Syntax examples (continued)

Item Syntax example

Fragment.

The ─┤ fragment ├─ symbol indicates that a labelled group
is described below the main syntax diagram. Syntax is
occasionally broken into fragments if the inclusion of the
fragment would overly complicate the main syntax
diagram.

�� KEYWORD fragment �"

fragment:

,required_choice1
,default_choice

,required_choice2
,optional_choice

About This Document xxix

xxx z/OS V1R4.0 MVS Workload Management Services

Summary of Changes

Summary of Changes
for SA22-7619-03
z/OS Version 1 Release 4

The document contains information previously presented in OS/390 MVS
Programming: Workload Management Services which supports z/OS Release 3.

This document contains terminology, maintenance, and editorial changes. Technical
changes or additions to the text and illustrations are indicated by a vertical line to
the left of the change. Technical changes include:

v The IWMCNTN macro is added that allows resource managers to notify WLM
work units or transactions involved with resources that are in contention.

v The descriptions of the IWMECREA, IWMESQRY, IWMMCHST, IWMMCREA,
IWMMEXTR, IWMMINIT, IWMMNTFY, IWMMRELA, and IWMQINS macros have
been updated.

v Information is added to indicate this book supports z/OS.e.

Summary of Changes
for SA22-7619-02
z/OS Version 1 Release 3

The book contains information previously presented in OS/390 MVS Programming:
Workload Management Services which supports z/OS Release 2.

This book contains terminology, maintenance, and editorial changes. Technical
changes or additions to the text and illustrations are indicated by a vertical line to
the left of the change. Technical changes include:

v Removal of compatibility mode.

v Addition of an Install Definition Utility. Also an example service definition and JCL
job used by the utility, shipped in SYS1.SAMPLIB as members IWMSSDEF and
IWMINSTL. This is described in z/OS MVS Planning: Workload Management
under ″Workload Management Migration″.

v The IWMERES macro is added which allows the caller to change the
performance controls for work associated with an independent enclave.

Starting with z/OS V1R2, you may notice changes in the style and structure of
some content in this book--for example, headings that use uppercase for the first
letter of initial words only, and procedures that have a different look and format. The
changes are ongoing improvements to the consistency and retrievability of
information in our books.

Summary of Changes
for SA22-7619-01
z/OS Version 1 Release 2

The book contains information previously presented in OS/390 MVS Programming:
Workload Management Services which supports z/OS Release 1.

This book contains terminology, maintenance, and editorial changes. Technical
changes or additions to the text and illustrations are indicated by a vertical line to
the left of the change. Technical changes include:

© Copyright IBM Corp. 1988, 2002 xxxi

|
|
|

|
|

|
|
|

|
|

|
|
|

|

v The IWMEREG and IWMEDREG macros are added that allow to register and
deregister an enclave in order to prevent it from premature deletion.

v Reporting services are enhanced to allow the concept of report periods. It can
now be ensured that only workload data associated with one service class
contribute data to a report class.Thus, response time distribution and work
manager delay data within a specific report class can be reported.

v The answer areas IWMWRCAA and IWMWRQAA are enhanced to show using
and delay samples related to any of the installed cryptographic hardware
features.

v The WLM Queueing Manager Services have been enhanced. Application can
now optionally give workload management the control about the number of
server instances per server address space. In addition, applications can now
direct work requests to a specific server region.

Starting with z/OS V1R2, you may notice changes in the style and structure of
some content in this book--for example, headings that use uppercase for the first
letter of initial words only, and procedures that have a different look and format. The
changes are ongoing improvements to the consistency and retrievability of
information in our books.

Summary of Changes
for SA22-7619-00
z/OS Version 1 Release 1

The book contains information also presented in OS/390 MVS Programming:
Workload Management Series.

Technical changes or additions to the text and illustrations are indicated by a
vertical line to the left of the change. Technical changes include:

v Chapter 10, “Using SMF Record Type 99” on page 101 is updated to include the
new I/O velocity plot.

v Chapter 14, “IWMCPAFN – WLM CPU Affinity Service” on page 165 is added.

xxxii z/OS V1R4.0 MVS Workload Management Services

Part 1. Using the Workload Management Services

© Copyright IBM Corp. 1988, 2002 1

2 z/OS V1R4.0 MVS Workload Management Services

Chapter 1. Introducing the Workload Management Services

The workload management services enable MVS to cooperate with subsystem work
managers to achieve installation-defined goals for work, to distribute work across a
sysplex, to manage servers and to provide meaningful feedback on how well
workload management has achieved those goals. They also allow programs to
create an interface to define a service definition.

To change from resource-based performance management to goal-oriented
workload management, many transaction managers, data managers, and
performance monitors and reporters need to take advantage of the services MVS
workload management provides.

This chapter describes the services available for subsystem work managers,
performance monitors, and administrative application programs.

Services for Subsystem Work Managers
The workload management services for subsystem work managers allow an
installation to process work towards performance goals defined in a service policy.
Workload management uses the information provided by the subsystem work
managers through the services to match system resources to work to meet goals.

A service policy contains performance goals for all kinds of MVS-managed work
expressed in the same terms. A service level administrator identifies and
categorizes all of an installation’s work and assigns the work performance goals in
the workload management service policy. For information about how to set up and
use a service policy, see z/OS MVS Planning: Workload Management.

The services provide workload management with the information it needs to
dynamically adapt to match resources to work to meet the performance goals.

Workload management matches system resources to meet the performance goal
assigned to a service class. This management involves handling address
space-related resources, such as processor storage, multi-programming level
(MPL), dispatching, and I/O queueing.

The services for subsystem work managers fall into the following categories:

v Work manager services

v Execution delay services

v Enclave services

v Queueing manager services

v Routing manager services

v Scheduling environment services

v Sysplex routing services

v Query system information service

Why Use the Work Manager Services
Work manager services allow MVS to recognize:
v A subsystem work manager and the transactions it processes.
v The service class goals associated with the transactions.
v The address spaces that are processing the transactions.

© Copyright IBM Corp. 1988, 2002 3

Based on this information, workload management can determine whether goals are
being met, and which work needs resources to meet the goals.

The work manager services allow:
v Your customers to define performance goals to your subsystem work manager’s

transactions.
v MVS to recognize the goals, and match resources to the work to meet the goals.
v Your customers to get reports from performance monitors like RMF on how well

work is executing and whether the goals are being met.

Using the work manager services in your product allows your customers to specify
goals for your work the same way they specify them for MVS-managed work.

The work manager services allow workload management to associate incoming
work with a service class. When the work is associated with a service class, MVS
knows the performance goal and importance level associated with the work, as well
as understanding which address spaces are involved in processing the work
request.

If your work manager has a client-server structure and has additional objectives
such as:

v Dynamic management of server address spaces, or

v Management of server work requests as part of the originating unit of work,

v Resource management and/or reporting of individual requests, or

v Balancing workload among servers across a sysplex,

then consider using either the queueing manager, the routing manager, or enclave
services instead of the work manager services.

Table 2 shows a summary of the work manager services.

Table 2. Work manager services

Service Purpose Information

IWMCLSFY Associate an arriving work request with a
service class defined in a service policy.

Chapter 11, “IWMCLSFY – Assign Work
Request to a Service Class” on page 123

IWMCONN Obtain token that authorizes caller to use
other work manager services, and optionally,
to supply additional topology information.

Chapter 13, “IWMCONN – Connecting to
Workload Management” on page 147

IWMDISC Disconnect from workload management Chapter 18, “IWMDISC – Disconnecting from
Workload Management” on page 199

IWMWMCON Over-ride the subsystem name and type
previously provided on IWMCONN.

Chapter 68, “IWMWMCON – Modify Connect
Information” on page 569

IWMWQRY Obtain a service class goal Chapter 69, “IWMWQRY – Query Service” on
page 577

Why Use the Execution Delay Monitoring Services
From the execution delay monitoring services, workload management knows how
well work is executing, and where any delays are occurring. The execution delay
monitoring services are for complex work manager configurations that process
across systems in a sysplex, but do not allow MVS to individually manage resource
consumption of the transactions. The services allow MVS to recognize additional
address spaces that are processing transactions.

4 z/OS V1R4.0 MVS Workload Management Services

When the execution delay monitoring services are used, MVS can allocate
resources for address spaces based on the behavior of the transactions being
serviced by them. The services also provide execution delay information, so that
your customers can determine where work is being delayed. They can then adjust
the work manager configuration to consistently meet the goals. Only response time
goals can be used with execution delay services. If you need to use velocity goals,
discretionary goals, or period switch, consider using enclave services instead.
Execution delay monitoring is mutually exclusive with enclaves in the same address
space so you must choose whichever function best suits your needs. Enclave
services provide more granular resource control and reporting than execution delay
monitoring services, but do not provide the capability for the work manager to report
its own view of transaction states.

The subsystem work manager uses the execution delay monitoring services to tell
workload management about their view of the current state of a work request, such
as ready state, idle state, or waiting state. The actual state may be different. For
example, a work request may be active from the subsystem’s view, but might be
delayed by a page fault, or for CPU access. The information is kept in performance
blocks, also called monitoring environments.

The monitoring environments represent work wherever it executes: across multiple
dispatchable units, address spaces, and systems.

Table 3 shows a summary of the execution delay monitoring services.

Table 3. Execution delay monitoring services

Service Purpose Information

IWMMABNL Record an abnormal event for work. Chapter 31, “IWMMABNL – Record Abnormal
Event” on page 291

IWMMCHST Record the state (such as ready, waiting,
idle) of a work request.

Chapter 32, “IWMMCHST – Change State of
Work Request Service” on page 295

IWMMCREA Create a monitoring environment, also called
performance block.

Chapter 33, “IWMMCREA – Create
Monitoring Environment Service” on page 303

IWMMDELE Delete the monitoring environment. Chapter 34, “IWMMDELE – Delete Monitoring
Environment” on page 313

IWMMEXTR Extract information from the monitoring
environment

Chapter 35, “IWMMEXTR – Delay Monitoring
Extract Service” on page 317

IWMMINIT Initialize monitoring environment with
information about a work request.

Chapter 36, “IWMMINIT – Monitor
Environment Initialization” on page 323

IWMMNTFY Record the completion of an execution phase
of processing a work request.

Chapter 37, “IWMMNTFY – Notify of Work
Execution Completion” on page 337

IWMMRELA Relate two monitoring environments that are
associated with the same work request.

Chapter 38, “IWMMRELA – Relate Monitoring
Environment Service” on page 345

IWMMSWCH Record that the information for a work
request may be reflected in another
monitoring environment.

Chapter 39, “IWMMSWCH – Switch
Monitoring Environment” on page 353

IWMMXFER Record that information for a work request is
reflected in another related monitoring
environment.

Chapter 40, “IWMMXFER – Transfer
Monitoring Environment” on page 359

IWMRPT Report the response time of a completed
work request.

Chapter 47, “IWMRPT – Reporting on Work
Request Completion” on page 415

IWMWQWRK Identify where transactions are executing. Chapter 70, “IWMWQWRK – Query Work
Service” on page 581

Chapter 1. Introducing the Workload Management Services 5

Why Use the Enclave Services
An enclave is an anchor for a transaction that can be spread across multiple
dispatchable units in multiple address spaces. These multiple address spaces can
even span across multiple systems in a parallel sysplex. The value of using an
enclave to represent a transaction is that the resources used to process the
transaction can be accounted to the transaction itself, rather than to the address
space or spaces that the transaction runs in. In addition, you can assign a
performance goal to the enclave, which means that as a transaction consumes
system resources, it can switch periods to run with a new goal.

Any number of tasks and SRBs can be grouped together in an enclave:

v Enclave SRBs offer the advantage that they are preemptable and won’t tie up the
system.

SRBs in enclaves work well for higher volume, small requests, as SRBs have
very little overhead compared to tasks. The subsystem can create an enclave
using the IWMECREA macro, and then schedule SRBs to run in the enclave
using the IEAMSCHD macro.

v Tasks in enclaves automatically associate the enclave with the address spaces
where they are dispatched, so workload management can manage the storage of
those address spaces to meet the goal of the enclave. The enclave can perform
functions that require a task environment, such as supervisor calls. Tasks can
dynamically leave and join an enclave as they finish one piece of work and begin
another. The subsystem creates an enclave using the IWMECREA macro, and
then the task joins the enclave using the IWMEJOIN macro.

Comparison to Other Services
Enclaves should not be run in the same address space with execution delay
monitoring environments. Unpredictable workload management actions could result.

Although enclaves have some characteristics that are similar to those of execution
delay monitoring, there are some important differences. These differences should
be considered before choosing which set of services to use. Enclaves support all
types of performance goals; delay monitoring supports only response time goals.
Enclaves allow period switching; delay monitoring does not. Enclaves can span
address spaces in multiple systems in a parallel sysplex; delay monitoring cannot.
Enclaves allow the separate management of work units that run in the same
address space but have different performance goals; a delay monitoring
environment can only be managed at the address space level. One advantage of
delay monitoring is that it does enable a work manager to report its own view of
transaction states.

Enclaves are required to be used with queueing manager services. For more
information, see “Why Use the Queueing Manager Services” on page 7.

Table 4 shows a summary of the enclave services.

Table 4. Enclave services

Service Purpose Information

IEAMSCHD Schedule an SRB into the enclave. z/OS MVS Programming: Authorized
Assembler Services Guide

IWMECREA Create an enclave. Chapter 20, “IWMECREA – Create an
Enclave” on page 213

6 z/OS V1R4.0 MVS Workload Management Services

Table 4. Enclave services (continued)

Service Purpose Information

IWMECQRY Query the classification information
associated with an enclave.

Chapter 19, “IWMECQRY – Query Enclave
Classification Attributes” on page 207

IWMEDELE Delete a previously created enclave. Chapter 21, “IWMEDELE – Delete an
Enclave” on page 223

IWMEDREG Deregister an enclave Chapter 22, “IWMEDREG — WLM Enclave
Deregister Service” on page 229

IWMEJOIN Join an enclave (task only). Once a task has
joined an enclave, all future processing is on
behalf of the transaction represented by the
enclave.

Chapter 23, “IWMEJOIN – Join an Enclave”
on page 235

IWMELEAV Leave an enclave (task only). Chapter 24, “IWMELEAV – Leave an
Enclave” on page 243

IWMEREG Register an enclave Chapter 26, “IWMEREG — WLM Enclave
Register Service” on page 255

IWMESQRY Query whether or not the current
dispatchable unit is associated with an
enclave.

Chapter 28, “IWMESQRY – Query Enclave
State” on page 269

IWMEXPT Export an enclave to all systems in a parallel
sysplex.

Chapter 29, “IWMEXPT – WLM Export
Service” on page 275

IWMIMPT Import an enclave that has been exported to
all systems in a parallel sysplex.

Chapter 30, “IWMIMPT – WLM Import
Service” on page 283

IWMRQRY Obtain information about enclave resource
consumption and delays.

Chapter 48, “IWMRQRY – Collecting Address
Space Delay Information” on page 425

IWMUEXPT Undo an export of an enclave to all systems
in a parallel sysplex.

Chapter 65, “IWMUEXPT – WLM Undo
Export Service” on page 549

IWMUIMPT Undo an import of an enclave. Chapter 66, “IWMUIMPT – WLM Undo Import
Service” on page 555

SYSEVENT
ENCASSOC

Indicate what address space an enclave is
associated with so the address space can be
managed to the performance goals of the
enclave.

z/OS MVS Programming: Authorized
Assembler Services Reference SET-WTO

SYSEVENT
ENCSTATE

Indicate that an enclave will be idle for an
extended period of time, exempting the
enclave from active resource management.

z/OS MVS Programming: Authorized
Assembler Services Reference SET-WTO

Why Use the Queueing Manager Services
A queueing manager is a subsystem or application that queues work requests to
workload management for execution by one or more server address spaces.

Queueing manager services allow MVS to:

v Dynamically start and stop server address spaces based on workload.

v Control the number of server instances per server address space.

v Manage the work queues associated with the server address spaces to meet the
performance goals set by the customer.

With the dynamic management of server address spaces, an installation does not
need to calculate the proper number of address spaces to process work, nor do
they have to monitor workload fluctuations that change the number of address

Chapter 1. Introducing the Workload Management Services 7

spaces needed. Customers can segregate work requests into different server
address spaces if this is important for security or integrity.

Enclaves are required to be used with the queueing manager services. This means
that customers can define velocity and discretionary goals for work as well as
response time goals. Multiple period control is also available for work running in
enclaves.

Queueing manager services may provide incentive to subsystems who run with
multiple tasks in one address space to switch to multiple address spaces. The
queueing manager services make it easier for installations to isolate individual work
requests from each other, by running only one in each execution address space,
with workload management managing the number of execution address spaces.

Table 5 shows a summary of the queueing manager services.

Table 5. Queueing manager services

Service Purpose Information

IWMCONN With the QUEUE_MANAGER=YES
parameter, establish the caller as a queueing
manager so it can begin queueing work
requests to its server address spaces.

Chapter 13, “IWMCONN – Connecting to
Workload Management” on page 147

IWMCONN With the SERVER_MANAGER=YES
parameter, establish the caller as a server
address space so it can begin receiving work
requests from the queueing manager.

Chapter 13, “IWMCONN – Connecting to
Workload Management” on page 147

IWMDISC Remove the caller as a queueing manager or
server manager.

Chapter 18, “IWMDISC – Disconnecting from
Workload Management” on page 199

IWMECREA Create an enclave. This can be done by the
queue manager itself or by its caller. It can
be a dependent or independent enclave.

Chapter 20, “IWMECREA – Create an
Enclave” on page 213

IWMEDELE Delete an enclave. Chapter 21, “IWMEDELE – Delete an
Enclave” on page 223

IWMESQRY Query whether or not the current
dispatchable unit is associated with an
enclave.

Chapter 28, “IWMESQRY – Query Enclave
State” on page 269

IWMQDEL Delete a work request from the queue for an
execution address space.

Chapter 43, “IWMQDEL – Deleting a Request
from the Queue for An Execution Address
Space” on page 381

IWMQINS Insert a work request onto workload
management queues so its execution in a
server address space can be managed by
workload management. The enclave token
obtained with the IWMECREA service is
passed into workload management by
IWMQINS.

Chapter 44, “IWMQINS – Inserting a Request
Onto the Queue for An Execution Address
space” on page 387

IWMSINF Obtain the number of server instances to be
started by workload management..

Chapter 53, “IWMSINF — WLM Server
Manager Inform Service” on page 457

IWMSLIM Immediately after invoking IWMCONN,
optionally establish a maximum and/or
minimum number of server instances that can
be started for a given application
environment.

Chapter 54, “IWMSLIM – Application
Environment Limit Service” on page 465

8 z/OS V1R4.0 MVS Workload Management Services

Table 5. Queueing manager services (continued)

Service Purpose Information

IWMSSEL Select a work request from workload
management queues for execution in a
server address space. This must be done
under a task.

Chapter 60, “IWMSSEL – Selecting a
Request from a Caller’s Work Manager
Queue” on page 511

IWMSSEM Select the next secondary work request from
the queue associated with the caller’s server
task.

Chapter 61, “IWMSSEM – WLM Server
Select Secondary Service” on page 519

IWMSTBGN Join the invoking task to the enclave
associated with the work request represented
by WUTOKEN (which was obtained on a
prior call to IWMSSEL) and optionally check
the authorization of the request. The server
address space is beginning to process the
work request. This must be done under a
task.

Chapter 62, “IWMSTBGN – Beginning a
Request from a Caller’s Work Manager
Queue” on page 527

IWMSTEND Leave the enclave that was joined in
IWMSTBGN. The server address space has
completed its processing of the work request.

Chapter 63, “IWMSTEND – End a Request
from a Caller’s Work Manager Queue” on
page 535

IWMTAFF Tell workload management when a temporal
affinity begins and when it ends.

Chapter 64, “IWMTAFF — WLM Temporal
Affinity Service” on page 541

Why Use the Routing Manager Services
A routing manager is a subsystem that establishes and manages connections
between a client and a server address space.

Routing manager services perform two main functions:

v Automatically starting and maintaining server address spaces as needed by the
workload across the sysplex.

v Balancing the workload among the servers in the sysplex by deciding on the best
server and providing the server routing information when a server is requested by
the routing manager.

Table 6 shows a summary of the routing manager services.

Table 6. Routing manager services

Service Purpose Information

IWMCONN With the ROUTER=YES parameter, establish
the caller as a routing manager so it can
begin requesting server routing information
through IWMSRFSV.

Chapter 13, “IWMCONN – Connecting to
Workload Management” on page 147

IWMCONN With the SERVER_MANAGER=YES and
SERVER_TYPE=ROUTING parameters,
establish the caller as an eligible server for
requests coming from a routing manager.
Workload management will balance the
workload among the eligible servers.

Chapter 13, “IWMCONN – Connecting to
Workload Management” on page 147

IWMDISC Remove the caller as a routing manager. Chapter 18, “IWMDISC – Disconnecting from
Workload Management” on page 199

IWMECREA Create an enclave. This is done in a server
address space.

Chapter 20, “IWMECREA – Create an
Enclave” on page 213

Chapter 1. Introducing the Workload Management Services 9

Table 6. Routing manager services (continued)

Service Purpose Information

IWMEDELE Delete an enclave. Chapter 21, “IWMEDELE – Delete an
Enclave” on page 223

IWMSRFSV Find the best server for a work request. If no
server exists for a request, start one.

Chapter 57, “IWMSRFSV – Finding a Sysplex
Routing Server” on page 485

Why Use the Scheduling Environment Services
A scheduling environment is a list of resource requirements, allowing you to ensure
that units of work are sent to systems that have the appropriate resources to handle
them. Resources can represent actual physical entities, such as a data base or a
peripheral device, or they can represent intangible qualities such as a certain period
of time (like second shift or weekend).

These resources are listed in the scheduling environment according to whether they
must be set to ON or set to OFF. A unit of work can be assigned to a specific
system only when all of the required resource states are satisfied.

Table 7 shows a summary of the scheduling environment services.

Table 7. Scheduling Environment Services

Service Purpose Information

IWMSEDES Determine if a scheduling environment is
available on a specified system

Chapter 49, “IWMSEDES – Scheduling
Environments Determine Execution Service”
on page 433

IWMSEQRY Obtain scheduling environment definitions
and status

Chapter 50, “IWMSEQRY – Scheduling
Environments Query Service” on page 439

IWMSESET Modify the state setting of a resource Chapter 51, “IWMSESET – Scheduling
Environments Set Resource” on page 445

IWMSEVAL Validate a scheduling environment name Chapter 52, “IWMSEVAL – Scheduling
Environments Validate Service” on page 451

Why Use the Sysplex Routing Services
The sysplex routing services allow work associated with a server to be distributed
across a sysplex. They are intended for use by clients and servers when the
incoming work requests have not been classified by workload management at the
time the routing decision is being made.

The sysplex routing services enable distributed client/server environments to
balance work among multiple servers. These services help distributed programs
make the routing decisions, rather than having each installation make these
decisions. Unlike the routing manager services described earlier, sysplex routing
services do not automatically start server address spaces as needed.

A client is any subsystem work manager, application or product, in the network that
requests a service. The service could be a request for data, a program to be run, or
access to a database or application. In terms of the sysplex routing services, a
client is any program routing work to a server. A server is any subsystem address
space that provides a service on an MVS image.

10 z/OS V1R4.0 MVS Workload Management Services

The sysplex routing services provide information for more intelligent routing. They
do not route or distribute work requests. The server must use its existing routing
mechanisms.

Table 8 shows a summary of the sysplex workload balancing services.

Table 8. Sysplex routing services

Service Purpose Information

IWMSRDNS Provide the caller with list of location names
for all registered servers known to the system
on which the service is invoked.

Chapter 55, “IWMSRDNS – Get Sysplex
Routing Location List” on page 473

IWMSRDRS Deregister a server Chapter 56, “IWMSRDRS – De-register a
Server for Sysplex Routing” on page 479

IWMSRSRG Register an eligible server. Chapter 58, “IWMSRSRG – Register a
Server for Sysplex Routing” on page 493

IWMSRSRS Provide the caller with a list of registered
servers and the number of requests that
should be routed to each server.

Chapter 59, “IWMSRSRS – Determine Where
to Route Work” on page 501

Why Use the Query System Information Service
The Query System Information service, IWMWSYSQ, returns a list of systems
running in goal mode and information related to available CPU capacity and
resource constraints. Applications that schedule work across multiple systems in an
MVS sysplex can use this service to:
v Locate the “best” (fastest or most idle) system in a sysplex for scheduling specific

work
v Avoid scheduling additional work to systems already critically overloaded
v Factor workload management business importance level information into

scheduling decisions.

The output of this service is a data area mapped by the IWMWSYSI macro, that
provides a point-in-time snapshot of each system workload management is
managing in the sysplex. A scheduling application can interpret and use this
information to schedule one or more types of work to systems with specific
operating characteristics.

Refer to Chapter 71, “IWMWSYSQ – Querying System Information” on page 589 for
more information about this service.

Services for Performance Monitors
The workload reporting services are intended for use by monitoring or reporting
products to collect performance data. These services replace some of the existing
methods of collecting data, and provide as complete a picture of performance
information as possible.

A workload management ISPF application contains an installation’s goals for work
in a service policy. The reporting services access the service policy information, and
report on how well the installation is doing in processing towards the goals in the
policy. The services report information based on the service classes defined in the
service policy. They also provide delay information on work managed by
subsystems using the execution delay monitoring services.

Chapter 1. Introducing the Workload Management Services 11

Because the system collects performance data continually, there is no set reporting
interval. So, unlike earlier releases of MVS, multiple performance monitors can
request the services at the same time. And, performance monitors can collect the
data based on their own reporting intervals. When the performance monitor invokes
a service to collect performance data, the data is provided in a cumulative fashion.

When a significant change occurs in workload management, such as a policy
activation, the data collection is stopped and re-started. At such times, performance
monitors should also stop and re-start their reporting intervals. For each time that
data collection is stopped and re-started in workload management, an ENF signal
notifies listeners of the change.

Why Use the Workload Reporting Services
The workload reporting services provide information for performance monitors to
report on how well an installation is doing in meeting performance goals.

Prior to z/OS R3, workload reporting services were available to systems running in
either goal or compatibility mode. Some of the collected data was different for each
mode. The performance monitor should realize the system will now be running
exclusively in goal mode, and be able to locate and use the collected performance
data appropriately.

For goal mode, with the cooperation of subsystem work managers, the service can
provide more performance data than previously reported. They provide information
about work that is processed by many address spaces, and allow for a view of
subsystem transactions, not just address spaces and enclaves. The data includes:
v Response time information
v Response time distributions
v Execution delay state information for transactions
v Information about service classes that different address spaces are serving.

The services allow a performance monitor to show the goal for a service class
period, how well the system is doing to meet the goal, and if it is not meeting the
goal, why it is delayed. The performance monitor can show this goal vs. actual data
in terms that are consistent for all MVS-managed work.

Table 9 shows an overview of the workload reporting services, and where the
information about them is documented.

Table 9. Summary of workload reporting services

Service Purpose Information

IWMPQRY v Provides the active service policy.
v Use it with IWMRCOLL for goal vs. actual

information

Chapter 42, “IWMPQRY – Query Active
Service Policy” on page 375

IWMRCOLL Collects:
v Workload activity information
v Response time information
v General delay information
v Execution delay state information

Chapter 45, “IWMRCOLL – Collecting
Workload Activity Data” on page 399

12 z/OS V1R4.0 MVS Workload Management Services

Table 9. Summary of workload reporting services (continued)

Service Purpose Information

IWMRQRY Provides address space related information:
v Server information
v Velocity information
v General delay information

– MPL delay
– Swap-in
– Resource group capping
– CPU delay

v Enclave information

Chapter 48, “IWMRQRY – Collecting Address
Space Delay Information” on page 425

SYSEVENTs REQASD
and REQFASD

Provide information about an address space:
v Whether it is a server
v Whether its goal is being honored
v Whether it was quiesced
v Service class, report class
v Performance group, report performance

group

z/OS MVS Programming: Authorized
Assembler Services Reference SET-WTO

SYSEVENT
REQSRMST

To quickly check:
v Active service policy
v Installed service definition

z/OS MVS Programming: Authorized
Assembler Services Reference SET-WTO

Getting Information from SMF Type 99
SMF record type 99 provides detailed audit information. You can use the type 99
records for analyzing performance characteristics of work. The records contain
performance data for each service class period, a trace of SRM actions, the data
SRM used to decide which actions to take, and the internal controls SRM uses to
manage work.

This can help you determine in detail what SRM is doing to meet your work’s goals
with respect to other work, and the types of delays the work is experiencing.

Attention:

Be aware that the SMF type 99 records are written frequently. The SMF type 99
records are for detailed audit information only. Before migrating to z/OS V1R3 and
switching your systems into goal mode, you should make sure you do not write
SMF type 99 records unless you want them.

Chapter 10, “Using SMF Record Type 99” on page 101 explains how to use the
information provided in SMF type 99 records. For a mapping of the records, see
z/OS MVS System Management Facilities (SMF).

Chapter 1. Introducing the Workload Management Services 13

|
|
|
|
|

|
|

Services for Application Programs
The administrative application services are intended for programs which provide a
user interface to define and edit a workload management service definition.

Table 10 shows a summary of the administrative application services.

Table 10. Adminstrative application services

Service Purpose Information

IWMCQRY Query the classification rules in effect. Chapter 15, “IWMCQRY – Query
Classification Attributes” on page 173

IWMDINST Install a service definition on the WLM couple
data set.

Chapter 17, “IWMDINST – Install Service
Definition” on page 189

IWMDEXTR Extract a service definition from the WLM
couple data set.

Chapter 16, “IWMDEXTR – Extract Service
Definition” on page 181

IWMPACT Activate a service policy. Chapter 41, “IWMPACT – Activate Service
Policy” on page 367

14 z/OS V1R4.0 MVS Workload Management Services

Chapter 2. Using The Subsystem Work Manager Services

You can use many different combinations of the workload management services.
Which ones and which combination you choose to use depends on the benefit you
expect from using them, whether your programming environment allows you to use
them, and the structure of the subsystem work manager using the services. The
following section describes some suggested uses of the MVS workload
management services.

If you need to manage a transaction separately from the address space in which it
runs, or you want to use velocity goals, discretionary goals, or period control, use
enclaves. For more information about using enclave services, see Chapter 3,
“Creating and Using Enclaves” on page 29.

Considerations Before Using the Services
Before you use the subsystem work manager and the execution delay monitoring
services, you should consider the following:

v What “type” of subsystem work manager you are.
– Transaction processing system
– Data or resource manager

v What benefits do you expect to reap from using the WLM services?
– Do you want your customers to be able to specify goals for your transactions?
– Do you plan on getting reporting information on goals defined in the MVS

workload management service definition?

v What kinds of address spaces does the subsystem work manager consist of?

v What is the definition of a transaction or work request, from your customer’s
perspective?

v What kind of functions do the address spaces provide?
– Control address spaces?
– Transaction level dispatching?
– Other execution regions?
– Other supporting address spaces?

v What environments does the subsystem work manager run in?
– Authorization, including PSW key
– Dispatchable unit mode
– Cross memory mode
– AMODE
– ASC mode
– Interrupt status
– Locks

v Does the subsystem work manager use other products, such as a data
manager?

v Does the work cross MVS system (MVS image) boundaries?

v Does the work cross MVS sysplex boundaries?

© Copyright IBM Corp. 1988, 2002 15

Suggested Services for a Single Address Space Transaction Manager
A single address space subsystem work manager performs functions similar to
those shown in Figure 1. It goes through address space initialization and start-up
routines. It receives a work request, processes the work request, receives another
work request, and so on. At some point, it processes some address space clean-up
and termination routines.

If you have a single address space transaction manager, and would like the
following functions from workload management:
v Associate work coming into the subsystem with a service class.
v Have MVS match resources to the work to meet the service class goal.
v Provide goal vs. actual information for reporting
v Provide response time information for work requests

consider using the services shown in Figure 2 on page 17. They show when a
single address space manager could invoke the appropriate workload management
services. They are the minimum set of services a work manager can use to achieve
the objectives listed above.

Note: You can instead use enclave services for a single address space transaction
manager. For more information about using enclave services, see Chapter 3,
“Creating and Using Enclaves” on page 29.

Figure 1. Sequence of functions in a single address space transaction manager.

16 z/OS V1R4.0 MVS Workload Management Services

You issue the IWMCONN service at address space initialization time. This connect
service returns a token required by the IWMCLSFY and IWMRPT services. When
the address space receives a work request, it should issue the classify
(IWMCLSFY) macro to associate arriving work with a service class. The subsystem
work manager can issue IWMCLSFY in either problem state or supervisor state, in
any PSW key. The PSW key, however, must be compatible with the key specified
when IWMCONN was issued.

IWMCLSFY passed WLM information identifying the work request. This information
includes the following:
v Subsystem environment and name (used on IWMCONN)
v Transaction/job name
v Transaction/job class
v Userid
v Accounting information
v LU name
v Network id

These are called work qualifiers. IWMCLSFY also supports a product-specific
parameter, called the subsystem parameter. If none of the qualifier types listed
above define your subsystem work manager’s work requests, you can use the
subsystem parameter.

The transaction manager should document which work qualifiers they use on the
IWMCLSFY service, so that a customer knows how to define the classification rules
defined in the workload management ISPF application. Also, since your transaction

Figure 2. Work manager services for a single address space transaction manager.

Chapter 2. Using The Subsystem Work Manager Services 17

manager may not support all of the qualifier types, you should recommend that your
customers customize the list of qualifiers for your subsystem type in the WLM ISPF
application.

After receiving the work request and classifying it, the transaction manager then
processes the work request. When it completes the request, it should issue
IWMRPT. The report service provides the arrival time and, optionally, completion
information about the work request. Only normal completions are included in the
response time information, so the information is not skewed by abnormal
completions. The transaction manager should issue IWMRPT only once per work
request.

Then, at address space clean up and termination time, the transaction manager
should issue a IWMDISC, to disconnect from workload management services.

Using the Execution Delay Monitoring Services
If you have a single address space subsystem work manager, and would like the
following functions from workload management:
v Associate work coming into the subsystem with a service class
v Goals vs. actual information for reporting
v Response time information for work requests
v Execution delay information about work for reporting and for MVS management

purposes

consider using the services shown in Figure 3 on page 19.

The execution delay monitoring services support response time goals only. If you
want your customers to assign velocity or discretionary goals, or if you want to
support period switching, consider using enclaves instead. For information about
using enclave services, see Chapter 3, “Creating and Using Enclaves” on page 29

It is important to use the IWMMCHST service together with the IWMRPT service,
otherwise the delay information is not meaningful.

18 z/OS V1R4.0 MVS Workload Management Services

At address space initialization, the address space issues the IWMCONN service to
establish authorization for subsequent services. It then issues the IWMMCREA
(create) service. Create establishes a monitoring environment to keep track of the
execution delays encountered by a work request. If the transaction manager sets up
multiple tasks to process work, you should create one monitoring environment per
task, assuming each task is dedicated to one work request. Similarly, if the task
processes multiple work requests at the same time, then it should issue one
IWMMCREA for each work request that may be running under that task at one time.
You can use the REQUEST=MULTIPLE parameter on the IWMMCREA service to
create a pool of monitoring environments at initialization time. This saves the
repeated system overhead of issuing a single IWMMCREA service for each
monitoring environment needed.

The IWMMCREA service also defines the PSW key in which the transaction
manager is to run. Since monitoring environments are not initially associated with a
work request, the IWMMCREA sets the state of the monitoring environment to
“free”.

When you create a monitoring environment, workload management establishes
recovery at both the task and address space level. If the address space or the task
that created the monitoring environment fails, workload management cleans up the
resources associated with the monitoring environment.

When the transaction manager receives a work request, it should issue the
IWMCLSFY service to associate an incoming work request with a service class. At
that time, the transaction manager should issue an IWMMINIT to initialize the

Figure 3. Work manager and delay monitoring services for a single address space transaction manager.

Chapter 2. Using The Subsystem Work Manager Services 19

monitoring environment. The IWMMINIT service with the MODE=RESET parameter
sets the state of the monitoring environment to “active”, and associates the
monitoring environment with the work request.

Whenever that work request encounters a different state, such as waiting on a
conversation, waiting on a lock, or for I/O, the transaction manager should issue the
IWMMCHST (change state of work request) service. Since IWMMCHST is an inline
expansion, there is very little overhead, and you can issue it frequently. Workload
management can then update the monitoring environment to reflect these changes,
and represent the execution delays the work request encountered.

When the transaction manager has completed processing the work request, it
should issue the IWMRPT service. The transaction manager should delete all
created monitoring environments at address space clean-up and termination, and
disconnect from workload management services.

Suggested Services for a Work Manager Calling a Data Manager
If you have a work manager that calls a data manager, and you are on the same
MVS image, you could use the combination of services suggested in this section. If
you would like to do the following:
v Associate work coming into the subsystem with a service class
v Goals vs. actual information for reporting
v Response time information for work requests
v Execution delay information about work
v Track work from a work manager to a data manager

consider using the services shown in Figure 4 on page 21.

20 z/OS V1R4.0 MVS Workload Management Services

Since the transaction manager is using the work manager services, it must issue
the IWMCONN at address space initialization. In this example, the transaction
manager is using monitoring environments, so it issues an IWMMCREA at address
space initialization time to create the monitoring environment. Similarly, the
database manager is also using monitoring environments, so it issues IWMMCREA
at its address space initialization.

Assuming that the database manager uses a dedicated dispatchable unit, it should
also create one monitoring environment per task or SRB that it uses. The
transaction manager and the database manager could be running in different, or the
same tasks. The tasks in the figure (one in the work manager, and one in the
database manager) could be the same one.

However, the database manager, instead of using IWMMINIT, issues IWMMRELA
(relate monitoring environment) when it is called by the transaction manager task.
The relate monitoring environment service associates the database manager’s
monitoring environment for the work request to the transaction manager’s
monitoring environment for the same work request. Because the relate service
requires the token and key identifying the transaction manager’s monitoring
environment, the transaction manager should pass the token and key to the
database manager. In this example, the transaction manager monitoring
environment is called the parent environment, and the database manager that
issues the relate service is called the dependent environment.

Figure 4. Services for a work manager that uses a database manager.

Chapter 2. Using The Subsystem Work Manager Services 21

After the database manager has related to the work manager, it can be called to
process a specific data base request. Each such call should begin with a transfer
(IWMMXFER) service with a FUNCTION=CONTINUE parameter, and end with a
transfer (IWMMXFER) with a FUNCTION=RETURN parameter.

When the work manager issues a call to the database manager, the database
manager issues a IWMMXFER. The work manager state can be either active, or
waiting throughout the transfer. The IWMMXFER FUNCTION=CONTINUE indicates
that the real state for the work request now resides in the data manager monitoring
environment. From that point on, the database manager should use change state
(IWMMCHST) as its view of the work request changes. You should issue
IWMMRELA and IWMMXFER in pairs for each data base call or return.

The transfer with the FUNCTION=RETURN parameter resets the dependent
monitoring environment state to free. At this point, workload management
recognizes that the dependent monitoring environment no longer represents the
work request. The parent and dependent monitoring environments are still related,
for any future transfers, such as with a second call to the database manager. When
the database manager is done with any work requests that require related
monitoring environments between the parent and the dependent, it should issue the
IWMMRELA with the FUNCTION=DELETE parameter. This disassociates the parent
and dependent monitoring environments.

Services for Multiple Address Space Work Managers
The structure of the subsystem work manager dictates which workload
management services can be used. A multiple address space work manager
normally consists of three kinds of address spaces: router, execution, and
supporting. The router address space receives incoming work requests, and passes
them off to execution address spaces, which might use the services of supporting
address spaces. Figure 5 on page 23 shows the sequence of functions in a multiple
address space work manager.

22 z/OS V1R4.0 MVS Workload Management Services

There are several groups of services that are useful to a multiple address space
work manager:

v Chapter 3, “Creating and Using Enclaves” on page 29

The enclave services let you manage transactions across multiple address
spaces in the same service class as the original request. The customer can
assign a response time, discretionary, or a velocity goal to work, and can define
period switching.

v Chapter 4, “Using the Queueing Manager Services” on page 49

The queueing manager services make it possible for the system to dynamically
start and stop server address spaces based on the workload, and manage the
work queues associated with the server address spaces to meet service class
goals. The customer can assign a response time, discretionary, or a velocity goal
to work, and can define period switching.

v “Execution Delay Monitoring Services for Multiple Address Space Work
Managers” on page 24.

The execution delay monitoring services let you associate a service class with
work, and the customer can assign a response time goal. You can also get
response time and delay information about how well the work did to meet the
goal. However, if you want to have the advantages of enclaves (such as having a

Figure 5. Sequence of function in a multiple address space work manager.

Chapter 2. Using The Subsystem Work Manager Services 23

single transaction that spans multiple address spaces and is managed to the
goal of the originating address space), you should use enclave services rather
than execution delay monitoring services.

Execution Delay Monitoring Services for Multiple Address Space Work
Managers

The structure of the multiple address space subsystem work manager determines
which workload management services you can use to monitor work in multiple
address spaces across a sysplex. The relate (IWMMRELA), transfer (IWMMXFER),
and switch (IWMMSWCH) services provide a way for the work manager to indicate
that a transaction is continuing execution somewhere else.

Some questions to help determine which services are appropriate include:

v Are the router, execution, and support address spaces all on one MVS image, or
can they be distributed across MVS images?

How many MVS images are involved influences the choice of the relate/transfer
pair or switch service. IWMMXFER requires both monitor environments to be on
the same image, and knowledge of the parent monitoring environment.
IWMMSWCH says the continuation of this work is “somewhere else,” either
waiting within the MVS image, or in the sysplex, or the network. In addition, it
indicates that the work request is waiting for the continuation to return.

v What are the addressability requirements?

Connect (IWMCONN) and create (IWMMCREA) identify the key in which future
services are issued, and IWMMRELA requires addressability to the parent
monitoring environment. IWMMXFER requires updating the dependent monitoring
environment, and requires addressability and key update access to the parent
monitoring environment.

v What are the dispatchable units in the servers and support address spaces?

You must specify the dispatchable unit type on the INIT and RELATE services.

v When are the “arrival time” and the work qualifiers (name, userid, etc.) known?

The arrival time for the work request is required for INIT, and the work qualifiers
are required for CLASSIFY.

v What is the current communication between the router, servers, and the support
address spaces, so that new data can be passed?

The participating subsystem work managers may want to pass the service class
token returned from the IWMCLSFY service, together with the work request using
their own communication methods.

Figure 6 on page 25 shows some suggested services for a multiple address space
work manager that take into account the previously discussed considerations.

24 z/OS V1R4.0 MVS Workload Management Services

In the figure, the router could be like a CICS TOR that routes the work off to an
AOR, the execution address space, for processing. There may be some supporting
address space involved that help process the work requests. The router would
issue the IWMCONN macro to connect to workload management. It would also
issue the IWMCLSFY service to associate the arriving work with a service class.
Since it also receives the work request back once it has been processed, it also
issues the IWMRPT service to report the completion, and the IWMDISC at address
space termination.

The execution address spaces would issue the IWMMCREA to create the
monitoring environments and record information about the work with the
IWMMCHST service. It would issue the IWMMNTFY to signify that the execution
phase of work request execution has completed. Then, at address space
termination, it would issue the IWMMDELE service to delete the monitoring
environments.

The supporting address spaces would also use monitoring environments, so they
would issue IWMMCREA and IWMMDELE. To show that the information they are
keeping in the performance block reflects the same work request as the monitoring
environment created by the execution address spaces, they issue the IWMMRELA
and IWMMXFER services.

IWMMRELA and IWMMXFER require the supporting address space to be on the
same MVS image, and that the monitoring token be passed from the execution
address space to the supporting address space.

Figure 6. Example of services that monitor work across multiple address spaces.

Chapter 2. Using The Subsystem Work Manager Services 25

Services for Work Managers that Distribute Work Requests
Some work managers distribute work across systems in a sysplex. Distributed work
may originate from one subsystem work manager, and be processed by another.
For example, a work manager may send work to a data base manager for
processing. Other work managers may split up complex work into smaller pieces
and distribute the pieces to other systems in the sysplex for processing.

Whether the work is distributed, or split and distributed, you may still want to keep
the work classified according to the subsystem originating the work request. Not all
classification information may be available to the receiving subsystem. For example,
suppose JES has distributed a batch job to a data base system. The data base
system issues IWMCLSFY when it receives the batch job. Because it is not the
same subsystem environment, the batch job is now classified into a service class
representing the data base work, and not to a service class representing batch jobs.

A work manager can use the IWMWMCON macro when it receives work and wants
it to be classified using the originator’s subsystem environment, and not its own.
The IWMWMCON macro lets a caller modify the subsystem type and subsystem
name previously provided on the IWMCONN macro.

Once the receiving subsystem has issued the IWMWMCON macro, the subsystem
can issue the IWMCLSFY macro. The work is then classified according to the
modified environment. Note that any other macro that requires subsystem name,
subsystem type, or service class name is affected by the change. Those macros
are:

v IWMCLSFY, which returns a service class based on the modified subsystem
environment attributes. See Chapter 11, “IWMCLSFY – Assign Work Request to
a Service Class” on page 123 for a complete description.

v IWMECREA, which creates an enclave based on the parameter list from
IWMCLSFY. See Chapter 3, “Creating and Using Enclaves” on page 29.

v IWMRPT, which reports on the completion of the work associated with the
service class received from IWMCLSFY. See Chapter 47, “IWMRPT – Reporting
on Work Request Completion” on page 415 for a complete description.

For details on the IWMWMCON macro, see Chapter 68, “IWMWMCON – Modify
Connect Information” on page 569.

Determining the Subsystem Name and Type
A caller must provide a subsystem name and type on the IWMWMCON macro. To
determine the subsystem name or type, a caller can use the REQASCL
SYSEVENT. The REQASCL SYSEVENT provides information about an address
space’s classification information. The originating subsystem should issue
REQASCL, and pass the information with the work request.

For information about how to use the REQASCL SYSEVENT, see z/OS MVS
Programming: Authorized Assembler Services Reference SET-WTO.

Using IWMWMCON When Distributing Work in a Sysplex
The expected use of the IWMWMCON service is in a multiple system work
environment, where work is received by a work router and distributed to other
systems in the sysplex. In this case, the enclave or address space transaction of
the originator cannot be used to manage the work request, because a transaction
has a single system scope. When a request or a part of a request is distributed to a

26 z/OS V1R4.0 MVS Workload Management Services

different system, it must run under a new transaction. The example below shows
how IWMWMCON can be used in conjunction with the IWMECREA service to
create an independent enclave on the system receiving the work request. For
details on using enclaves, see Chapter 3, “Creating and Using Enclaves” on
page 29.

Example of Using IWMWMCON
Suppose a subsystem work manager called DISS splits complex work requests into
pieces and distributes the split work to six data base manager address spaces,
called DB1 through DB6, each running on a separate system in the sysplex. DISS
might communicate with the data base address spaces through a shared queue on
DASD or a coupling facility, or through sysplex services. The DISS subsystem does
the following:

1. Receives a work request.

2. Determines the work requestor’s classification attributes using the SYSEVENT
REQASCL macro.

3. Splits the request and distributes pieces to DB1 through DB6, passing the
information returned by REQASCL.

Each data base subsystem, DB1 through DB6, does the following:

1. Receives the split work request along with its classification attributes.

2. Obtains a latch or lock prior to issuing IWMWMCON to serialize the use of the
work manager connect environment.

3. Modifies the connect environment by issuing IWMWMCON with the subsystem
name and type passed by DISS.

4. Builds a classification parameter list with the attributes passed by DISS using
the modify form of the IWMCLSFY macro.

5. Creates an independent enclave using the IWMECREA macro to manage the
split work request.

6. Restores the previous connect environment using the IWMWMCON macro with
the previous subsystem type and name.

7. Releases the latch or lock being used to serialize the connect environment.

8. Processes the work by joining tasks to the enclave and/or scheduling SRBs into
it.

9. When the work is finished, deletes the enclave using the IWMEDELE macro.

Considerations for Mixed Releases
The example above assumes that all systems are running OS/390 R3 or later. If
your subsystem needs to also support earlier levels of OS/390, then the data base
address spaces running on the down-level systems may need to operate differently
than shown above.

First, you need to be careful when passing classification information between
systems at different levels. The subsystem issuing the IWMCLSFY macro needs to
use a parameter list compatible with the level where it is running.

Also, there is a restriction on pre-OS/390 R3 systems. You need to run enclave
transactions in a service class or performance group separate from address space
transactions. So, if the work request is running under the originator’s address space
transaction when it is received by DISS, the data base address space must ensure
that the independent enclave it creates for the request is classified differently.

Chapter 2. Using The Subsystem Work Manager Services 27

One way to force separate classification of the enclaves is to use a new subsystem
type and name when invoking IWMWMCON from the data base address space.
Extending the example above, assume DB7 is a data base address space running
on a pre-OS/390 R3 system. When DB7 receives a request from DISS it does the
following:

v Like steps 1 and 2 above for DB1 through DB6, receives a request and obtains a
latch or lock.

v When calling IWMWMCON, passes in a new subsystem type, such as DBR,
rather than the originator’s subsystem type. DB7 preserves the originator’s
subsystem type, by putting it in the subsystem name field. The originator’s
subsystem name is not used. The subsystem type is preserved because it is a
higher level attribute than subsystem name.

v Provides other classification attributes unchanged via the modify form of
IWMCLSFY.

v Continues with steps 5 through 9 above.

This means that when DB7 creates an enclave, it is classified into a service class
or performance group based on the classification rules defined for subsystem type
DBR in the active service policy, rather than those defined for the originator’s
subsystem type.

A subsystem that makes use of a unique subsystem type to classify remote work as
in this mixed release example, must explain this in the subsystem reference
information so the installation knows how to properly define classification rules for
the subsystem.

28 z/OS V1R4.0 MVS Workload Management Services

Chapter 3. Creating and Using Enclaves

An enclave is a transaction that can span multiple dispatchable units (SRBs and
tasks) in one or more address spaces and is reported on and managed as a unit.
The enclave is managed separately from the address spaces it runs in. CPU and
I/O resources associated with processing the transaction are managed by the
transaction’s performance goal, accounted to the transactions, and reported to the
transaction. A program can create an enclave, schedule SRBs into it, or join tasks
to it. A multisystem work manager can process a transaction on multiple systems by
using a multisystem enclave.

Use the following services to work with enclaves:

v The IWMECREA macro allows you to create an enclave.

v The IWMEREG macro allows you to register an enclave to prevent it from
premature deletion.

v The IWMEDREG macro allows you to deregister an enclave.

v The IEAMSCHD macro allows you to schedule an SRB into the enclave.

For information about using the IEAMSCHD macro, see z/OS MVS
Programming: Authorized Assembler Services Guide.

v The SYSEVENT ENCASSOC macro allows an enclave running SRBs to be
associated with an address space so the server address space’s storage-related
resources can be managed to the enclave’s performance goal.

For information about using the SYSEVENT ENCASSOC macro, see z/OS MVS
Programming: Authorized Assembler Services Guide.

v The SYSEVENT ENCSTATE macro allows the creator of an enclave to notify
SRM when the enclave is idle, so that its state is sampled correctly.

For information about using the SYSEVENT ENCSTATE macro, see z/OS MVS
Programming: Authorized Assembler Services Guide.

v The IWMEJOIN macro allows a task to join an enclave.

v The IWMELEAV macro allows a task to leave an enclave.

v The IWMEXPT macro allows you to export an enclave to all systems in a parallel
sysplex.

v The IWMUEXPT macro allows you to undo an export.

v The IWMIMPT macro allows you to import an enclave that has been exported.

v The IWMUIMPT macro allows you to undo an import.

v The IWMECQRY macro allows a program to query the classification information
associated with an enclave.

v The IWMESQRY macro provides a program with information about whether the
current dispatchable unit is associated with an enclave.

v The IWMEDELE macro allows a program to delete a previously created enclave.

Why Would You Use an Enclave?
Use an enclave when you have a transaction that spans multiple tasks or SRBs in
one or more address spaces, and you want to manage it as a unit. An enclave
allows you to manage and report on resource consumption in the enclave based on
a performance goal unrelated to the performance goal(s) of the address space(s) in
which the enclave’s dispatchable units execute.

© Copyright IBM Corp. 1988, 2002 29

An independent enclave represents a complete transaction. Its performance goal is
assigned based on the service class to which it is classified when the enclave is
created. Each independent enclave starts in period 1 of its service class and
switches periods based on the service consumed by the dispatchable units
belonging to the enclave.

A dependent enclave represents the continuation of an existing address space
transaction under a new set of dispatchable units. Its performance goal is inherited
from the existing address space transaction based on the service class (or PGN)
and period being used to manage the address space at the instant the dependent
enclave is created. CPU service consumed by a dependent enclave is treated as if
it were consumed by the address space transaction, and can cause the address
space along with the dependent enclave to switch into later periods.

If your work manager does not use enclaves, work can only be managed on an
address space basis, tied to the address space the work runs in. If you have a
transaction that spans multiple address spaces, use an enclave to manage the
transaction as a unit.

If you have an address space that executes multiple transactions, use enclaves to
isolate the transactions so they can be reported on and managed individually.

SRBs in Enclaves
Enclave SRBs offer advantages over local and global SRBs in that they are
preemptable, and can be be run at a lower major dispatching priority than tasks in
the same address space.

SRBs in enclaves work well for transactions having short durations, not issuing
supervisor calls, and not otherwise requiring a task environment. SRBs have very
little startup overhead compared to tasks. The subsystem can create an enclave
using the IWMECREA macro, and then schedule SRBs to run in the enclave using
the IEAMSCHD macro.

The SYSEVENT ENCASSOC macro is used to indicate that an enclave and an
address space are related for storage management purposes. The ENCASSOC
sysevent is necessary only when SRBs are used. A task that joins an enclave
automatically associates the home address space with the enclave. See MVS
Programming: Authorized Assembler Services Reference, Volume 4 for more
information about the SYSEVENT macro.

For more information about SRBs and how to use them, see z/OS MVS
Programming: Authorized Assembler Services Guide. For more information about
the IEAMSCHD macro, see z/OS MVS Programming: Authorized Assembler
Services Reference ENF-IXG.

Tasks in Enclaves
Using tasks in enclaves offers all the advantages of enclaves and allows the
enclave to perform functions that require a task environment, such as supervisor
calls. Unlike SRBs, tasks can dynamically leave and join an enclave as they finish
one piece of work and begin another.

A subsystem can create an enclave using the IWMECREA macro, join the task to
the enclave using the IWMEJOIN macro, process the work request, and remove the
task from the enclave using the IWMELEAV macro. If a task joins an enclave and

30 z/OS V1R4.0 MVS Workload Management Services

subsequently attaches subtasks, the subtasks are automatically joined to the
enclave. The interactions between enclaves and attach/detach are summarized as
follows:

v Subtasks attached while the mother task belongs to an enclave inherit
membership in the same enclave.

v Subtasks that already exist when the mother task joins an enclave are not
automatically made part of the enclave although they may explicitly join and
leave the enclave using IWMEJOIN and IWMELEAV.

v Tasks which inherit membership in an enclave can only leave the enclave by
terminating or by deletion of the entire enclave.

v Mother tasks with subtasks that inherited enclave membership cannot leave the
enclave until all such subtasks terminate.

Comparison of Enclaves and Execution Delay Services
You cannot use tasks in enclaves and execution delay services in the same
address space. This same restriction applies to SRBs in enclaves if you use the
SYSEVENT ENCASSOC to associate the enclave with an address space. When
deciding which set of services to use for a work manager, you should consider the
following advantages of enclaves over execution delay services:

v Isolation of transactions

Enclaves allow separate dispatching priorities to be assigned to work running in
the same address space. Therefore, workload management can manage this
work to different performance goals. Without enclaves, all work in an address
space runs at the same major dispatching priority.

v Period control

Enclaves can run in a service class with multiple periods. Because resource
consumption is tracked for individual enclaves, the enclave can move from one
period to the next as it consumes CPU resource. The goals for the periods can
be chosen to favor short transactions over long ones within a single address
space.

v Full goal support

Enclaves support response time, velocity, and discretionary goals, whereas
transactions reported using execution delay services can be managed only to
response time goals.

v Server address space management

Enclaves are independent from an address space, so a transaction that moves
from the originating address space to one or more server address spaces can be
managed as a single transaction.

v Multisystem scope

Enclaves can span address spaces on multiple systems in a parallel sysplex,
whereas transactions supported using execution delay services are constrained
to a single system.

Creating an Enclave
A subsystem creates an enclave using the IWMECREA service. You can define
independent or dependent enclaves.

Independent Versus Dependent Enclaves
You use independent and dependent enclaves for different purposes, as follows:

v Independent Enclaves

Chapter 3. Creating and Using Enclaves 31

Use an independent enclave to represent a new transaction. The
TYPE=INDEPENDENT parameter on IWMECREA is the default. An independent
enclave must be classified into a service class or performance group when it is
created, so the caller must provide classification qualifiers as input to
IWMECREA. The home address space when IWMECREA is issued is the owner
of an independent enclave. CPU service consumed by the enclave is
accumulated in the SMF 30 record of the owning address space and the SMF 72
record of the enclave’s service class or performance group period.

For examples showing how to use independent enclaves, see “Scheduling an
SRB in an Independent Enclave” on page 34 and “Joining Tasks to an
Independent Enclave” on page 36.

v Dependent Enclaves

Use a dependent enclave when you have an existing address space defined with
its own performance goal that you wish to extend to programs running under
dispatchable units in other address spaces. The home address space at the time
IWMECREA is invoked becomes the owner of the enclave. Specify
TYPE=DEPENDENT on IWMECREA to indicate a dependent enclave. A
dependent enclave derives its performance goal from the owning address space,
and all CPU service consumed by the enclave is accumulated in the SMF 30
record of the owning address space and the SMF 72 record of the owning
address space’s service class or performance group period.

The TYPE=MONENV parameter creates a dependent enclave owned by the
address space of a specified monitoring environment. Note that this dependent
enclave is managed to the goal established for the owning address space, not
the response time goal that might have been established for the monitoring
environment.

For an example showing how to use dependent enclaves, see “Using Dependent
Enclaves” on page 38.

For more specific differences between independent enclaves and dependent
enclaves, see Table 11 on page 45.

Registering an Enclave
Enclave transactions do not only exist within a subsystem, but also across
subsystems. Enclaves can be deleted by any subsystem at any time. So, it might
happen that a subsystem deletes an enclave that is still used by another
subsystem. To avoid premature deletion, you can register an enclave. The
registration indicates to the system that an enclave must not be deleted until the
registering subsystem deregisters it.

The new service, IWMEREG, allows an enclave to be registered in order to prevent
it from premature deletion until the enclave is deregistered. The new service,
IWMEDREG, allows the registration for an enclave to be undone and deleted

The registration is owned by the job step task of the home address space at the
time IWMEREG is invoked.. If the job step task or the address space terminates,
the system implicitly deregisters the enclave.

Only subsystems which utilize enclaves created by other subsystems need to
register interest in an enclave while using it. If a subsystem only uses enclaves that
it created itself, there is no need to register interest in the enclave.

32 z/OS V1R4.0 MVS Workload Management Services

Multisystem Enclaves

Note: The use of multisystem enclaves requires the definition of a coupling facility
structure named SYSZWLM_WORKUNIT in the CFRM policy. Once the
CFRM policy with this structure definition is activated, then WLM will
automatically connect to the structure, enabling the use of multisystem
enclaves. See z/OS MVS Planning: Workload Management for more
information.

Some work managers split large transactions across multiple systems in a parallel
sysplex, improving the transaction’s overall response time. These work managers
can use multisystem enclaves to provide consistent management and reporting for
these types of transactions.

Among the benefits of using multisystem enclaves:

v All parts of a split transaction are managed using the same service class. If the
service class has multiple periods, the CPU usage of the entire transaction is
used to switch periods.

v The enclave owner’s SMF 30 record includes CPU time accumulated by all of the
multisystem enclaves it owns, for all systems on which they executed. Remote
system service is reported by individual system within the SMF 30 record.

A multisystem enclave begins as either an independent or dependent enclave on a
single system. This enclave is called the “original” enclave. If the work manager
decides to involve other systems in the processing of the work unit, it issues
IWMEXPT to “export” the enclave to other systems in the parallel sysplex. The
export token it receives back from IWMEXPT is a sysplex-wide unique name that it
must now pass along with the work request to other systems.

Each work manager in the supporting address spaces on other systems can now
issue IWMIMPT to “import” the enclave onto its system. It passes the export token
and receives a special enclave token that is valid for its system only. This new,
supporting enclave is called a “foreign” enclave. The original enclave and the
foreign enclaves are all referred to as one unit called a multisystem enclave.

When work has completed in a foreign enclave, the supporting work manager
issues IWMUIMPT to “unimport” the enclave, and then signals its completion to the
original work manager. When all of the supporting work managers have unimported
their enclave, the original work manager issues IWMUEXPT to “unexport” the
original enclave. When all work is finished, the original work manager that created
the original enclave deletes it.

If your subsystem uses an enclave that it did not create for its processing, then you
should use the registration services (IWMEREG, IWMEDREG) to protect the
enclave against deletion by its owner while your subsystem is using it. The
IWMUIMPT service delays the physical deletion of an enclave as long as the
enclave is registered by any subsystem

Each work manager must first connect to WLM using the IWMCONN service,
specifying EXPTIMPT=YES to enable exporting and importing. IWMEXPT,
IWMIMPT, IWMUIMPT, and IWMUEXPT must all be invoked from the address
space that connected.

WLM will automatically undo a work manager’s export and import requests when:
v The work manager disconnects from WLM

Chapter 3. Creating and Using Enclaves 33

v The work manager’s connecting task or address space ends
v The work manager’s system fails.

If an export is undone, whether by the original work manager’s request or due to
WLM’s recovery action, before all of the supporting work managers have completed
their work in the foreign enclaves, the outstanding imports are handled as follows:

v An outstanding import on the same system as the original enclave is
automatically undone. (When a work manager on the same system as the
original work manager attempts to import the original enclave, it receives the
original enclave token. It’s not really “exported” at all.) The only effect will be a
warning return code when the work manager attempts to unimport the enclave.

v An outstanding import on a foreign system will remain in effect. WLM provides no
notification to the supporting work manager that the export has ended. The
supporting work manager must learn of the failure through its own mechanisms
and then terminate the work on its own.

v New import requests are rejected. The supporting work manager should
terminate any work being done on behalf of the original work manager.

As a transaction flows from one work manager to another, it is possible that more
than one work manager will split its processing across multiple systems. In this way,
an original enclave can be exported multiple times, both by the original work
manager and by other work managers. Each export request is tracked separately,
and requires a corresponding unexport request. Multiple concurrent exports all
share the same export token.

If a work manager on the original system attempts to import the original enclave, it
will receive the enclave token of the original enclave. The work manager can
schedule SRBs into or join tasks to the original enclave just as it would any other
enclave on the same system.

Just as an enclave can be exported multiple times, it can also be imported multiple
times by one or more supporting work managers. Each import request is tracked
separately, and requires a corresponding unimport request. Multiple concurrent
imports on a single system all share a single foreign enclave.

A foreign enclave cannot be exported — in other words, once an enclave has been
imported onto a foreign system, it cannot be exported again from that system. If a
work manager invokes IWMEXPT for a foreign enclave, it will receive a warning
code along with the existing export token for that enclave.

For an example showing how to use multisystem enclaves, see “Using a
Multisystem Enclave” on page 40.

Scheduling an SRB in an Independent Enclave
Suppose an address space representing a subsystem uses the specialized
processing services of a supporting address space to satisfy a work request. The
subsystem creates an independent enclave that is used by an SRB executing in the
supporting address space on behalf of the work request. Part of the work request
executes under an SRB in the subsystem address space, so that SRB uses the
same enclave.

Figure 7 on page 35 shows the two address spaces.

34 z/OS V1R4.0 MVS Workload Management Services

In the figure,

v Connect as a work manager

Subsystem address space A issues IWMCONN to connect to workload
management with WORK_MANAGER=YES specified or defaulted. This makes
work management services, including enclave services, available to the
connecting address space.

v Create enclave Z

Subsystem address space A wants to manage multiple SRBs (SRBs 1 and 2) as
a unit, so address space A creates an independent enclave Z by issuing
IWMECREA. Subsystem address space A is the home address space, and is the
owner of enclave Z. Any work that the subsystem and its supporting address
space B process can be managed as an enclave. Classification information is
passed in with IWMECREA so workload management can assign the enclave to
a service class or performance group and manage to those goals.

Note: If enclave SRB 2 issues SYSEVENT ENCASSOC, no work consuming
significant CPU resource should run in the supporting address space
outside of the enclave. Similarly, if enclave SRB1 issues SYSEVENT
ENCASSOC, no work consuming significant CPU resource should run in
the subsystem address space outside of the enclave. For more
information, see “Performance Management of Address Spaces with
Enclaves” on page 43.

Figure 7. Creating an Independent Enclave and Scheduling an SRB

Chapter 3. Creating and Using Enclaves 35

v Schedule SRB 1 into enclave Z

The subsystem address space then schedules an SRB, SRB 1, to execute in its
own address space and to be managed as part of enclave Z, using the
IEAMSCHD macro:
IEAMSCHD ENV=PRIMARY,

EPADDR=entry_point_address,
PRIORITY=ENCLAVE,
ENCLAVETOKEN=tokenZ

Where the subsystem address space has defined:
tokenZ FL4 The enclave token for enclave Z

v Schedule SRB 2 into enclave Z

The subsystem address space then schedules an SRB (SRB 2) to execute in
supporting address space B and to be managed as part of enclave Z, using the
IEAMSCHD macro:
IEAMSCHD ENV=STOKEN,

TARGETSTOKEN=tokenB,
EPADDR=entry_point_address,
PRIORITY=ENCLAVE,
ENCLAVETOKEN=tokenZ

v Wait for the SRBs to complete and delete enclave Z

The subsystem waits for the SRBs to complete the request, then deletes the
enclave using the IWMEDELE macro and returns to the caller.

Joining Tasks to an Independent Enclave
Again, an address space representing a subsystem is using a supporting address
space for part of the processing for a unit of work. The subsystem address space
creates an independent enclave, and a task in the supporting address space joins
the enclave. A task in subsystem address space can also join the enclave when it is
processing on behalf of the unit of work.

Figure 8 on page 37 shows how this works.

36 z/OS V1R4.0 MVS Workload Management Services

In the figure,

v Connect as work manager

Subsystem address space A issues IWMCONN to connect to workload
management with WORK_MANAGER=YES specified or defaulted. This makes
work management services, including enclave services, available to the
connecting address space.

v Create enclave X

Subsystem address space A wants to manage work in multiple address spaces
as a unit, so address space A creates independent enclave X by issuing
IWMECREA. Subsystem address space A is the home address space, and is the
owner of the enclave. IWMECREA passes back the enclave token tokenX to the
subsystem. Any work that the subsystem and its supporting address space B
process can be managed together as an enclave. Classification information is
passed in with IWMECREA so workload management can assign the enclave to
a service class or performance group and manage to those goals.

Note: No work consuming significant CPU service should run in either the
subsystem or the supporting address space outside of an enclave. For
more information, see “Performance Management of Address Spaces with
Enclaves” on page 43.

v Task 1: join enclave X

The subsystem passes the work to its supporting address space B along with the
enclave token tokenX from IWMECREA. Before Task 1 in address space B runs

Figure 8. Creating an Enclave and Joining Tasks To It

Chapter 3. Creating and Using Enclaves 37

the work passed in by the subsystem, it joins the enclave by issuing the
IWMEJOIN service with enclave token tokenX. Now the work running under Task
1 is managed to the goal of the enclave.

Although this example shows only one enclave, the subsystem can create an
enclave for each new unit of work that arrives. These enclaves can be running
work simultaneously in the subsystem and the supporting address space, with
each unit of work being managed to its own unique goal.

v Task 1: attach subtask; detach subtask

In address space B, Task 1, which now belongs to enclave X, issues the
ATTACH macro to create a subtask. This subtask will also, automatically, be part
of enclave X and be managed to the enclave’s goal. When the subtask is
detached, it automatically leaves the enclave. The subtask cannot use
IWMELEAV to do this. Each subtask attached by Task 1 after it joins the enclave
must be detached before Task 1 leaves the enclave.

v Task 1: leave enclave X

Task 1 finishes its processing and leaves the enclave by issuing the IWMELEAV
service with the enclave token tokenX specified. Any processing in Task 1 after it
leaves the enclave is managed to the goal of the address space, not of the
enclave.

v Task 2: join enclave X

If the subsystem itself has work to do on behalf of the unit of work, it can join a
task, Task 2, to the same enclave as the supporting address space used. It uses
the same enclave token, tokenX, on IWMEJOIN. The work in Task 2 is now
managed to the enclave’s goal. Task 1 and 2 can be run concurrently or in
sequence. At any point in time, an enclave can have multiple tasks and/or SRBs
running in it across multiple address spaces, and they are all managed to the
same enclave goal.

v Task 2: leave enclave X

Task 2 finishes its processing for the transaction and leaves the enclave. The
task is now managed to the address space goal.

v Delete enclave X

The transaction is now complete, so the subsystem deletes the enclave using
IWMEDELE with enclave token tokenX. Note that the address space that deletes
the enclave need not be the same one that created it.

Using Dependent Enclaves
When a unit of work is processed in multiple address spaces, you can use
dependent enclaves to tie the work done in a supporting (server) address space
back to the originating client address space. The dependent enclave represents the
continuation of an existing address space transaction under a a new set of
dispatchable units in another address space.

Figure 9 on page 39 shows how this works.

38 z/OS V1R4.0 MVS Workload Management Services

In the figure,

v Request subsystem function

The originating address space, address space A, sends a work request to
subsystem address space B, for example, by issuing a space-switching PC.2

Address space A could be a TSO, batch job, or started task. The address
space’s performance goal is used to manage the transaction while running in
address space A and also when running in the dependent enclave.

v Determine if an enclave exists

Subsystem address space B uses IWMESQRY to determine whether the caller is
already in an enclave. If it is in an enclave, it would use that enclave and
schedule SRBs to the enclave, or join tasks to the enclave.

v Create dependent enclave Y

If the caller is not in an enclave, the subsystem creates a dependent enclave
using IWMECREA with the TYPE=DEPENDENT parameter. The home space
when IWMECREA is issued, in this example address space A, is the owner of
the dependent enclave. No classification information is required on IWMECREA
for a dependent enclave. The service class or performance group of the owning
address space A is used to manage the work in the enclave. The subsystem
does not need to connect to workload management (using IWMCONN) to create
a dependent enclave.

2. A space-switching PC isn’t required — it is used here only as an example. A nonspace-switching PC or other linkage can be used
so long as the originating space remains the home space.

Figure 9. Using Dependent Enclaves

Chapter 3. Creating and Using Enclaves 39

v Pass enclave token

The subsystem posts Task 1 in the supporting address space, address space C,
to join the enclave, passing it the enclave token tokenY passed back by
IWMECREA. The subsystem can also schedule SRBs into the same enclave.
The work running in the dependent enclave executes in address space C but is
managed to the goal of the owning address space A.

v Join enclave Y

Task 1 joins enclave Y using the enclave token passed from the subsystem. The
work running under Task 1 is now managed to the goal of address space A.

Note: No work consuming significant CPU service should run in the supporting
address space outside of an enclave. The same restriction applies to the
subsystem address space if it runs work in enclaves. For more
information, see “Performance Management of Address Spaces with
Enclaves” on page 43.

v Attach subtask; detach subtask

Task 1 may attach one or more subtasks while it is joined to enclave Y. These
subtasks are automatically joined to enclave Y and also managed to address
space A’s goal.

v Leave enclave Y

When Task 1 completes the work request, it leaves the enclave. It reverts back to
being managed to address space C’s goal.

v Delete the enclave

The subsystem waits for the tasks, and any SRBs, to complete the request, then
deletes the enclave (if it created it) and returns to the caller.

Using a Multisystem Enclave
In this case, a work manager will process a work request using one or more
supporting address spaces on different systems in a parallel sysplex.

Figure 10 on page 41 shows how this works.

40 z/OS V1R4.0 MVS Workload Management Services

In the figure,

v Connect as work manager

The work manager issues IWMCONN, with WORK_MANAGER=YES specified or
defaulted so that it can create independent enclaves, and EXPTIMPT=YES
specified to allow for exporting the enclaves.

Note: It is assumed here that the CFRM policy already contains the coupling
facility structure SYSZWLM_WORKUNIT, which is required for the use of
multisystem enclaves. If the coupling facility structure is not available,
IWMCONN will succeed, but export and import requests will return errors.
See z/OS MVS Planning: Workload Management for more information.

v Create original enclave E

The work manager creates an independent enclave in address space A on
system 1 by issuing IWMECREA. Address space A is the owner of the original
enclave. Classification information is passed in with IWMECREA so workload
management can assign the enclave to a service class or performance group.
IWMECREA passes back the enclave token tokenE to the work manager.

Send work request
Receive work request
Import enclave E'

IWMCONN
EXPTIMPT=YES

IWMECREA
ETOKEN=tokenE

IWMEXPT
ETOKEN=tokenE
XTOKEN=tokenX

IWMUEXPT
XTOKEN=tokenX

IWMEJOIN
ETOKEN=tokenE

IWMELEAV
ETOKEN=tokenE

IWMEDELE
ETOKEN=tokenE

IWMIMPT
ETOKEN=tokenE'
XTOKEN=tokenX

IWMUIMPT
XTOKEN=tokenX

IWMEJOIN
ETOKEN=tokenE'

IWMELEAV
ETOKEN=tokenE'

Task K

Join enclave E

Leave enclave E

Wait for completion

Unexport enclave E

Delete enclave E

Connect as
work manager

Create enclave E

Export enclave E

Task J

Unimport enclave E'
Signal completion

Join enclave E'

Leave enclave E'

Address
Space A

System 1 System 2

Address
Space B

Figure 10. Using a Multisystem Enclave

Chapter 3. Creating and Using Enclaves 41

v Address Space A on System 1: Export enclave E

The work manager exports enclave E to all other systems in the parallel sysplex
by issuing IWMEXPT with the enclave token tokenE. IWMEXPT passes back the
export token tokenX. The work manager can now pass this sysplex-wide unique
export token to supporting address spaces on other systems, using its own
communication mechanism.

v Address Space B on System 2: Import enclave E’

Once an enclave has been exported, a work manager in the supporting address
space B can import the enclave by issuing IWMIMPT with the export token
tokenX. A foreign enclave E’ is created. It receives back an enclave token
tokenE’ that is valid on system 2 only.

Although this example shows only one supporting address space on one
separate system, the enclave can be imported by several address spaces on
several different systems in the parallel sysplex. These foreign enclaves can all
be running work simultaneously, with each unit of work being managed to the
goals of the original enclave.

v Task J: join foreign enclave E’

Task J in address space B on system 2 joins the foreign enclave by issuing
IWMEJOIN with the enclave token tokenE’.

v Task J: leave foreign enclave E’

Task J in address space B on system 2 leaves the foreign enclave by issuing
IWMELEAV with the enclave token tokenE’. Any further processing in Task J after
it leaves the enclave is now managed to the goal of the address space B, not of
the enclave.

v Task K: join original enclave E

If work is to be done in the original enclave at the same time that work is being
done in the foreign enclaves, task J in address space A on system 1 can join the
original enclave by issuing IWMEJOIN with the enclave token tokenE. The work
in Task K is now managed to the goals of the original enclave. At any point in
time, a multisystem enclave can have multiple tasks and/or SRBs running in it
across multiple address spaces on multiple systems, and they are all managed to
the original enclave’s goal.

v Task K: leave original enclave E

Task K in address space A on system 1 leaves the original enclave by issuing
IWMELEAV with the enclave token tokenE. Any further processing in Task K after
it leaves the enclave is now managed to the goal of the address space A, not of
the enclave.

v Address Space B on System 2: Unimport enclave E’

Once the task has left the foreign enclave, the work manager in the supporting
address space B unimports the enclave by issuing IWMUIMPT with the export
token tokenX. This deletes the foreign enclave E’. The supporting work manager
now reports its completion and any results to the original work manager using its
own communication mechanism.

v Address Space A on System 1: Unexport enclave E’

After every supporting work manager has reported its completion, the original
work manager unexports the enclave by issuing IWMUEXPT with the export
token tokenX.

v Delete enclave X

The transaction is now complete, so the work manager deletes the enclave using
IWMEDELE with enclave token tokenE.

42 z/OS V1R4.0 MVS Workload Management Services

Performance Management of Address Spaces with Enclaves
How workload management manages an address space where an enclave (either
dependent or independent) is running depends on the characteristics of the
enclave. Some address spaces with work running in enclaves are managed to the
performance goal of the enclave. Other address spaces with work running in
enclaves are managed to the performance goal of the address space transaction. In
either case, workload management manages the dispatching priority of the enclave
to meet the performance goal of the enclave.

An address space is managed (in terms of MPL level, paging, dispatching and I/O
priorities) to the goal of the enclave if one of the following are true:

v The address space is running a task that has joined an enclave using the
IWMEJOIN or IWMSTBGN macro,

- OR -

v The address space is running an SRB that has issued the SYSEVENT
ENCASSOC to associate the enclave with an address space.

Note: An address space must be non-swappable if it has enclave SRBs
dispatched and SYSEVENT ENCASSOC has not been issued.

For an address space that is being managed to an enclave’s goal, be aware of the
following:

v It is assumed that no work consuming significant CPU service is running in the
address space outside of an enclave. The CPU consumption of work running
outside of enclaves is not included when workload management assesses the
impact of CPU adjustments for the enclave work.

v A page fault incurred by a dispatchable unit (task or SRB) while running in the
enclave is accounted for in the enclave’s service class period as server private
area page delay rather than as a cross-memory page delay.

Using ENQ/DEQ or Latch Manager Services with Enclaves
There are some considerations to be aware of when using enclaves for tasks or
SRBs that serialize on resources using the ENQ macro or the latch manager
callable services. A task cannot change its transaction status, that is, cannot join or
leave an enclave, while holding a resource using ENQ or the latch manager; an
SRB cannot issue SYSEVENT ENCASSOC while holding a resource using the
latch manager. Otherwise, enqueue promotion processing may not work properly.
The recommended sequence is:

v Task: Join an enclave using IWMEJOIN or IWMSTBGN. SRB: Associate enclave
with an address space using SYSEVENT ENCASSOC.

v Obtain resource with ENQ or latch manager.

v Release resource.

v Task: Leave an enclave using IWMELEAV or IWMSTEND. SRB: Disassociate
enclave from the address space using SYSEVENT ENCASSOC.

In addition, to ensure correct enqueue promotion processing, a task executing in an
enclave should not make the following types of ENQ requests:

v Directed enqueues, that is, issuing the ENQ macro with the TCB= parameter

v Matching task enqueues, that is, issuing the ENQ macro with the MASID= and
MTCB= parameters

Chapter 3. Creating and Using Enclaves 43

Enclave Resource Accounting
The accounting for resources consumed by an enclave depends on whether it is an
independent, dependent, or a foreign enclave.

A dependent enclave is a logical continuation of the transaction already active in a
client’s address space. Therefore, CPU and MSO service for a dependent enclave
is included in the SMF 30 record of the owning address space, and in the SMF 72
record for the address space’s transaction. MSO service for the enclave is
calculated based on the frame count of the owning address space, not on frame
usage in the address space(s) where the enclave is executing.

For an independent enclave, CPU service is included in the SMF 30 record of the
owning address space, and in the SMF 72 record for the enclave’s service class or
performance group period. MSO service is not calculated for an independent
enclave.

For both dependent and independent enclaves, IOC service is included in the SMF
30 and 72 records associated with the address space where the enclave work is
executing. SRB service for enclaves is always zero.

For a foreign enclave, CPU time is included in the SMF 30 record of the owning
address space on the originating system. It is reported separately from local CPU
time. CPU service is also included in the SMF 72 record on each system where the
enclave executed.

Since CPU time used by foreign enclaves is included in the owner’s SMF 30 record,
it is not included in the SMF 30 records on the other systems where it actually
executed. In order for those other systems to have some record of the CPU time
used by foreign enclaves, an SMF 97 record is written for each SMF global
recording interval. This SMF 97 record identifies the CPU time used by foreign
enclaves during that interval, broken down by originating system. The installation
can review the originating system’s SMF 30 records to identify the specific jobs that
consumed the CPU time in the foreign enclaves. Note that because data is
collected asynchronously for the SMF 30 records, and because SMF intervals can
vary from system to system, it may not be possible to exactly match SMF 30 times
with SMF 97 times from one global interval to another.

Table 11 on page 45 compares control characteristics and resource accounting for
independent, dependent and foreign enclaves.

44 z/OS V1R4.0 MVS Workload Management Services

Table 11. Enclave Characteristics and Resource Accounting. (a.s. = address space)

Independent enclave Dependent enclave Foreign enclave

Dispatchable unit type SRBs and/or tasks SRBs and/or tasks SRBs and/or tasks

New transaction? yes no no

Owner home space at the time
IWMECREA is issued

home space at the time
IWMECREA is issued (for
TYPE=MONENV, owner is
the a.s. associated with the
monitoring environment —
see note 1)

owner of the original
enclave

Server a.s. where enclave work is
dispatched

a.s. where enclave work is
dispatched

a.s. where enclave work is
dispatched

Service class/report class Assigned based on
attributes passed to
IWMECREA (see note 2)

Same as owner. Same service & report class
as original enclave.

CPU time owner’s SMF30Cpt
(total)

owner’s SMF30Enc
(ind. enclave only)

owner’s SMF30Cpt
(total)

owner’s SMF30Det
(dep. enclave only)

owner’s SMF30MRI
(for foreign ind. enclave)

owner’s SMF30MRD
(for foreign dep. enclave)

CPU service
by a.s.

owner’s SMF30Csu
(total)

owner’s SMF30Esu
(ind. enclave only)

owner’s SMF30Csu
(total)

CPU time/SMF30MRA/256
* CPU coefficient

(CPU coefficient can be
obtained from
SMF 72 record)

CPU service
by period

enclave’s R723Ccpu
or SMF72Cts

owner’s R723Ccpu
or SMF72Cts

enclave’s R723Ccpu
or SMF72Cts

DASD I/O connect time
by a.s. (see note 3)

owner’s SMF30Eic
(ind. enclave only)

owner’s SMF30Aic
(dep. enclave + a.s.)

n/a

DASD I/O connect time
by period (see note 3)

enclave’s R723Cict
or SMF72Ict

owner’s R723Cict
or SMF72Ict

enclave’s R723Cict
or SMF72Ict

DASD I/O counts
by a.s.

owner’s SMF30Eis
(ind. enclave only)

owner’s SMF30Ais
(dep. enclave + a.s.)

n/a

DASD I/O counts
by period

enclave’s R723Circ
or SMF72Irc

owner’s R723Circ
or SMF72Irc

enclave’s R723Circ
or SMF72Irc

Page delay samples,
with storage mgt.
(see note 4)

enclave’s R723Cspv owner’s R723Cspv enclave’s R723Cspv

Page delay samples,
without storage mgt.
(see note 4)

enclave’s R723Caxm owner’s R723Caxm enclave’s R723Caxm

IOC service server’s SMF 30 and 72
records

server’s SMF 30 and 72
records

server’s SMF 30 and 72
records

SRB service n/a n/a n/a

MSO service n/a owner’s SMF30Mso, based
on owner’s frame count

n/a

Notes:

1. The address space associated with the monitoring environment is one of the
following:

v The address space related to the monitoring environment via the IWMMRELA
service

Chapter 3. Creating and Using Enclaves 45

v If there is no related space, the home space at the time IWMMINIT was
issued

2. The attributes passed to IWMECREA are used with the classification rules in the
active service policy to assign a service class and/or report class to the enclave.

3. Connect time is used as an example here. Other measures associated with I/O
in the SMF records are:

v DASD I/O disconnect time in fields SMF30EID, SMF30AID, R723CIDT, and
SMF72IDT.

v DASD I/O wait time in fields SMF30EIW, SMF30AIW, R723CIWT, and
SMF72IWT.

4. Storage management is in effect for an enclave if either of the following is true:

v The enclave includes one or more tasks.

v The enclave includes at least one SRB which has issued the SYSEVENT
ENCASSOC to associate itself with an address space.

Managing the Performance of Work in Enclaves
This section describes how to classify the work running in enclaves. It is broken into
two topics:
v Using Independent Enclaves
v Using Dependent Enclaves

Using Independent Enclaves
You define a service class and a goal for work that is processed by the subsystem
using the independent enclaves. Workload management then dynamically manages
resource controls based on the goal.

For more information about defining performance characteristics in goal mode for
enclaves, see z/OS MVS Planning: Workload Management.

Example

Suppose your installation has a subsystem called DDF that uses enclaves for
its distributed work requests. Your installation is running in goal mode with an
active policy. To define the performance characteristics for the work scheduled
to an enclave, you do the following:

v Define a workload and a service class for DDF work using the WLM ISPF
application:

Service Class: DDF_ALL
Goal: 5 second response time
Importance: 3

v Using the WLM ISPF application, define a classification rule for the DDF
subsystem type where all work goes into the DDF_ALL service class.

Subsystem Type.: DDF

---------Class----------
Service Report

DEFAULTS: DDF_ALL____ _______

v Install the service definition.

v Activate the service policy.

46 z/OS V1R4.0 MVS Workload Management Services

Using Dependent Enclaves
Dependent enclaves are managed to the performance goal of the owning address
space, so there is no need to separately classify dependent enclaves, or to define
separate service classes or performance groups for them.

Querying an Enclave’s Classification Information
A caller can use the IWMECQRY macro to determine the classification information
about an enclave. The classification information is that information passed on the
IWMCLSFY macro for an independent enclave or inherited from the owning address
space for a dependent enclave. For details on IWMCLSFY, see Chapter 11,
“IWMCLSFY – Assign Work Request to a Service Class” on page 123.

Example

To determine the classification attributes associated with an enclave
represented by ETOKEN, first issue IWMECQRY to determine the length of
the storage required to contain the classification information. The length of the
area is dependent on the MVS release. Specify:
IWMECQRY ETOKEN=etoken,

ANSAREA=ansarea,
ANSLEN=anslen,
QUERYLEN=querylen

where the calling program has defined the following, and ansarea and anslen
are set to zero:
etoken DS FL4 enclave token
ansarea DS A Area to contain address of

classification
anslen DS A Length of the answer area
querylen DS A Length of storage required

Obtain the amount of storage passed back in querylen and set anslen equal to
querylen. Set ansarea to point to the storage and issue IWMECQRY again for
the enclave classification information:
IWMECQRY ETOKEN=etoken,

ANSAREA=ansarea,
ANSLEN=anslen,
QUERYLEN=querylen

Querying a Dispatchable Unit’s Enclave Status
A caller can use the IWMESQRY macro to determine whether the current
dispatchable unit is associated with an enclave. If the dispatchable unit is
associated with an enclave, the service returns the enclave token.

Deleting an Enclave
A caller can delete an enclave using the IWMEDELE macro. If the enclave is
registered, it is only logically deleted. That is, it remains available until it is no
longer registered by any subsystem.

When the enclave is deleted, the following occurs for each remaining dispatchable
unit:

Chapter 3. Creating and Using Enclaves 47

v SRBs:

Each SRB belonging to the enclave is changed to a preemptable SRB and run at
the dispatching priority of the current home address space (the address space
into which the SRB was scheduled). The subsystem can purge SRBs using the
PURGEDQ macro when the enclave still exists in the system. In most cases, this
prevents the SRB from existing beyond the life of the enclave. For information on
how to use PURGEDQ, see z/OS MVS Programming: Authorized Assembler
Services Guide.

v Tasks: If an enclave ends with tasks still joined to the enclave, the tasks revert
back to ordinary non-enclave tasks.

A foreign enclave is deleted using the IWMUIMPT macro.

For information about the IWMEDELE macro, see Chapter 21, “IWMEDELE –
Delete an Enclave” on page 223.

Example

To delete an enclave, specify:
IWMEDELE ETOKEN=etoken,

RETCODE=retcode,
RSNCODE=rsncode

Where the calling program has defined the following:
etoken DS FL4 Enclave token
retcode DS CL4 Return code
rsncode DS CL4 Reason code

48 z/OS V1R4.0 MVS Workload Management Services

Chapter 4. Using the Queueing Manager Services

The queueing manager services are intended for queueing managers to use to
manage server (execution) address spaces and the work requests they process to
meet service class performance goals. Through queueing manager services,
workload management maintains the queues for passing work requests from the
queueing manager to its servers. A queueing manager is a subsystem that queues
work requests to workload management for execution in server address spaces.

Workload management dynamically starts and maintains server address spaces as
required to meet the queueing manager’s workload. Therefore, installations do not
have to manage the address spaces manually, nor do they have to monitor
workload fluctuations that change the number of address spaces needed for the
work to meet its goals. Workload management automatically adjusts to changes in
the workload.

For queue managers using the services, workload management spreads the work
across multiple address spaces, providing workload isolation and greater scalability
based on workload demands. For a queueing manager that queues and executes
work all in the same address space, sometimes encountering storage overlay
problems, the services provide an incentive to change to a multiple address space
configuration.

This chapter describes how to use the queueing manager services, and suggests
the information you should provide to your customers so they can properly set up
the required service definitions.

Note: The queueing manager services uses application environments. (See
“Updating a Service Definition with Application Environment Information” on
page 56 for a discussion of defining policy for application environments.)

Example of Using the Queueing Manager Services
This section describes how a queueing manager can use the services to:
v Isolate different types of requests into separate server address spaces for

integrity, security, and operational reasons.
v Classify work into service classes according to business goals.
v Manage the application execution in the server address space as a continuation

of the originating unit of work.
v Specify dynamic management of server address spaces, and other resources to

meet the service class goals of the work requests.
v Report service class goals against actual service class performance
v Report response time information.

Figure 11 on page 50 shows an example of how a queueing manager can use the
services. The example shows the services used to achieve the objectives listed
above. The services are intended to be used with the enclave services, and must
be used independently of the execution delay monitoring services.

© Copyright IBM Corp. 1988, 2002 49

The figure shows a queueing manager address space starting up, connecting to
workload management, and queueing work requests to workload management. The
server address spaces are created dynamically by workload management as
needed. When the server initializes, it connects to workload management, which
allows it to select work from the queues. The server address space indicates to
workload management when each request starts and ends, so the work request can
be properly managed and its performance statistics reported. The following steps
describe the flow illustrated in Figure 11.

1. Establish queueing manager

The queueing manager address space starts up through either a manual start or
customer automation. During its initialization, it issues the IWMCONN service
with the QUEUE_MANAGER=YES parameter, and provides the subsystem type
(SUBSYS parameter) and subsystem name (SUBSYSNM parameter) to identify

Figure 11. Services for a queueing manager

50 z/OS V1R4.0 MVS Workload Management Services

the type of work associated with the queueing manager. If you need to create
an independent enclave, then the queueing manager should also specify
WORK_MANAGER=YES (the default) on IWMCONN. If you are creating
dependent enclaves, you do not need to specify WORK_MANAGER=YES.

If the queueing manager needs to take some action when workload
management deletes work requests that the queueing manager previously
queued, specify a connect exit routine on the QMGR_EXIT@= parameter.
Workload management deletes all queue requests when the queue manager
disconnects from workload management or the application environment is
deleted. This exit gets control when workload management has deleted a work
element from its queue. Input to the exit is mapped by the list form of the
IWMQCXIT macro. For information about the IWMQCXIT exit, see “Using the
Queueing Manager Connect Exit” on page 57. Workload management provides
the exit with the information passed to workload management when a work
element is queued and an indication that the work element has been removed
from the queue.

2. Create enclave

The queueing manager receives a work request and must use an enclave to
manage it. Depending on the environment, the queueing manager can use an
existing enclave or create a new enclave, either dependent or independent,
using the IWMECREA service.

If running under the requestor’s dispatchable unit, IWMESQRY can be used to
determine whether the requestor belongs to an enclave and if so, which
enclave. If running under a different dispatchable unit, it is the subsystem’s
responsibility to pass information on any existing enclave along with the work
request. For example, the subsystem could pass information it obtained from
IWMESQRY while running under the requestor’s dispatchable unit.

If the requestor does not belong to an enclave but has an address space
transaction (for example, it is a TSO user or a batch job), the queueing
manager can create a dependent enclave to represent a continuation of the
requestor’s transaction. This requires that the requestor be the home address
space.

If there is no existing enclave or address space transaction, such as when the
requestor is on another system, the queueing manager must create an
independent enclave to begin a new transaction. This requires the queueing
manager to classify the work request.

3. Queue request

The queueing manager uses the IWMQINS service to add the work request to a
workload management queue. The application environment, enclave token, and
optional userid for resource access control are provided as input to workload
management. The service class is determined from the enclave token, and the
request is added to a queue associated with that service class within the
specified application environment. You can optionally pass information to the
server address space when it selects this work request. Workload management
does not read or modify this data in any way.

Workload management stages work requests between the queueing manager
address space and the server(s), but the queueing manager is still responsible
for managing the flow of work requests and handling timeout and abnormal
conditions where servers are failing to properly process requests. Workload
management detects and reacts to certain error conditions such as JCL errors
in the procedure used to start the server and repeated, unexpected terminations
of the server address space. For more information, see “Defining Application
Environments” in z/OS MVS Planning: Workload Management.

Chapter 4. Using the Queueing Manager Services 51

If the queueing manager needs to remove a work request that it previously
queued through the IWMQINS service before it has been processed by the
server, it uses the IWMQDEL service. This service is provided for exceptional
circumstances, such as:

v Timeout of the work request

v An external request to cancel a queued request

v Queueing manager recovery.

4. Establish server address space

When the first request is queued to an application environment, workload
management detects that there are no active servers for the request, and
automatically starts one. The MVS procedure name and start parameters are
taken from the application environment definition in the service definition. As the
workload fluctuates, workload management adjusts the number of server
address spaces so the goals of the work are met.

When the server initializes, it must establish itself as a server address space
using the IWMCONN service with SERVER_MANAGER=YES parameter, and
indicate which application environment it is servicing. The subsystem type and
name specified on the server connect must match the values specified on the
associated queueing manager connect.

Workload management creates as many server address spaces as are needed
to meet the goals of the work running in the servers, unless the application has
limited the number of server instances that workload management can create
using IWMSLIM.

Immediately after invoking IWMCONN, you have the option of using IWMSLIM
to control the number of server instances that WLM will create. Use the
AE_SERVERMAX parameter to establish a maximum number — this is
particularly useful for applications such as MQSeries Workflow that connect to
backend applications supporting a limited number of parallel connections. Use
the AE_SERVERMIN parameter to establish a minimum number — this allows
an application to keep a number of servers active, even during low utilization
periods. In addition, you can specify AE_SPREADMIN=YES to ensure that the
defined minimum number of servers are distributed evenly across all of the
service classes used to execute work requests in the application environment.

There will be at least as many servers for an application environment as there
are unique service classes associated with the work requests, even if the
workload is low. This is so workload management can separately manage work
with different service class goals.

Applications can optionally give workload management the control about the
number of server instances per server address space.Directly after IWMCONN,
you can use IWMSINF to obtain recommendations from workload management
about the number of server instances to be started. WLM will pass the number
of instances to be started in addition to the already running server instances to
the server address space. The caller must have previously connected to WLM
using the IWMCONN service specifying SERVER_MANAGER=YES,
SERVER_TYPE=QUEUE, and MANAGER_TASKS=YES. See “Managing the
Number of Server Instances per Server Address Space” on page 54 for a more
detailed explanation on using IWMSINF.

Because the workload management services used by server address spaces
are available to problem programs, a SAF call is made as part of the connection
process to allow the installation to protect against malicious use or damage due
to incorrect startup definitions. This SAF check permits the server address

52 z/OS V1R4.0 MVS Workload Management Services

space to be totally unauthorized (no APF authorization required). The
RACF-supported resource for this call is of the class SERVER and has the
name:

sstype.subsys.applenv

where sstype is the subsystem type, subsys is the subsystem name of the
queueing manager address space, and applenv is the name of the application
environment being serviced. Workload management picks up these values from
the IWMCONN parameters, SUBSYS=, SUBSYSNM=, and APPLENV=,
respectively. For more information, see “Workload Management Migration” in
z/OS MVS Planning: Workload Management.

5. Process work request

The server uses the IWMSSEL service to remove a work request from the
queue associated with its application environment and service class. If no
requests are queued, workload management suspends the task issuing the
IWMSSEL until work is available. After a request is selected, the server uses the
IWMSTBGN service to indicate the processing of the request is beginning. At
this point the task joins the enclave identified when the work was queued
through IWMQINS. When the server is finished processing the request, it uses
the IWMSTEND service to cause the task to leave the enclave.

Almost all of the processing in a server address space should be on behalf of a
work request and occur between the IWMSTBGN and IWMSTEND calls. A
server address space should not have other tasks performing unrelated
processing as this could interfere with effectively managing the enclave to its
goals.

If the queueing manager provided a userid on the IWMQINS service,
IWMSTBGN sets up a SAF environment for the work request to control access
to resources.

Alternative task structures:

This example shows a single task issuing the IWMSSEL, IWMSTBGN, and
IWMSTEND services: one task within the server address space selects work
from the queue, processes the request, then loops back to select more work.
Queueing manager services does not impose any rules limiting the ways a
server can organize its tasks. The following task structures are also possible:

v Multiple tasks with single thread execution.

One task selects work from the queue, selects a “worker” subtask to process
the request, posts the worker task, and then waits to be posted by the worker
task when the processing of the request is complete.

v Multiple tasks with parallel work selection and execution.

There is a set of “worker” subtasks within the server address space, each of
whom selects work from the queue, processes the request, and loops back to
obtain a new request.

At the time the server connects to workload management (IWMCONN), the
server must specify how many tasks will execute work in parallel
(PARALLEL_EU).

6. Delete enclave

The server address space informs the queueing manager using its own
interface that a work request is complete. If the queueing manager had
previously created an enclave for the work request, it determines if there are
other work requests active for the same enclave. If there are none, the
queueing manager deletes the enclave and returns to the originator of the
request.

Chapter 4. Using the Queueing Manager Services 53

7. Terminate server address space

Under normal circumstances, it is expected that a server address space will
continue to select work until told by workload management that the space is no
longer needed through a return and reason code (x’0C14’) on the IWMSSEL
service. The server is then expected to complete any work requests already
selected, clean up, disconnect from workload management through the
IWMDISC service, and terminate. Possible reasons for this IWMSSEL return
code are:

v Operator entered a VARY WLM,APPLENV=,QUIESCE or VARY
WLM,APPLENV=,REFRESH command for the application environment.

v A policy was activated from a new service definition which no longer includes
the application environment associated with the server.

v WLM determines that the server is not needed to meet the goals of the
enclave’s service class.

The server should make reasonable recovery attempts when errors occur. If the
server encounters a failure that forces it to terminate, it should disconnect from
workload management as part of its shutdown. If the server address space
terminates without explicitly disconnecting from workload management,
workload management detects the termination and performs the IWMDISC
processing at that time. If workload management detects five unexpected server
disconnects or address space terminations within ten minutes, it will put the
application environment into a STOPPED state. This means that no new servers
are created for the application environment until the VARY
WLM,APPLENV=,RESUME command is issued for it. Existing server address
spaces continue to run work while the application environment is in the
STOPPED state, as long as they are operating normally.

8. Terminate queueing manager address space

When the queueing manager terminates normally, it is expected to quiesce its
activities, drain its queues of pending work, and disconnect from workload
management using the IWMDISC service. If the queueing manager address
space terminates without first disconnecting from workload management,
workload management detects the termination and performs the IWMDISC
processing at that time.

Workload management returns control immediately to the caller of IWMDISC,
and asynchronously performs server clean up. It purges all queued, but
unselected, requests and attempts to terminate all associated server address
spaces. Because workload management depends on server address spaces to
terminate voluntarily when requested, and because workload management must
wait for a server to request work prior to telling it to terminate, server address
spaces could remain for a significant amount of time after the queueing
manager terminates.

Managing the Number of Server Instances per Server Address Space
A server address space contains one or multiple server instances which all select
work requests from a work queue. Without using the new interface IWMSINF, the
server address space must tell WLM during start up how many server instances will
be started (parameter: PARALLEL_EU on IWMCONN).

The new interface IWMSINF allows the application to obtain the number of server
instances from WLM. The following Figure 12 on page 55 shows an example on
how the server manager address space can use IWMSINF.

54 z/OS V1R4.0 MVS Workload Management Services

1. To use the new interface, the server manager address space connects to WLM
with IWMCONN specifying the option MANAGE_TASK=YES. All server address
spaces which connect to the same application environment must specify the
same setting of MANAGE_TASK. The options SERVER_MANAGER=YES and
SERVER_TYPE=QUEUE have to be defined, too.

2. After connecting the server manager address space must invoke the new
service IWMSINF to obtain the number of server instances to be started initially.

3. The server adddress space starts the server instances which select work from
WLM by using IWMSSEL.

4. The server manager address space reinvokes IWMSINF again to ″listen″ for
recomendations from WLM for the number of tasks to start.

5. IF WLM wants to terminate one or multiple server instances, it resumes
IWMSSEL with a new return code telling the server instance to terminate.

6. If WLM wants to terminate the server address space, it resumes IWMSSEL and
IWMSINF with return code that tells the server to terminate.

Note: WLM can only manage the number of server instances per server address
space if there is a linear relationship between the number of instances in an
address space and the virtual storage consumed in the address space. This
implies that all instances allocate about the same amount of virtual storage.

Directing Work Requests to a Specific Server Region
Existing workload manager interfaces allow a control region to queue work requests
to a pool of server regions for a service class. The underlying assumption is that
each work request represents one or multiple contiguous transactions. This
transaction is represented by an enclave which is created when the work request is
inserted and which is removed when the application completed its processing for
the work request. It is assumed that no information is left in any temporary structure
in the system for following work requests.

Figure 12. Exploiting IWMSINF

Chapter 4. Using the Queueing Manager Services 55

But there are cases where information must be preserved across multiple
″independent″ work requests. The information left behind lives only in the virtual
storage of the address space. Following work requests requiring this information
must now be directed to the server region which has this information.

The solution is that the server region is able to obtain a region token at select time
(IWMSSEL) and passes this region token to the queue manager. The queue
manager is now able to route subsequent requests directly to this server region by
specifying the region token on IWMQINS. A new interface (IWMTAFF) allows the
server or control region to mark the server region as being needed by follow-on
work requests. WLM will ensure that server region stays alive until all temporal
affinities have been removed.

Notes:

1. The requests which are directly routed to server regions are outside of the
control scope of WLM. Therefore WLM is not able to manage the number of
server regions properly if the majority of requests is directly routed to the
regions and not queued for being picked up by the WLM managed server pool.
It is assumed that requests which are outside of the scope of WLM represent
only a minor portion of all work requests processed by the application.

2. The application should carefully use the new interface IWMTAFF. WLM will not
terminate a server region if it is marked of having a temporal affinity. This can
significantly delay the behaviour of WLM operator commands such as refresh
and quiesce for these application environments. It is assumed that temporal
affinities live only a short period (a few minutes) in the system and that they do
not represent the majority of the work requests of the application (see also Note
1.)

Updating a Service Definition with Application Environment
Information

When a customer installs a subsystem that makes use of the queueing manager
services, the service administrator must define one or more application
environments in the workload management service definition. An application
environment is a group of application functions requested by a client which execute
in a server address space. Workload management dynamically adjusts the number
of address spaces servicing the application environment to meet the goals of the
work.

If you use the queueing manager services, make sure to document the information
needed by the customer’s service administrator to define the application
environments. For example, you should provide the following:

v A technique for grouping work into application environments.

Each application environment should represent a named group of server
functions that require access to the same application libraries. Having a named
group facilitates library security, application program change control, performance
management, and system operation.

For example, a set of related payroll applications might be grouped into one
application environment because of their similar run-time requirements. The
customer can name the application environment for these payroll applications in
the service definition. Workload management then starts and stops server
address spaces to process the work in the payroll applications.

v The queueing manager subsystem type

56 z/OS V1R4.0 MVS Workload Management Services

The queueing manager specifies the subsystem type in the SUBSYS parameter
of the IWMCONN service. A service administrator defines the subsystem type
when specifying the application environment in the service definition. Make sure
you do not use a subsystem type already in use by another subsystem.

v Samples of JCL start procedures and start parameters for a server address
space.

You should provide your customer with sample procedures and start parameters
for the server address spaces.

For more information on how to define an application environment and a list of
subsystem types currently used, see z/OS MVS Planning: Workload Management.

Note: When defining an application environment, you must specify whether or not
workload management can start multiple address spaces for the subsystem.
In the case of a queueing manager, you can only choose Option 1, No limit,
or Option 2, Single address space per system. For more information, see the
“Defining Application Environments” chapter in MVS Planning: Workload
Management.

Using the Queueing Manager Connect Exit
A queueing manager can optionally provide the name of an exit routine on the
QMGR_EXIT@ parameter of IWMCONN when it connects to workload
management. Through this exit, the queueing manager is informed when workload
management has had to delete queued work requests associated with the queueing
manager. Workload management deletes all queued requests when:

v The installation deletes the application environment (that is, activates a service
policy that does not contain the application environment).

v The queueing manager address space disconnects.

When the exit routine is invoked, register 1 contains the address of a parameter list
mapped by the list form of the IWMQCXIT macro. The parameter list includes an
indicator of what action workload management has taken and the input values
specified previously by the queueing manager when it queued the work request
using IWMQINS.

The execute and standard form of IWMQCXIT are intended for use only by the
operating system.

Exit Routine Environment
The queueing manager connect exit routine receives control in the following
environment:

Authorization:
Supervisor state and PSW key 0

Dispatchable unit mode:
Task

Cross memory mode:
any PASN, any HASN, any SASN

AMODE:
31-bit

ASC mode:
Primary

Chapter 4. Using the Queueing Manager Services 57

Interrupt status:
Enabled for I/O and external interrupts

Locks:
No locks held

Serialization:
None

Location:
The connect exit must be a resident routine callable from any address
space and must remain available after the queueing manager disconnects
or terminates. Input parameter list is in the primary address space.

The input parameter list is in pageable storage addressable in the primary
address space, but should not be changed by the exit.

Exit Recovery:
The system may discontinue calling the exit upon repetitive, abnormal
completions, that is, where an error within the exit percolates to the system
recovery routine. The exit may optionally establish a functional recovery
routine (FRR) or ESTAEX for any needed recovery or cleanup of its
resources.

Register Usage
Upon entry to the exit, the register contents are as follows:

v Register 0 = not defined

v Register 1 contains the address of the input parameter list

v Register 2-13 = not defined

v Register 14 = return address

v Register 15 - entry point address

Upon entry to the exit, the access register contents are undefined.

Upon return from the exit, the register contents are expected to be:

v Register 0 = reason code if GR15 return code is non-zero

v Registers 1-14 = not defined (need not be restored to value on entry).

v Register 15 = return code

Upon return from the exit, the access register contents are unchanged.

Restrictions
The exit routine should not invoke functions or suspend execution which could
prevent return to the caller for a protracted period. This includes the use of system
services which either explicitly or implicitly give control back to the system. In this
context, “protracted period” means durations of one second or longer. When such
processing is required, the exit should use asynchronous techniques.

58 z/OS V1R4.0 MVS Workload Management Services

Example

Following is an example of invoking the IWMQCXIT macro instruction and the
resulting parameter list mapping. This parameter list is passed to the queueing
manager connect exit specified on the QMGR_EXIT@ parameter of
IWMCONN.

IWMQCXIT MF=(L,MYQCXITPL)

MYQCXITPL DS 0D ++ IWMQCXIT PARAMETER LIST
MYQCXITPL_XVERSION DS XL1 ++ INPUT
MYQCXITPL_XRSV0001 DS CL1 ++ RESERVED
MYQCXITPL_XPLISTLEN DS XL2 ++ INPUT
MYQCXITPL_XACTION DS BL.8 ++ ACTION INDICATORS
MYQCXITPL_XACTION_QDEL EQU B’10000000’

++ INDICATES QUEUE ELEMENT DELETED
MYQCXITPL_XRSV0005 DS CL2 ++ RESERVED
MYQCXITPL_XSECUSER_OPTIONS DS BL.8

++ OPTIONS USED ON IWMQINS
MYQCXITPL_XSECUSER_YES EQU B’10000000’

++ SECUSER=YES USED ON IWMQINS
MYQCXITPL_XETOKEN DS CL8 ++ ETOKEN VALUE FROM IWMQINS
MYQCXITPL_XUSERDATA DS CL16 ++ USERDATA FROM IWMQINS
MYQCXITPL_XRSV0020 DS CL4 ++ RESERVED
MYQCXITPL_XAPPLENV_ADDR DS A ++ ADDR OF APPLICATION ENVIRONMENT
MYQCXITPL_XUSERID DS CL8 ++ USERID FROM IWMQINS
MYQCXITPL_XRSV0030 DS CL8 ++ RESERVED
MYQCXITPLL EQU *-MYQCXITPL ++ LENGTH OF PARAMETER LIST

Chapter 4. Using the Queueing Manager Services 59

60 z/OS V1R4.0 MVS Workload Management Services

Chapter 5. Using the Routing Manager Services

A routing manager is a subsystem that establishes and manages connections
between a client and a server address space. The routing manager handles these
connections rather than individual work requests; the requests are processed only
after they arrive in the server address space. The routing manager is responsible
for balancing the client connections across a set of eligible servers, with the
assistance of the routing manager services.

Routing manager services perform two main functions:

v Automatically starting and maintaining server address spaces as needed by the
workload across the sysplex. Installations then do not have to manage the
address spaces manually, nor do they have to monitor workload fluctuations that
change the number of address spaces needed. Workload management
automatically adjusts to changes in the workload.

v Balancing the workload among the servers in the sysplex by deciding on the best
server and providing the server routing information when a server is requested by
the routing manager.

Routing manager services differ from sysplex routing services in the following ways:

v Routing manager services provide automatic management of address spaces.

v Routing manager services include the server’s performance index when selecting
the best available servers.

v With routing manager services, workload management decides on a server and
passes its identity to the routing manager, instead of offering the routing manager
a choice of several servers.

This chapter presents a model of how the routing manager services are intended to
be used. Routing manager services combines the use of the “find server” function
with application environments and enclaves. (See “Updating a Service Definition
with Application Environment Information” on page 56 for a discussion of defining
policy for application environments.)

Note: When defining an application environment, you must specify whether
workload management can start multiple or single address spaces for the
subsystem. In the case of a routing manager, both Option 1, No limit, and
Option 3, Single address space per sysplex are valid. For more information,
see the “Defining Application Environments” chapter in MVS Planning:
Workload Management.

It is strongly recommended that server address spaces associated with a routing
manager use enclave services to manage the work requests according to goals set
by the customer. Be aware that enclaves are mutually exclusive with the execution
delay monitoring services described in earlier chapters. For a discussion of
enclaves and a comparison to delay monitoring, see Chapter 3, “Creating and Using
Enclaves” on page 29.

A Routing Manager Model
This section presents a model of a routing manager which uses workload
management services to accomplish the following objectives:
v Isolate different types of requests into separate server address spaces for

integrity, security, and operational reasons.

© Copyright IBM Corp. 1988, 2002 61

v Have MVS adjust the number of server address spaces to meet the goals of the
workload.

v Have MVS balance the workload across a sysplex by selecting the best system
on which to start a server.

v Associate work coming into the server with a service class goal.
v Report goals versus actuals.
v Report response time information.

Figure 13 shows the suggested services for a routing manager for managing server
address spaces and balancing workload.

Figure 13 shows a routing manager connecting to workload management and
establishing itself as a routing manager. It then issues a “find server” for each client

Figure 13. Example of routing manager services

62 z/OS V1R4.0 MVS Workload Management Services

request for server location. Workload management is then able to create server
address spaces as needed and keep track of the servers across the sysplex. When
the client contacts the server, the server creates an enclave on behalf of the client
so the work request can be managed to the customer goals.

The detailed sequence of events in Figure 13 on page 62 is:

1. Establish routing manager

The routing manager address space starts up through either a manual start or
customer automation. During its initialization, it issues the IWMCONN service
with the ROUTER=YES parameter to indicate the intent to use routing manager
services. The routing manager supplies the subsystem type (SUBSYS
parameter) and subsystem name (SUBSYSNM parameter). These parameters
identify the type of work associated with the routing manager.

2. Request server routing information

Once initialized in step 1, the routing manager is ready to receive requests to
locate servers. In response to such a request, the routing manager calls the
IWMSRFSV service, passing the desired application environment name (via the
APPLENV= parameter). The output returned will be the routing information
needed for the client to contact the selected server directly. (The specific
content of this information is defined by the client and passed by the server via
the SERVER_DATA= parameter, as described in step 3.)

If no eligible servers exist, workload management will proceed to step 3 to start
a server.

3. Establish server

If this step is necessary, the client program will be suspended until the new
server address space is created (possibly on another MVS image). For an
application environment defined for a routing server, workload management
starts at most one server address space per system instance in the sysplex.
The first server is started on the system with the most available capacity at the
lowest importance level. Subsequent servers are started on other systems in the
sysplex when the work running in the existing servers is not meeting its goals.
However, if the workload diminishes for a routing manager, workload
management does not decrease the number of servers in the sysplex. The
number of servers remains at the high water mark.

It is possible to run more than one instance of a subsystem in the sysplex,
meaning they have the same subsystem type, and therefore the same
application environments, but different subsystem names as specified on
IWMCONN. The above rules for starting servers apply separately to each
subsystem instance. In other words, for each instance, you can have up to one
server per system per application environment.

During server initialization, the server invokes the IWMCONN service with the
SERVER_MANAGER=YES and SERVER_TYPE=ROUTER parameters, and
information in the SERVER_DATA= parameter to uniquely identify the server.
The subsystem type and name specified must match that of the associated
routing manager instances which will route clients to the server (as defined in
step 1). The WORK_MANAGER= parameter must remain the default YES so
that the server can create independent enclaves in the next step. In addition,
the address of an exit routine must be identified on the SRV_MGR_EXIT=
parameter. Refer to “Using the Routing Server Connect Exit” on page 65.
Workload management invokes this exit to initiate the shutdown of the server
address space. The exit is expected to initiate the shutdown of the server
address space. Input to the exit is mapped by the list form of the IWMSCXIT
macro instruction. For more information on the quiesce process for an

Chapter 5. Using the Routing Manager Services 63

application environment, see step 6 below, as well as the “Defining Application
Environments” chapter in MVS Planning: Workload Management.

4. Create enclave

The server address space receives a work request directly from the client and
uses the IWMECREA service to create an enclave (normally one per request,
depending on the definition of the request).

For the duration of the processing of a request, the client task is joined to the
enclave via the IWMEJOIN service so that it can be managed to the installation
performance objectives. While the task is part of the enclave, it should only be
doing work on behalf of the enclave. Upon completion of the request, the task
leaves the enclave via the IWMELEAV service.

Note: While IWMSTBGN and IWNSTEND are similar in many ways to
IWMEJOIN and IWMELEAV, they cannot be used here, as queueing
services are not involved.

5. Delete enclave

When work is completed, the server address space informs workload
management via the IWMEDELE service.

6. Terminate server address space

Under normal circumstances, it is expected that a server address space
terminates only when directed to do so by workload management through the
connect exit. Possible reasons for the exit being invoked could be:

v Operator entered a VARY WLM,QUIESCE or VARY WLM,REFRESH
command

v Policy activated from new service definition which no longer includes the
application environment associated with the server.

v WLM determines that the server is not needed to meet the goals of the
enclave’s service class.

The server is expected to complete any active work requests, clean up, and
then disconnect and terminate from workload management through the
IWMDISC service.

If the server encounters a failure that forces it to terminate, it should disconnect
from workload management as part of its shutdown. If the server address space
terminates without explicitly disconnecting from workload management,
workload management detects the termination and performs the IWMDISC
processing at that time.

7. Terminate routing manager address space

When the routing manager terminates normally, it is expected to quiesce its
activities and disconnect from workload management using the IWMDISC
service. If the routing manager address space terminates without first
disconnecting from workload management, workload management detects the
termination and performs the IWMDISC processing at that time. The disconnect
and termination of a routing manager does not cause the related server
address spaces to terminate. It is the responsibility of the subsystem to
coordinate termination processing between the routing manager address space
and the servers.

64 z/OS V1R4.0 MVS Workload Management Services

Using the Routing Server Connect Exit
A routing server must provide the name of an exit routine on the
SRV_MGR_EXIT@ parameter of IWMCONN when it connects to workload
management. The exit is invoked when workload management needs to inform the
server to terminate during quiesce or refresh processing. When the exit routine is
invoked, register 1 contains the address of a parameter list mapped by the list form
of the IWMSCXIT macro instruction. The parameter list includes an indicator of the
action the exit is to take and the connect token associated with the IWMCONN
macro issued previously by the server.

The execute and standard form of IWMSCXIT are intended for use only by the
operating system.

Exit Routine Environment
The server connect exit routine receives control in the following environment:

Authorization:
Supervisor state key 0

Dispatchable unit mode:
SRB

Cross memory mode:
PASN=HASN=SASN with the current home address space the same as
when the server issued the IWMCONN macro instruction.

AMODE:
31-bit

ASC mode:
Primary

Interrupt status:
Enabled for I/O and external interrupts

Locks:
No locks held

Serialization:
It is possible for the exit to be called before the caller has received control
back from IWMCONN. The exit or any program it drives (synchronously or
asynchronously) must synchronize with the program issuing IWMCONN to
ensure that IWMCONN has returned a connect token prior to issuing
IWMDISC (disconnect) or any other service that requires the connect token.

Location:
The server exit must be a resident routine callable from the server address
space and must remain available after the server manager disconnects or
after the termination of the server task which issued the IWMCONN. The
exit need not persist after termination of the server address space.

The input parameter list is in pageable storage addressable in the current
address space, but should not be changed by the exit.

Exit Recovery:
The system may cause the server to become ineligible to be recommended
by IWMSRFSV (find server) if there have been repetitive errors in calling
the exit. The exit may optionally establish a functional recovery routine
(FRR) or ESTAEX for any needed recovery or cleanup of its resources.

Chapter 5. Using the Routing Manager Services 65

Register Usage
Upon entry to the exit, the register contents are as follows:

v Register 0 = not defined

v Register 1 contains the address of the input parameter list

v Register 2-13 = not defined

v Register 14 = return address

v Register 15 = entry point address

Upon entry to the exit, the access register contents are undefined.

Upon return from the exit, the register contents are expected to be:

v Register 0 = reason code if GR15 return code is non-zero

v Registers 1-14 = not defined (need not be restored to value on entry)

v Register 15 = return code

Upon return from the exit, the access register contents are unchanged.

Example

Following is an example of invoking the IWMSCXIT macro instruction and the
resulting parameter list mapping. This is the parameter passed to the routing
server exit routine specified on the SRV_MGR_EXIT@ parameter of
IWMCONN.

IWMSCXIT MF=(L,MYSCXITPL)

+MYSCXITPL DS 0D ++ IWMSCXIT PARAMETER LIST
+MYSCXITPL_XVERSION DS XL1 ++ INPUT
+MYSCXITPL_XRSV0001 DS CL1 ++ RESERVED
+MYSCXITPL_XPLISTLEN DS XL2 ++ INPUT
+MYSCXITPL_XACTION DS BL.8 ++ ACTION INDICATORS
+MYSCXITPL_XACTION_QUIESCE EQU B’10000000’
+ ++ INDICATES QUIESCE ACTION
+MYSCXITPL_XACTION_RESUME EQU B’01000000’
+ ++ RESUME (NOT USED IN OS/390 R3)
+MYSCXITPL_XRSV0005 DS CL3 ++ RESERVED
+MYSCXITPL_XCONNTKN DS BL.32 ++ CONNECT TOKEN FROM IWMCONN
+MYSCXITPL_XRSV000C DS CL4 ++ RESERVED
+MYSCXITPLL EQU *-MYSCXITPL ++ LENGTH OF PARAMETER LIST

66 z/OS V1R4.0 MVS Workload Management Services

Chapter 6. Using the Scheduling Environment Services

A scheduling environment is a list of resource requirements and their required
states. It allows you to manage the scheduling of work in an asymmetric sysplex
where the systems differ in installed applications or installed hardware facilities. If
an MVS image satisfies all of the requirements in the scheduling environment
associated with a given unit of work, then that unit of work can be assigned to that
MVS image. If any of the resource requirements are not satisfied, then that unit of
work cannot be assigned to that MVS image. See z/OS MVS Planning: Workload
Management for information on using the WLM application to define scheduling
environments.

Obtaining Scheduling Environment Definitions
Use the IWMSEQRY service to obtain scheduling environment and resource
definitions and status on each system in the sysplex. This service can be used by a
program to produce alternative displays to those provided by the DISPLAY WLM
command.

In Figure 14 on page 68, IWMSEQRY returns the resource requirements in the
DB2LATE scheduling environment (DB2A must be ON, PRIMETIME must be OFF),
and the resource state settings on each of the four systems in the sysplex. Because
DB2A is set to ON and PRIMETIME is set to OFF on SYS2, that system is
identified as the appropriate system for work associated with the DB2LATE
scheduling environment.

© Copyright IBM Corp. 1988, 2002 67

Manipulating Resource State Settings
Use the IWMSESET service to change resource state settings. The resource state
can be changed only on the system in which the program is executing.

The resource states can be set to:

v ON, which will satisfy a resource state requirement of ON.

v OFF, which will satisfy a resource state requirement of OFF.

v RESET, which will not satisfy any resource state requirement.

DB2LATE

IWMSEQRY
ANSAREA=ANS1

OFF OFF

OFF

OFF

ON ON

ON

ON

ON

SYS1 SYS2 SYS3 SYS4

RESET

OFF OFF

OFFON ONON

ON

SYS1 SYS2 SYS3 SYS4

RESET

DB2LATE

OFF

ON

Figure 14. Obtaining Scheduling Environments

68 z/OS V1R4.0 MVS Workload Management Services

In Figure 15, a program executing on SYS3 invokes IWMSESET to change the
value of DB2A from OFF to ON. SYS3 now satisfies the DB2LATE resource
requirements shown in Figure 14 on page 68 (DB2A ON and PRIMETIME OFF).

IWMSEDES
RESOURCE=DB2A
STATE=ON

OFF OFF

OFF

OFFON ON

ON

ON

ON

SYS1 SYS2 SYS3

SYS3

SYS3

SYS4

RESET

Figure 15. Manipulating Resource State Settings

Chapter 6. Using the Scheduling Environment Services 69

A Model Work Flow
Figure 16 shows how a multisystem work scheduler can use the IWMSEVAL and
IWMSEDES services to implement support of scheduling environments.

DB2LATE

IWMSEVAL

IWMSEDES

OFF OFF

OFF

OFF

ON ON

ON

ON

ON

SYS1 SYS2 SYS3 SYS4

RESET

ZJOB9

DB2LATE

0 1 0 0
SYS1 SYS2 SYS3 SYS4

ZJOB9

Figure 16. Scheduling Environment Flow

70 z/OS V1R4.0 MVS Workload Management Services

In Figure 16 on page 70, work request ZJOB9 is submitted and associated with the
DB2LATE scheduling environment.

The scheduler calls the IWMSEVAL service to verify that the scheduling
environment name is valid. If there is no such scheduling environment known to
workload management, then the scheduler fails the work request. If the scheduling
environment name is valid, then the scheduler accepts the work request.

The scheduler creates a queue element for the work request. The scheduling
environment name is included in that queue element, as well as a resource affinity
mask. For each system in the sysplex, IWMSEDES will indicate whether that
system satisfies the scheduling environment in question. The scheduler can then
build the resource affinity mask, which is simply a 32-bit string of ones and zeros. A
one means that the system satisfies the scheduling environment, and a zero means
that the system does not satisfy the scheduling environment. The scheduler must
keep an ordered list of system names corresponding to the bit positions in the
mask.

In Figure 16 on page 70, the resource affinity mask for DB2LATE reads “0100”,
because only SYS2 satisfies the DB2LATE scheduling environment.

Scheduling environment definitions and resource state settings can change at any
moment. The scheduler must be aware of these changes so that it can adjust its
decision-making accordingly. The scheduler listens for two ENF events, 41 and 57,
which signal these changes:

41 A new service definition has been activated. When a new service
definition is activated, resource names can be added to, or removed from, a
scheduling environment. A particular scheduling environment or resource
name may even have been deleted from the service definition altogether.
(See note below.)

57 A scheduling environment has changed state on a system. It was not
available and now is, or vice versa.

For more information about ENF, see z/OS MVS Programming: Authorized
Assembler Services Guide.

For either event, the scheduler must reevaluate the status of each work request on
the queue. It must rebuild the resource affinity masks to reflect the new scheduling
environment definitions or the new resource state settings.

If a scheduling environment no longer exists, the scheduler can either delete the
associated work requests or place them in a hold state for installation action. The
latter choice is appropriate if it is important for the installation to be able to recover
the work requests. The installation could recover by installing a new service
definition that includes the deleted scheduling environment.

The final step in this work flow is when the work request moves from the queue to
the appropriate system for execution. In Figure 16 on page 70, the ZJOB9 work
request is scheduled on SYS2, as that is the only system that satisfies the
DB2LATE scheduling environment.

Chapter 6. Using the Scheduling Environment Services 71

72 z/OS V1R4.0 MVS Workload Management Services

Chapter 7. Using the Sysplex Routing Services

The sysplex routing services allow work associated with a server to be distributed
across a sysplex. They are intended for use by clients and servers.

A client is any application or product in the network that requests a service. The
service could be a request for data, a program to be run, or access to a database
or application. In terms of the sysplex routing services, a client is any program
routing work to a server. A server is any subsystem address space that provides a
service on an MVS image.

The sysplex routing services provide the following functions:

v The IWMSRSRG macro lets a caller register as a server.

v The IWMSRSRS macro provides a caller with a list of registered servers and the
number of requests that should be routed to each server.

v The IWMSRDRS macro lets a caller deregister when it is no longer available as
a server.

v The IWMSRDNS macro provides the caller with list of location names for all
registered servers known to the system on which the service is invoked.

Why Use the Sysplex Routing Services?
The sysplex routing services enable distributed client/server environments to
balance work among multiple servers. These services help the distributed programs
make the routing decisions, rather than having each installation have to make the
decisions.

The sysplex routing services provide information for more intelligent routing. They
do not route or distribute work requests. The server must use its existing routing
mechanisms.

More than half of the systems running in the sysplex should be running in goal
mode. Workload balancing can be more intelligent if all servers are located on
systems running in goal mode.

When to Use the Sysplex Routing Services
When a server is available to receive work requests, it issues the IWMSRSRG
macro to register. You should issue IWMSRSRG once per initialization of a server.
The system makes this information available asynchronously to all MVS images in
the sysplex.

When a client wants to route work to a server, it issues the IWMSRSRS macro for a
list of registered servers. To help the client decide where to route the request,
IWMSRSRS returns the relative number of work requests that can be routed to
each server in the list.

When a server is no longer available to recieve work requests, it issues the
IWMSRDRS macro to deregister. A server should issue IWMSRDRS once per
address space termination.

The following section explains each of the services in more detail.

© Copyright IBM Corp. 1988, 2002 73

Registering as an Eligible Server
A server can use IWMSRSRG to register that it is available for receiving work
requests. A server should issue IWMSRSRG at address space initialization time.
The server identifies itself by a triplet consisting of the following:
v Location name
v Network id
v LU name

Servers with the same location name are considered to be related and to provide
equal service. The server must also specify an address space token (STOKEN)
identifying the server address space token. Since the propagation of registration to
all systems in the sysplex is asynchronous, a newly registered server is not
immediately available for selection on other systems.

For complete information about the IWMSRSRG macro, see Chapter 58,
“IWMSRSRG – Register a Server for Sysplex Routing” on page 493.

Determining Where to Route Work
The IWMSRSRS macro returns a list of eligible servers, and for each server, an
associated weight. From this list, a client can determine where to route work. See
z/OS MVS Data Areas, Vol 3 (IVT-RCWK) for the mapping.

The weights provided allow changes in system conditions and server availability to
be factored into the distribution of work. The weights represent the relative number
of requests each server should receive. Various capacity considerations are used to
calculate the weights.

A client can route the work to the servers as ordered in the list, and can route the
number of requests as suggested for each server. A caller should be aware of other
clients in the sysplex issuing the IWMSRSRS macro, and route work properly.

For example, if the list consists of the following:
Server Weight
------ ------
NETID1.LUNAMEA 3
NETID2.LUNAMEB 8
NETID3.LUNAMEC 2

then the client should route the first 3 requests to NETID1.LUNAMEA, the next 8 to
NETID2.LUNAMEB, and so on. When the client has gone through the list, the client
can either invoke IWMSRSRS again for a refreshed list, or rotate through the list
again.

Acceptable weights are from 1 to 64. If a server is busy, and not available to
receive any work requests, it will not appear in the list. If work is routed to the
server and it is not able to process the request, the request is not processed.

Clients should issue this macro on a regular basis, so that the list is refreshed every
one to three minutes. This way, a client can stay current with changing system
loads and server viability.

For complete information about the IWMSRSRS macro, see Chapter 59,
“IWMSRSRS – Determine Where to Route Work” on page 501.

74 z/OS V1R4.0 MVS Workload Management Services

Deregistering as an Eligible Server
When a server is no longer available for processing work, the server should issue
the IWMSRDRS macro to deregister. A server should issue IWMSRDRS at address
space termination. This makes the system aware that the server is no longer a
candidate for future work requests, and can remove it from the list of eligible
servers.

For complete information about the IWMSRSRS macro, see Chapter 56,
“IWMSRDRS – De-register a Server for Sysplex Routing” on page 479.

Example of Using the Sysplex Routing Services
Figure 17 shows an example of the sysplex routing services.

In the figure, there are three servers, and one client program. Each of the servers
registers at address space initialization using the IWMSRSRG macro. Suppose the
first server registered, with the following defined:
LOCATION1 DS CL18 location
NETWORKID1 DS CL8 network id
LUNAME1 DS CL8 LU name
STOKEN1 DS CL8 token of server address space

The first server uses the IWMSRSRG macro as follows:

Figure 17. Example of using sysplex routing services

Chapter 7. Using the Sysplex Routing Services 75

IWMSRSRG LOCATION=location1,
NETWORK_ID=networkid1,
LUNAME=luname1,
STOKEN=stoken1

Meanwhile, the client program wants the list of address spaces available for
processing work. The client issues IWMSRSRS once for the length of the area
required for the list. The length required is in the QUERYLEN output parameter. The
client issues:
IWMSRSRS SYSINFO_BLOCK=sysinfo_block,

ANSLEN=anslen,
QUERYLEN=querylen,
LOCATION=location

Note: The QUERYLEN value is a snapshot taken when IWMSRSRS is issued.
That value can change between calls due to other servers registering. To
compensate, it is recommended that you add a few entries extra length to
the size resulting from the first IWMSRSRS call.

The client then obtains the required amount of storage, and issues IWMSRSRS
again for the list of eligible servers and their weights:
IWMSRSRS SYSINFO_BLOCK=sysinfo_block,

ANSLEN=anslen,
QUERYLEN=querylen,
LOCATION=location

The caller receives the list, mapped by IWMWSYSR, as follows:
Server Weight
------ ------
NETID3.LUNAME3 4
NETID1.LUNAME1 6
NETID2.LUNAME2 2

The client routes the first 4 work requests it receives to NETID3.LUNAME3, the first
in the list. The client routes the next 6 requests to NETID1.LUNAME1, and then the
following 2 to NETID2.LUNAME2. The client opted to issue the IWMSRSRS macro
every three minutes. Once the client has received 12 requests, it will route the 13th
through the 16th requests to NETID3.LUNAME3, and go down the list again until
the three minutes are over.

WLM Sysplex Workload Distribution
When WLM is called by DNS or sysplex distributor for advice on where to route
work in a sysplex, WLM returns a list of eligible servers with a weight assigned to
each server. Work is then routed to the server proportionally to its weight so the
higher weight servers receive more work. For example, if four servers A, B, C, and
D are returned by WLM with weights of 2, 2, 4, and 8 respectively, DNS will route
one-eight of the requests to each of servers A and B, one-fourth of the requests to
server C, and one-half the requests to server D.

The weights are calculated as follows. WLM first assigns a weight to each system,
with a higher weight to systems with the most available capacity. The weights are
proportional to the amount of available capacity on each system. Then WLM divides
the weight for a system equally among the registered servers on that system. In the
case of DNS, there can be multiple servers registered with WLM per system image.
For sysplex distributor, however, the WLM server registration is done by the TCP/IP
stack so there is only one server per system image. This means the server weight
always equals the system weight for sysplex distributor. If all systems are running at

76 z/OS V1R4.0 MVS Workload Management Services

|

|
|
|
|
|
|
|

|
|
|
|
|
|
|
|

or near 100% utilization, then higher weights are given to the systems running less
important work. The objective is to send work where there is available capacity or, if
there is no available capacity, where the least important work will be displaced.
Servers on systems that are in a serious storage shortage (SQA, fixed frame,
auxiliary storage) are not recommended unless all systems are in a shortage.

Calculation of server weights
The basis for WLM’s weight calculation is the Table 12 on page 78 for each goal
mode system in the sysplex. More than half of the systems in the sysplex need to
be in goal mode for WLM to calculate weights. Otherwise, all weights are set equal
to one. The table has one row for each level of work in the system:

Level 0 is used for service consumed by the system

Levels 1-5 are the externally defined importance levels

Level 6 is used for Discretionary work

Level 7 is unused service (equivalent number of service units

Each row contains the following fields:

v Number of service units (SUs) consumed in 3 minutes at the given importance
level and below.

v Percentage of total capacity consumed in 3 minutes at given importance level
and below.
For example, Level 4 in the table has the service units consumed by importance
4, importance 5, and discretionary work plus unused capacity.)

1. WLM scans the rows in the table in reverse starting with Level 7 until it finds a
level where one or more systems have at least 5% cumulative service units of
capacity. WLM then uses this table level for all goal mode systems to assign
relative weights.

2. A system weight is calculated for each system in the sysplex using the SU
value in the selected row in the table.

SUs for this system at selected level * 64
System weight = ---

total SUs for all systems at selected level

3. Finally, a server weight is calculated:
system weight

Server weight = ---------------------------------
of servers on system

Example
In this example, there are three goal-mode systems in the sysplex, all running at
100% CPU utilization. Each system has two DNS servers running for a particular
application. To assign weights to the three systems, WLM scans the CPU
consumption table from the bottom up, looking for a level where at least one system
has 5% or greater cumulative CPU consumption. In this case, Level 5 row is used
because System A exceeds the 5% minimum (and so does System B). Level 5 is
then used to calculate the weight for all systems including System C. So in this
case the system weights are determined by the amount of importance 5 and
discretionary work each system is running. Because there are two servers on each
system, the server weight is the system weight divided by 2.

System A weight = 200 *64 / 640 = 20 Server weight = 20 / 2 = 10
System B weight = 400 *64 / 640 = 40 Server weight = 40 / 2 = 20
System C weight = 40 *64 / 640 = 4 Server weight = 4 / 2 = 2

Chapter 7. Using the Sysplex Routing Services 77

|
|
|
|
|

|

|
|
|
|

|

|

|

|

|

|
|

|
|
|
|

|
|
|
|

|
|

|
|
|

|

|
|
|

|

|
|
|
|
|
|
|
|
|
|

|||
||
||
|

Table 12. CPU consumption table

System A System B System C

Level SUs % SUs % SUs %

0 2000 100 2000 100 2000 100

1 1800 90 1900 95 1840 92

2 1600 80 1500 75 1600 80

3 1100 55 1500 75 800 40

4 400 20 1200 60 800 40

5 200 10 400 20 40 2

6 80 4 20 1 0 0

7 0 0 0 0 0 0

78 z/OS V1R4.0 MVS Workload Management Services

||

||||

|||||||

|||||||

|||||||

|||||||

|||||||

|||||||

|||||||

|||||||

|||||||

Chapter 8. Using the Workload Reporting Services

The workload reporting services are intended for monitoring or reporting products to
collect performance data. They replace some of the existing methods of collecting
data, and provide a means to collect data for the goal-oriented processing with the
service policy.

When to Use the Workload Reporting Services
Because the data collection is cumulative, performance monitors can collect
information based on their own reporting intervals. But the collection is stopped and
re-started when a significant change occurs in workload management, such as
when a new policy is activated, or a system failure occurs. Performance monitors
should “bookend” their intervals when such a significant change occurs in workload
management. For each of these events, ENF signals are issued. SRM samples the
states of address spaces, and an ENF signal is issued when a new set of samples
is available. The performance monitor can use the ENF signals to guide its
reporting interval. For example, when an ENF code for a new policy activation is
issued, the performance monitor can end its last reporting interval, and start the
next reporting interval for the newly activated service policy.

To enable the performance monitor to know when a workload reporting change is
taking place, such as when a policy is activated, there is a ENF system event code.
ENF event code 41 and its related qualifiers indicate when changes are taking
place related to service policies. ENF code 41 guides the performance monitor’s
reporting intervals, and helps it to issue the services at the appropriate times.

Using ENF Signals to Guide Data Collection
Since all performance data is continually collected until a significant change takes
place in workload management, the performance monitor must know when the
collection is re-set. Workload management re-sets its collecting when:
v A service policy is activated (VARY WLM,POLICY=)
v A system error occurs.

ENF signals are issued for these events, and for each ENF, a listener is notified
synchronously at the start of a change, and at the completion of a change. There is
an ENF code qualifier indicating a change started, an ENF code qualifier indicating
a change completed, and an ENF code qualifier indicating a change has failed.

When a change is started, workload management captures a last copy of workload
data. The performance monitor can listen for the “start” event code, and then invoke
IWMRCOLL to get the last available data. The workload data remains the same
until either the change completes, or the change fails. Based on the “start” event
code, the performance monitor should save this data, end its current interval, and
wait for the next code.

Note: Since the ENF signal is issued synchronously, the listener should complete
processing as quickly as possible. For example, if the ENF is issued
broadcasting the start of policy activation, the policy activation is held up until
all listeners for that ENF have relinquished control.

If the change is completed, the performance monitor should invoke the proper
services, as shown in Table 13 on page 80. A performance monitor should always

© Copyright IBM Corp. 1988, 2002 79

|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|

|
|
|

|
|

complete its last interval with the data collected when it received the “start” event
code. If the change failed, the performance monitor can continue to use the data it
saved when it received the start event code. Regardless of whether the event has
completed or failed, the performance monitor should reinitialize all of its workload
activity information. Then the performance monitor should issue:
v IWMPQRY for a copy of the active policy
v IWMRCOLL for workload activity information.

This way, the performance monitor does not need to do two different things for
completions and failures.

There is also an asynchronous ENF signal issued when the IWMWRQAA
information is available. That way, a performance monitor can synchronize its
sampling interval for address space states with workload management’s sampling
interval.

Table 13 on page 80 shows the ENF event code and its qualifiers. The table also
outlines what a performance monitor could do when the ENF code is heard.

ENF Event Code 41
Table 13. Using ENF event code 41 to guide data collection for policy changes

Event Signal and qualifiers Expected action

VARY WLM, POLICY= WLMENF11, WLMENF12,
WLMENF13 WLMENF11

Indicates the policy change has begun. The performance
monitor should invoke IWMRCOLL to obtain a copy of the
last available data, and wait for WLMENF12. The
performance monitor should save the copy as the last
available for the interval.

WLMENF12
Indicates the policy was successfully activated on this
system. To get a copy of the new policy information, the
performance monitor should issue the IWMPQRY macro.
The performance monitor should then reinitialize its
workload activity reporting fields and resume data
collection.

WLMENF13
Indicates the new policy was not activated on this system,
but may have been activated on some systems in the
sysplex. This system is potentially running with a different
policy than the rest of the systems in the sysplex. The
performance monitor should acquire the current policy
information by issuing the IWMPQRY macro. The
performance monitor should reinitialize its data collection
fields and indicators and resume data collection with
subsequent IWMRCOLLs. The performance monitor could
alert the customer that this system is not running with the
active service policy.

System failure WLMENF31, WLMENF32,
WLMENF33 WLMENF31

Indicates workload activity reporting failed, recovery has
begun. Do not issue IWMRCOLL until recovery is complete.

WLMENF32
Indicates workload activity reporting recovery was
successful. Start a new reporting interval.

WLMENF33
Indicates workload activity reporting recovery was
unsuccessful. Do not issue IWMRCOLL as no data is
returned until the next IPL.

80 z/OS V1R4.0 MVS Workload Management Services

|
|
|
|
|
|
|

|
|

|
|

Using the IWMRCOLL Service
The IWMRCOLL service allows a performance monitor to obtain a variety of
performance data from a single system. Although IWMRCOLL provides information
about a single system, the performance monitor can combine the information to
provide a sysplex view.

Table 14 shows how you can use the workload reporting services together with
IWMRCOLL to get workload activity information on a single system. The following
section explains how to use the information returned by IWMRCOLL.

Table 14. Using IWMRCOLL with the workload reporting services on a single system

Action Reason

Issue REQSRMST SYSEVENT To get information about the service definition and policy.

Issue IWMPQRY macro To obtain current active policy length.

Issue GETMAIN To obtain storage needed to hold the active service policy information

Issue IWMPQRY To obtain active service policy information

Set up a reporting interval. To prepare for subsequent IWMRCOLL requests.

Issue IWMRCOLL specifying MINLEN,
MAXLEN, and QUERYLEN

To obtain length of storage needed. IWMRCOLL returns ANSTOKN required
for subsequent calls to IWMRCOLL.

Issue GETMAIN To get storage needed to hold information returned by IWMRCOLL.

Issue IWMRCOLL ANSTOKN=token To get workload activity information mapped by IWMWRCAA.

Set up a reporting interval Sample workload activity information by issuing IWMRCOLL at your
determined interval.

Calculate differences in data To determine the delta of data returned for the interval in each successive
IWMWRCAA.

Using the Information in IWMWRCAA
By using IWMRCOLL, a performance monitor can get the following kinds of
information:
v Resource consumption information
v Response time and distribution information
v General delay information
v Subsystem work manager delay state information

The information provided is mapped by the IWMWRCAA data area. Information is
returned on a service class and report class basis. The following section explains
how to use the response time data and the subsystem work manager delay state
information.

v Header Data

The header data present in the RCAA consists of:

– Data specific to the workload management mode in effect, such as which
service policy is active.

– General information such as bookkeeping information.

v Resource Data

Resource information is available for address spaces and there is a distinction
between transactions and server address spaces. A server address space is any
address space that does work on behalf of a transaction manager or a resource
manager. For example, a server address space could be a CICS AOR, or an IMS
control region. Service classes that represent CICS or IMS transactions, as

Chapter 8. Using the Workload Reporting Services 81

||

opposed to address spaces, have no resource data. The resources being
consumed by such transactions are reported in the service class of the server
address space.

v Delay Data

There are two types of delay information returned by IWMRCOLL: general
execution delays, and subsystem work manager delays. All data is sampled.

The general execution delays are address space oriented while the subsystem
work manager execution delays are service class oriented. They show delays
encountered by service classes representing transactions. The subsystem work
manager execution delays are in the subsystem work manager state samples
section of IWMWRCAA. The state samples are available only for subsystem work
managers using the execution delay monitoring services.

In order to determine whether a service class has execution delay state sampling
information, the header data indicates which type of delay information is available
for a service class. You can use address space delay data to calculate execution
velocity.

v Response Time Data

There is response time information and response time distributions for
transactions. Both are reported for service classes and report classes.

You can calculate average response times using the information provided in this
section. Total completed transactions (both normal and abnormal) are provided,
as well as total transaction completion time. This same information is available
for the execution phase of transactions.

Using the Subsystem Work Manager Delay State Information
The delay information in IWMWRCAA represent delays encountered by subsystem
work managers as they process transactions. Workload management can recognize
those address spaces that process transactions on behalf of the transaction
managers. Such address spaces are called server address spaces. Workload
management manages the server address spaces to achieve the goals of the
transactions the server is processing. If a server address space is managing more
than one service class, workload management manages the address space to meet
the most stringent service class goal. However, resource consumption and address
space delays for server address spaces are reported in the server’s service
classes.

The delay information shows the different states server address spaces experience
while processing transactions. The information is provided on a service and report
class basis--in the service or report class representing the transactions. This way,
the delay states show for the transactions being processed, not for the address
spaces serving the transactions. The states include how many times the service or
report class was seen active, ready, and waiting. There are several waiting states.
Each of these is reported separately. Some other states include whether the
transactions are continued somewhere else in the system, in the sysplex, or in the
network.

Using the Continued State Information
The state information helps a performance monitor show a picture of how well
transactions are being processed. Because multiple address spaces can be
involved in processing a transaction, a delay could occur in any of several places.
IWMWRCAA provides state information to help a performance monitor pin down
when transactions experience delays. The states show whether a service class has
continued:
v In the local system

82 z/OS V1R4.0 MVS Workload Management Services

v In the sysplex
v In the network

With the cooperation of the participating subsystem work managers, the information
reported divides the lifespan of transactions into two phases: a begin-to-end phase,
and an execution phase. A begin-to-end phase shows transaction states from the
time the subsystem work manager receives a transaction, processes it, and ends it.
An execution phase shows transaction states only during the time a subsystem
work manager processes the transaction. Delay states may not always appear in
each phase. It depends on how a subsystem work manager is reporting the delays
it encounters while processing.

For example, for CICS transactions, delay states are recorded from the time the
TOR receives the transaction and begins processing, through the time the
transaction is processed in the AOR, FOR, or elsewhere, and ended back in the
TOR. The phase where the TOR receives the transaction, and ends it is called the
begin-to-end phase. The phase where the transaction moves into the AOR, FOR, or
elsewhere and is processed is called the execution phase.

The delay states for both the begin-to-end and the execution phase are reported
together in the service class of the CICS transactions processed. For example,
Figure 18 shows the delay states sampled for both begin-to-end phase and the
execution phase for one CICS service class representing CICS transactions.

If the execution phase occurs on the same MVS image as the begin-to-end phase,
then (barring some statistical anomalies), the amount of time the service class
spends in the continued - LOCAL state of the begin-to-end phase should
approximately equal the amount of time the service class spends in the execution
phase.

The execution phase could be in the same system as the begin-to-end phase, but
could also be on another system in the sysplex, or in the network.

By combining the information collected on each system for a given service class,
the performance monitor can resolve the states where the transactions in the
service class continued elsewhere in the sysplex. For transactions continued
elsewhere in the network, workload management cannot know any more
information. Only the count of how many were switched out through the network is
provided.

Figure 18. Using states for presenting CICS delay information

Chapter 8. Using the Workload Reporting Services 83

Figure 19 shows how the performance monitor could view the state information to
provide a sysplex view. In this example, the states are reported for the CICSFAST
service class. In this example, the number of samples of transactions continued
somewhere in the sysplex should equal the number of transaction states sampled in
the sysplex (summed from each system in the sysplex). The performance monitor
can combine all the state data from all the systems in the sysplex to provide a
sysplex view, correlating the data by service class.

Using Delay States to Report Subsystem Interactions
Not only are multiple address spaces involved in processing transactions, but those
address spaces may be part of different subsystems. For example, a CICS TOR
may give control to a CICS AOR who in turn may do a query to IMS DLI. Workload
management can keep track of subsystems that communicate with each other, and
provides the information so that a performance monitor can present the subsystem
interactions in processing transactions.

The CICS transaction used in the previous example has a begin-to-end phase and
an execution phase. The execution phase could be split among several
subsystems, and the delays associated with each distinct subsystem are reported
separately. The performance monitor should combine all information by service
class by subsystem to provide a sysplex view.

Delay data are presented for as many distinct subsystems as participated in
processing each service class. The data are available for both the begin-to-end
phase and the execution phase.

A performance monitor could provide a timeline with the various pieces and phases
of the work represented differently. In Figure 20 on page 85, the performance
monitor sees that the biggest delays encountered are in the Waiting state and the
Continued Local state. The performance monitor could show further information

Figure 19. Combining state information for a sysplex view.

84 z/OS V1R4.0 MVS Workload Management Services

about the Continued Local states by presenting the information found in the
execution phase on that system.

In the example, the performance monitor shows that there are execution delays
attributed to Active, Waiting, and Continued states. Notice that of the 35 delay
states reported in the original display as being Continued Local, only 33 of them
show up in the execution phase. This is one of the shortcomings of sampling.

In Figure 21 on page 86, there are two subsystems represented in the execution
phase. This means that during this interval, both subsystem A and subsystem B
performed work on behalf of service class xyz. Again, notice that there is 1 state
sample missing due to statistical anomalies. The performance monitor could
determine the specific reason for subsystem B Waiting states from the delay states.

Continued

Continued

Figure 20. Combining state information for a service class.

Chapter 8. Using the Workload Reporting Services 85

Using the Response Time Information
To provide a picture of how a performance group was performing, SRM previously
reported total transaction time for use in calculating standard deviation. This
information is provided for transaction execution time. Response time distributions
are provided for both service classes and report classes.

These distributions consist of 14 buckets of information. There is a header
explaining the contents of the buckets that is provided once. The header contains
the value of the particular bucket, which is a percentage of the specified goal (that
is, 50 equates to 50% of the goal; 150 equates to 150%, of the goal) There is
always one bucket which exactly maps to the specified goal, with a value of 100%.

In each bucket is the number of transactions that completed in the amount of time
represented by that bucket.

In Figure 22 on page 87, each of the fourteen buckets represents a percentage of
the specified 1 second goal. For instance, bucket 2 represents all transactions that
completed in 500 to 600 milliseconds, while bucket 8 contains the number of
transactions that completed in 110% to 120% of the goal or 1.1 to 1.2 seconds.
Notice that bucket 6 falls exactly on the goal. This bucket will capture all those
transactions that complete in 900-1000 milliseconds.

The two end buckets have special meaning. Bucket 1 contains the total number of
transactions that completed in up to 50% of the goal. Bucket 14 contains the
number of transactions that completed in greater than 4 times the goal.

Continued

Figure 21. Combining state information across subsystems.

86 z/OS V1R4.0 MVS Workload Management Services

Interpreting Report Class Data
Through classification rules WLM allows you to associate transactions with report
classes for reporting purposes only. Report classes can be used to report on a
subset of transactions running in a single service class but also combine
transactions running in different service classes within one report class. In the first
case a report class is called homogeneous, and in the second case it is called
heterogeneous.

Before z/OS 1.2, WLM only returned a report class summary. From the data it was
not possible to conclude from where it came from, for example the service class,
and what service class period contributed to the report class. For that reason, the
calculation of response time distribution or velocity, for example, was not possible
because there was no guarantee that

v the data in the report class is homogeneous, and

v the data is related to a single-period service class only.

Now, with z/OS 1.2 WLM returns report class periods. A report class period is
homogeneous if there is only one service class found contributing to this report
class period in a given report interval. To allow a reporting product to determine
whether a report class period is homogeneous in its reporting interval, WLM offers
two indicators returned by IWMRCOLL:

mixed-class-indication timestamp
This timestamp indicates when workload data associated with a different
service class last contributed data to a report class period that was
currently collecting data from another service class (see Figure 23 on
page 88).

service class index
This index indicates the last service class whose data was collected in the
report class period.

The following Figure 23 on page 88 illustrates the concept of the
mixed-class-indication timestamp in relation to the time interval in which a caller
collects workload data.

Figure 22. Self-defining response time distributions

Chapter 8. Using the Workload Reporting Services 87

A caller invokes IWMRCOLL twice in order to get interval data, first at time t₀ to
start the interval and second at time t₁ to end collecting data. With the second
invocation at t₁, the caller gets back the mixed-class-indication timestamp. If the
returned timestamp is ≥ t₀, as it is for caller 1, it means that transaction data from a
different service class started contributing data to the same report class period. The
report class is heterogeneous. If the returned timestamp is outside the interval
(smaller than t₀), as it is for caller 2, it means that the report class remained
homogenous during the calling interval.

Being able to see that a period is homogeneous allows the reporting product to
format response time distribution buckets and work manager delay data for this
period while it would not report this data for a heterogeneous period. If the
timestamp indicates that the report class is heterogeneous, it is recommended to
collapse the periods which means to report the data as if the report class had only
one period.

Using the IWMRQRY Service
The IWMRQRY service provides sampled data on address spaces including:

v Address space state samples

v Server information

To see when an address space is serving more than one service class,
information is provided for server address spaces in the general execution delay
portion of the IWMWRCAA. This information includes:
– The service classes being served by an address space.
– The number of samples of address spaces serving a particular service class.

For example, address space ACSFOR1 is seen serving service class
CICSSLOW 60 times, and service class CICSFAST 40 times.

The data returned is mapped by the IWMWRQAA data area. It represents the data
collected during one sampling interval, an instantaneous, non-cumulative snapshot
of the address space. The data is not tied to a particular job. Products using
IWMRQRY must decide whether to acculmulate this latest state data with prior
samples.

Figure 23. Mixed-class-indication timestamp in relation to the time interval

88 z/OS V1R4.0 MVS Workload Management Services

An asynchronous ENF signal is issued whenever a new copy of IWMWRQAA
information is available. The performance monitor can use the ENF signal to
determine when to issue IWMRQRY.

Table 15 shows a sample sequence of what to do to get address space information
using IWMRQRY.

Table 15. Using IWMRQRY with the workload reporting services

Action Reason

Issue IWMRQRY macro To obtain answer area length.

Issue GETMAIN To get storage to hold the address space data.

Issue IWMRQRY To obtain address space data mapped by IWMWRQAA.

Set up a reporting interval To collect data from issuing IWMRQRY multiple times.

Issues IWMRQRY
INFO=ASID,ASCB=ascb

The performance monitor recognizes an exception for the address space
represented by the specified ASCB. To obtain specific data about the ascb
address space.

Chapter 8. Using the Workload Reporting Services 89

90 z/OS V1R4.0 MVS Workload Management Services

Chapter 9. Using the Administrative Application Services

This chapter explains how to use the administrative application services. The
services are intended for programs which provide an interface to define and edit a
service definition. They include:

v IWMDINST, which allows a program to install a service definition on the WLM
couple data set.

v IWMDEXTR, which allows a program to extract a service definition from the WLM
couple data set.

v IWMPACT, which allows a program to activate a service policy.

v IWMCQRY, which allows a program to query the classification rules in effect.

For information about service definition concepts, see z/OS MVS Planning:
Workload Management.

Installing a Service Definition
The IWMDINST macro allows a program to install a service definition onto a WLM
couple data set. The service definition is moved onto the WLM couple data set as
an area of storage, mapped by the IWMSERVD macro.

Mapping a Service Definition
The service definition is installed and extracted from the WLM couple data set as a
data area mapped by the IWMSERVD mapping macro. The IWMSERVD macro
points to the following sections:

IWMSVDEF
Maps the following service definition information:

Service policies
Workloads
Service classes
Report classes
Resource groups
Service definition coefficients

IWMSVDCR
Maps the service definition classification rule information.

IWMSVNPA
Maps the service definition notepad area.

IWMSVAEA
Maps the service definition application environments.

IWMSVSEA
Maps the service definition scheduling environments.

Adding Program-Specific Extensions to a Service Definition
A program can add program-specific information to the service definition. For
example, suppose you want to add a kind of reporting extension to a workload. In
your program, you allow the service administrator to define this extension when
defining workloads.

© Copyright IBM Corp. 1988, 2002 91

You can add extensions to each of the following:
v Service definition
v Service policies
v Workloads
v Service classes
v Report classes
v Resource groups
v Service definition coefficients
v Application environments
v Scheduling environments

A program can add extensions to IWMSVDEF, IWMSVDCR, IWMSVAEA, and
IWMSVSEA. The following example illustrates extensions to IWMSVDEF.
IWMSVDCR, IWMSVAEA, and IWMSVSEA all have roughly similar structures, and
are extended in much the same way. For more details on these other structures see
z/OS MVS Data Areas, Vol 3 (IVT-RCWK) or else see the individual prologs for
those macros.

To add the extensions to the service definition structure, the program must update
the following fields in IWMSVDEF:

SVDEF_EXT_DATA_OFF
The offset to the extension data, from the beginning of IWMSVDEF

SVDEF_EXT_DATA_LEN
The total length of the extension data, from the beginning of IWMSVDEF

For each part of the service definition with extensions, the program must update
IWMSVDEF with the following:
v The offset to the extension entries from the beginning of IWMSVDEF.
v The number of extension entries.
v The length of the extension entries.

Each entry must have the following fields filled in:

SVDEFVID
Identifier of the product adding the extension.

SVDEFROB
The name of the related object. For example, if you are adding an
extension to a service class, this field should contain the service class
name.

SVDEFEPN
Related policy name, if the extension is for a service class or resource
group. Otherwise, leave this field blank.

SVDEFEDL
The length of the extension data.

SVDEFEDO
The offset to the extension data.

Example of Service Definition Extensions
Figure 24 on page 93 shows the structure of IWMSVDEF for a service definition
with extensions to workloads. In the example, there are two workload entries, and
therefore two workload extensions. Remember that IWMSERVD points to the
IWMSVDEF mapping macro.

92 z/OS V1R4.0 MVS Workload Management Services

The program adding the workload extensions has updated the following fields in
IWMSVDEF:

SVDEF_WD_EXT_OFF
The offset to the workload extension data header from the beginning of
IWMSVDEF.

SVDEF_WD_EXT_NUM
The number of workload extension entries

SVDEF_WD_EXT_SIZ
The size of the workload extension entries

SVDEF_EXT_DATA_OFF
The offset to the beginning of the extension data, from the beginning of
IWMSVDEF.

SVDEF_EXT_DATA_LEN
The total length of the extension data, not including the length of the
extension entries.

For each extension, the program must create an entry with the following fields:

SVDEFVID
Identifier of the your product.

SVDEFROB
The name of the workload related to this extension.

Figure 24. IWMSVDEF mapping for a service definition with workload extensions.

Chapter 9. Using the Administrative Application Services 93

SVDEFEPN
Leave this field blank. Since this is a workload extension, it applies to all
policies.

SVDEFEDL
The length of the extension data.

SVDEFEDO
The offset to the extension data from the start of the extension data.

Maintaining the Service Definition
Make sure your program maintains the service definition data structure. For
example, your program has added an extension to service classes, and the service
administrator deletes that service class, then your program must ensure that the
service class extension is also deleted.

In order for customers to allow for the extra space this information may take up on
the WLM couple data set, there are new keywords on the JCL utility to allocate a
couple data set. If your program intends to use the service definition extensions,
you should make sure customers know how to factor the extensions into the size of
the WLM couple data set. For information about how a service administrator
allocates a WLM couple data set, see z/OS MVS Planning: Workload Management.

Checking a Service Definition Using IWMDINST
Before installing a service definition on the WLM couple data set, the IWMDINST
macro checks to make sure the service definition is valid. The macro checks the
service definition to verify the service definition data structure and to detect any
storage overlay problems.

All data in a service definition must be valid in order for the system to complete the
installation. If the IWMDINST macro finds an error during validity checking, it issues
a reason code in the VALCHECK_RSN parameter. IWMDINST also returns the
offset to the place in the IWMSVDEF mapping macro where the error was found in
the VALCHECK_OFFSET parameter. IWMDINST identifies one error per call.

Appendix B, “Application Validation Reason Codes” on page 619 contains a list of
the reason codes, and an explanation of each code. Table 16 shows an example of
the information provided for reason code 1B01.

Table 16. SERVD validation reason codes

Section Reason Offset Description

SVDCRSST 1B01 entry Service class for the subsystem type (SVDCRSCN) not
found in the SVDEF

In this example, IWMDINST returned a reason code of 1B01 in the
VALCHECK_RSN parameter. The error is in the SVDCRSST section of
IWMSVDCR, and is in a subsystem type entry. IWMDINST found a service class in
the classification rules for the subsystem type that was not defined in the service
definition. Your program could check the service definition for the undefined service
class name, and could issue a message to the service administrator.

Recommended Validity Checking
In addition to using the validity checking provided by IWMDINST, a program should
check for additional errors not covered by IWMDINST.

94 z/OS V1R4.0 MVS Workload Management Services

For example, suppose the service administrator has defined a service class
representing IMS transactions, and assigned the service class to a resource group.
Because MVS/ESA SP 5.2 does not support resource groups for
transaction-oriented work, you cannot assign a resource group to a service class
representing IMS transactions. Rather than allowing the service administrator to
make a mistake, your program should issue a warning message. The message
could point the service administrator to the IMS service class containing the illegal
resource group assignment.

Your program should check the following conditions not checked by IWMDINST:

v No workloads defined.

v No service classes defined.

v The response time goal for a service class period does not exceed the response
time goal for the previous period.

v Duplicate service class or resource group names. The names must be unique
within a service definition.

v Some rule within a subsystem type refers to a service class, but there is no
default service class specified for the subsystem type. If a subsystem type has
classification rules defined, then there must be a service class default defined.

v A qualifier type is repeated in a sub-rule for a subsystem type in the classification
rules. Only qualifier type longer than 8 characters can be repeated in a sub-rule.

v The classification rules for a subsystem type refer to a service class with multiple
periods, but that subsystem type does not support multiple periods. The
subsystem types which support multiple periods are JES, ASCH, OMVS, STC,
TSO, and DDF.

v The classification rules for a subsystem type refer to a service class with a
resource group, but that subsystem type does not support resource groups. The
subsystem types which support resource groups are JES, ASCH, OMVS, STC,
TSO, and DDF.

v An unreferenced classification group. The service administrator defined a
classification group, but did not use it in the classification rules.

v The classification rules for a subsystem type refer to a qualifier type not
supported by the subsystem type. For a list of the qualifier types supported by
each subsystem, see z/OS MVS Planning: Workload Management.

v Subsystem type does not support discretionary or velocity goals. Service class
with a discretionary or velocity goal was referred to in the classification rules for
that subsystem type. Subsystem types which support discretionary and velocity
goals are: JES, ASCH, OMVS, STC, TSO, and DDF.

Preventing Service Definition Overlays
Suppose a service administrator extracts a service definition from the WLM couple
data set, makes some changes, and in the meantime someone else has extracted,
changed, and reinstalled the service definition. If the first user installs the service
definition, any changes the second user made will be overwritten. To prevent the
service administrator from overwriting the service definition, a program can use:

v The COND parameter on IWMDINST

v The ENQ macro.

Using the COND Parameter on IWMDINST
The optional COND parameter lets a caller specify whether or not to install the
service definition if the service definition has not been changed since it was

Chapter 9. Using the Administrative Application Services 95

extracted from the WLM couple data set. IWMDINST determines whether the
service definition has changed by checking a service definition identifier.

The service definition identifier consists of the service definition name, and the time
and date the service definition was installed.

Use COND=YES to install the service definition only if the identifier of the currently
installed service definition matches the base identifier passed on IN_BASEID
parameter. If the identifiers do not match, your program can issue a message
stating that the service definition has changed since the last extract. The message
can also ask the service administrator to confirm the installation.

Use COND=NO to specify that the input service definition should be installed
unconditionally.

When the service definition has been successfully installed on the WLM couple data
set, the system issues ENF signal 41. A program can use the ENF macro to know
when a service definition has been installed. For more information about how to use
ENF signals, see z/OS MVS Programming: Authorized Assembler Services
Reference ENF-IXG.

Using the ENQ Macro
To ensure that two service definitions are not installed simultaneously on the WLM
couple data set, a program can use the ENQ macro. Programs can serialize
installation of the service definition onto the WLM couple data set by obtaining an
exclusive ENQ on:

QNAME
SYSZWLM

RNAME
WLM_SERVICE_DEFINITION_INSTALL

SCOPE
SYSTEMS

For more information about how to use the ENQ macro, see z/OS MVS
Programming: Authorized Assembler Services Reference ENF-IXG.

Example of Using IWMDINST to Install a Service Definition
Suppose you have coded an application to define and edit a service definition. You
want to install the service definition onto the WLM couple data set, and do the
following:

v Check the service definition data structure and whether there are any storage
overlay problems. If there are any problems, have the macro return the location
of the error in the service definition.

v Specify that the service definition is to be installed only if the service definition
installed on the WLM couple data set has not changed since the last extract.

To install the service definition, you specify:
IWMDINST SERVD_AREA=(R4),

PRODUCT_ID=ProductIdArea,
QRY_BASEID=(R5),
VALCHECK_RSN=ValcheckRsn,
VALCHECK_OFFSET=ValcheckOffset,

96 z/OS V1R4.0 MVS Workload Management Services

COND=YES,
RETCODE=Module_Rc,
RSNCODE=Module_Rsn,
MF=E

With the following defined:
ProductIdArea DS CL32 My application product identifier
ValcheckRsn DS 1F The validation check reason code
ValcheckOffset DS 1F The validation check offset
Module_Rc DS 1F The return code
Module_Rsn DS 1F The reason code

v To check the service definition data structure, use the VALCHECK_RSN and
VALCHECK_OFF parameters. If IWMDINST finds any error, it will provide the
reason code in the VALCHECK_RSN parameter, and the offset to the error in the
VALCHECK_OFF parameter. Look up the reason code in Appendix B,
“Application Validation Reason Codes” on page 619 for more information about
the error and help in locating it in IWMSERVD.

v To specify that the service definition is to be installed only if the service definition
installed on the WLM couple data set has not changed since the last extract, use
the COND=YES parameter. If the service definition base identifier has not
changed since the service definition was extracted from the WLM couple data
set, then IWMDINST continues with the installation.

Extracting a Service Definition
The IWMDEXTR macro allows a program to extract a service definition from the
WLM couple data set. Once the service definition is extracted, then a service
administrator can make changes.

A caller should issue IWMDEXTR specifying QUERYLEN to determined the storage
required for the service definition The service definition returned by IWMDEXTR is
not serialized against future installs, so the length returned could change before a
caller can issue IWMDEXTR again. The caller should issue IWMDEXTR in a loop,
checking return and reason codes, and obtaining a larger storage area if necessary.

Example of Using IWMDEXTR to Extract a Service Definition
To extract a service definition from the WLM couple data set, specify:
IWMDEXTR ANSAREA=(R4),

ANSLEN=StorSizeForServd,
QUERYLEN=QueryLenForServd,
RETCODE=Module_Rc,
RSNCODE=Module_Rsn,
MF=E

StorSizeForServd DS 1F Storage size for service definition
QueryLenForServd DS 1F Query length for service definition
Module_Rc DS 1F Return code
Module_Rsn DS 1F Reason code

Activating a Service Policy
You can also activate a service policy from your application by using the IWMPACT
macro. The caller must provide the name of the service policy to be activated in the
SERVICE_POLICY=service_policy parameter. The specified policy must exist in the
service definition installed on the WLM couple data set.

A single policy can be activated at any one time, and the policy is activated
synchronously.

Chapter 9. Using the Administrative Application Services 97

A caller can optionally request the name of the system where another policy
activation is taking place by specifying SYSTEM_NAME=system_name. Therefore,
if a previous IMWPACT request is being processed and a new IWMPACT request is
issued, the new request is rejected with an appropriate return and reason code.
This occurs regardless of whether the requests were issued on the same system or
different systems in the sysplex. Control is not returned to the caller until the policy
has been activated on all systems in the sysplex or for some reason the policy
activation could not be completed.

Example of Activating a Policy using IWMPACT
To activate a service policy, and if another policy activation is in progress, have
IWMPACT return the name of the system that activated the policy, specify:
IWMPACT POLICY_NAME=policy,

SYSTEM_NAME=system,
RETCODE=Module_rc,
RSNCODE=Module_rsn

Where the following are defined:
policy DS CL8 The policy name
system DS CL8 System name where another policy is activating
Module_rc DS 1F Return code
Module_rsn DS 1F Reason code

Querying the Active Classification Rules
IWMCQRY lets a caller query the classification rules associated with the active
service policy. The classification rules determine how incoming work is assigned a
service class and/or report class. The data returned by this macro is mapped by
IWMSVDCR. For a description of the IWMSVDCR macro, see z/OS MVS Data
Areas, Vol 3 (IVT-RCWK).

Optionally, a caller can request the active service policy identifier by specifying the
POLICY_ID parameter. This is the active policy containing the classification rules
returned by this macro. The caller can then compare the service policy ID with the
policy identification information returned by the IWMPQRY macro to ensure they are
the same.

Some data sections in the IWMSVDCR data area may not be available through
IWMCQRY. For example, the time stamps indicating when a classification GROUP
was last updated and by whom may not be available. For a complete list of fields
that are not available refer to IWMSVDCR as described in z/OS MVS Data Areas,
Vol 3 (IVT-RCWK). The complete classification rules associated with a service
policy are returned by the IWMDEXTR macro and mapped by IWMSVDCR.

A caller can use the classification rules together with the active service policy to
determine the goals associated with incoming work. The service class goals are in
the active service policy mapping returned by the IWMPQRY service.

The information returned is not serialized upon return to the caller, and so may be
out of date if a service definition was modified, installed, and a new policy activated.

98 z/OS V1R4.0 MVS Workload Management Services

Example of IWMCQRY
To query the classification information associated with the active policy, specify:
IWMCQRY POLICY_ID=(R7),

ANSAREA=(R5),
ANSLEN=anslen,
QUERYLEN=cqry_len,
RETCODE=RCODE,
RSNCODE=RSN

Where the following are defined:
anslen DS 1F Length of the answer area
cqry_len DS 1F Length required for answer area
RCODE DS 1F Return code
RSNCODE DS 1F Reason code

Chapter 9. Using the Administrative Application Services 99

100 z/OS V1R4.0 MVS Workload Management Services

Chapter 10. Using SMF Record Type 99

SMF record type 99 provides detailed audit information for work run in workload
management goal mode. You can use the type 99 records for analyzing the
performance characteristics of work. The records contain performance data for each
service class period, a trace of SRM actions, the data SRM used to decide which
actions to take, and the internal controls SRM uses to manage work. This can help
you determine in detail what SRM is doing to meet your work’s goals with respect
to other work, and the types of delays the work is experiencing.

You should write SMF type 99 records only when you want this detailed information.
For general reporting and tuning information for a system in goal mode, you can
use SMF type 72 records.

SRM writes type 99 records for each policy interval, or approximately once every 10
seconds.

There are the following type 99 record subtypes:

Subtype 1
Contain system level data, the trace of SRM actions, and data about
resource groups. A subtype 1 record is written every policy interval.

Subtype 2
Contain data for service classes. A subtype 2 record is written every policy
interval for each service class if any period in the service class had recent
activity.

Subtype 3
Contain service class period plot data. A subtype 3 record is written every
policy interval for each service class if any period in the service class had
recent activity and plot data.

Subtype 4
Contains information about a device cluster. A device cluster is a set of
service classes that compete to use the same DASD devices. A subtype 4
record is written every policy interval for each device cluster in the system.

Subtype 5
Contain data about monitored address spaces. A subtype 5 record is written
each policy interval for each swapped in monitored address space.

Subtype 6
Contains summary information about each service class period, including
the resource control settings for the next policy interval. A subtype 6 record
is written each policy interval.

Subtype 7
Contains summary information for the Enterprise Storage Server (ESS) with
Parallel Access Volume (PAV) feature. A subtype 7 record is written every
third policy interval.

Subtype 8
Contains summary information for LPAR CPU management. A subtype 8
record is written each policy interval, when in LPAR mode.

Subtype 9
Contains summary information for dynamic channel path management. A
subtype 9 record is written each policy interval.

© Copyright IBM Corp. 1988, 2002 101

Some fields are used as input to adjust the policy. Those fields contain the data
collected during the policy interval just prior to policy adjustment. Other fields are
altered when the policy is adjusted. Those fields contain the data resulting from the
policy adjustment. For example, a service class period dispatch priority field
contains the dispatch priority for the next policy interval not the dispatch priorities
from the previous policy interval.

When to Start SMF Record Type 99
A type 99 is written every policy interval, which is frequent! The records contain the
data, plots, and tables SRM uses to assess the effects of changes. So you should
write type 99 records only for a time period in which you want this detailed audit
information.

Starting SMF Record Type 99
You specify the type 99 record in the SMFPRMxx parmlib member under SUBSYS
STC.

Because SMF type 99 records are written approximately every 10 seconds, you
should write them only for certain time periods. If you use NOTYPE in your
SMFPRMxx parmlib member, you should include type 99 in your NOTYPE list. For
example:
SUBSYS(STC,NOTYPE(99))

If you use TYPE in your SMFPRMxx parmlib member, make sure you add TYPE 99
only when you want this level of detail. For example, add:
SUBSYS(STC,TYPE(99))

You should have an SMFPRMxx parmlib member for general audit information that
does not specify type 99, and another for detailed audit information that specifies
type 99. This way, you can write the frequently written SMF record types like SMF
type 99 only when you need them.

The mapping macro (IRASMF99) for this record is shipped in SYS1.AMODGEN.

Identifying Work in SMF Type 99 Records
This section explains how to identify work in SMF type 99 records. You can identify
work throughout SMF type 99 by:
v Service class name
v Service class performance period number
v Resource group name
v Address space name

This information is as defined in the service policy at the time the type 99 record
was written.

Identifying Server Service Classes
Some service classes are server service classes, that is they are service classes
representing address spaces doing work on behalf of transactions. You can
determine whether a service class represented in the subtype 2 period data is a
server by first checking the goal type in the service class period section. If the goal
type is 0, indicating a system or server service class, you next check whether there

102 z/OS V1R4.0 MVS Workload Management Services

are any server data entries. If there are entries, then the service class period is a
server, and the server data describes the service classes being served by this
server.

If the goal type is 0, and there are no server entries, then the service class is a
system service class.

Identifying Internal Service Classes
SRM groups some work not defined in the service policy into internal service
classes. The internal service class names are:

$SRMDInn - resource group discretionary
Contains all work in a resource group with a discretionary goal. There is one
$SRMDInn class per resource group with discretionary work.

$SRMDI00 - general discretionary
Contains all work assigned a discretionary goal, but not assigned a resource
group. There is always one $SRMDI00.

$SRMDISC - SYSOTHER service class
Contains all work not otherwise assigned to a service class.

$SRMSnnn - server
Contains all address spaces serving the same set of service classes. That is,
the server address space (s) could be serving more than one service class. For
example, 2 AORs may be serving the same 3 CICS service classes. Those 2
AORs make up one $SRMSnn service class.

An address space can belong to one internal server service class, but can
move from one class to another. The number of $SRMSnnn service classes
depends on how many external service classes are served and by how many
combinations of server address spaces.

$SRMDUMP - SDUMP
Contains only SDUMP.

$SRMBEST - best
Contains the special system component address spaces, unless they are
explicitly assigned to a service class in the service policy. This includes the
SYSTEM service class.

$SRMGOOD - good
Contains the STC subsystem type default work, if there was no default service
class specified in the classification rules for STC in the service policy. This is
the SYSSTC service class.

Interpreting Trace Table Entries
Subtype 1 contains a trace table. The trace codes describe which action SRM took
or is considering taking to process work. This section describes the SRM concepts
reflected in the trace codes. For a list and a brief explanation of the trace codes,
see Appendix A, “SMF Type 99 Action Codes” on page 599.

Policy Adjustment
Policy adjustment is how SRM:
v Selects work to help
v Selects performance bottlenecks to address
v Selects which work should donate resource to help other work
v Assesses whether it is worth it to help work.

Chapter 10. Using SMF Record Type 99 103

The purpose of policy adjustment is to meet service class and resource group
goals. Policy adjustment is done approximately every 10 seconds.

Resource Adjustment
Resource adjustment is how SRM keeps system resources effectively utilized.
Resource adjustment includes:
v Detecting and addressing under-utilized, over-utilized, and shortage conditions.
v Managing individual working sets via Working Set Management,
v Managing expanded storage migration via expanded storage policies for service

class periods and individual address spaces.

SRM handles resource adjustment algorithms within the constraints set by the
policy adjustment algorithms.

Resource adjustment is done approximately every 2 seconds.

Receivers and Donors
A receiver is the service class period SRM is considering helping. SRM helps only
one receiver during each policy interval, although it may assess multiple receivers
before finding one to help. A donor is a service class period that donates resources
to the receiver. Multiple donors may donate multiple resources to a single receiver
during one policy interval.

The resources to help the receiver may also come out of what is referred to as
discretionary resources. Discretionary resources are those that can be reallocated
with little or no effect on the system’s ability to meet performance goals.

Service class periods other than receivers and donors can also be affected by
changes. These service class periods are referred to as secondary receivers and
donors. SRM may decide not to help a receiver due to minimal net value for either
a primary or secondary donor. “Action Trace Example” on page 115 explains an
example in which there are secondary receivers and donors.

If a service class period is being served by one or more address spaces, it is called
the goal receiver or donor. It is the service class period with the response time
goals. To help such service class periods, SRM must donate resources to the
server address spaces. The service class period serving a service class, is called a
resource receiver or donor. SRM adjusts resources for the resource receiver/donor
to affect the performance of the goal receiver/donor.

Performance Index
Performance index is a calculation of how well work is meeting its defined goal. For
work with response time goals, the performance index is the actual divided by goal.
For work with velocity goals, the performance index is goal divided by actual.

A performance index of 1.0 indicates the service class period is exactly meeting its
goal. A performance index greater than 1 indicates the service class period is
missing its goal. A performance index less than 1.0 indicates the service class
period is beating its goal. Work with a discretionary goal is defined to have a
performance index of .81.

Each service class period has a sysplex and a local performance index. The
sysplex performance index represents the performance of a service class period
across all the systems in the sysplex. The local performance index represents only
the performance on the local system.

104 z/OS V1R4.0 MVS Workload Management Services

Within resource groups and importances, receivers are selected in performance
index order. Donors are selected in the reverse order of receivers. The sysplex
performance index is the primary criteria used for selecting receivers and donors
and assessing changes.

Receiver Value
A receiver is helped only if there is projected to be sufficient receiver value.
Receiver value is a minimum performance index improvement, a minimum group
service increase, or other minimum criteria designed to reject very small
improvements. The reason to reject actions for too little receiver value is to get on
to addressing other problems for other service class periods rather than continuing
to make changes that yield only marginal improvements for a few service classes.

Net Value
A receiver is only helped by a specific donor if SRM projects sufficient net value to
the resource reallocation. SRM calculates the net value and uses it to determine if
using a donor to help a receiver results in more projected harm to the donor than
projected improvement to the receiver. If so, the condition is traced, and another
donor is selected. The net value assessment considers all external service policy
specifications (resource group capacity minimums and maximums, importance, and
goals) for both primary and secondary donors.

Small Processor Consumer
Service class periods that consume little or no processor time are referred to as
small processor consumers. Under some circumstances these small consumers are
assigned a relatively high dispatching priority and not assessed for dispatching
priority changes.

Storage Housekeeping
The purpose of storage housekeeping is to decrease storage targets that are out of
date or ineffective. Storage housekeeping will only reduce a target if it will not affect
the ability of work to meet goals. There are four types of storage housekeeping.

time driven
Reduce target when the projected effect is small and the service class
period will still easily meet goals

minimal effect
Reduce target slightly when the projected effect is very small

unassessable
Reduce target slightly when the projected effect cannot be determined but
the service class period is meeting goals easily

slow mode
Reduce target slightly when the projected effect cannot be determined but
keep the target close to the current allocation

Reverse Housekeeping
A second type of housekeeping, referred to as reverse housekeeping increases
targets if these targets are significantly less than the resources the service class
period or address space already owns. The targets are increased by reverse
housekeeping so that if there is a sudden increase in the demand for resources the
service class period or address space will have some protection until the policy
adjustment can reevaluate the situation.

Chapter 10. Using SMF Record Type 99 105

Working Set Management
Working set management (WSM) improves system efficiency by adjusting:
v The mix of work in the multiprogramming set
v The central and expanded storage allocated to individual address spaces.

Any adjustments may be made as long as the adjustments do not jeopardize
externally specified goals.

WSM monitors address spaces to determine their paging characteristics. Address
spaces may be selected for monitoring by policy adjustment or WSM. The point
(number of frames) where an address space is not experiencing significant paging
overhead is referred to as its ok1 point. WSM tries to run address spaces at their
ok1 points if possible.

If there is not enough storage to run at ok1 but some storage is available, WSM
puts a restrictive target on the address space. This is referred to as managing or
squeezing the address space. If there is not enough storage for the address space
to run at all productively, WSM initiates a swap out. WSM also assesses
reallocating central or processor storage frames from one or more address spaces
to another address space to determine whether the reallocation would result in a
more productive use of storage. These actions are referred to as a’s frames to b
actions.

Interpreting Management Policy Data
This section explains the controls SRM uses to manage work, and where these
controls can be found in SMF type 99. SRM algorithms set all the control values
internally. All changes to the control values have trace entries in the subtype 1
record.

The SRM controls are:
Dispatching priority
MPL targets
Swap protect time
Expanded storage policy
Storage targets
Cap slices
I/O priority
Number of server address spaces

They are shown in the subtype 1, subtype 2, and subtype 5 records.

Dispatching Priority
SRM defines dispatching priority for service class periods. All address spaces in a
service class period have the same base dispatching priority. Multiple service class
periods may have the same base dispatching priority. After a dispatching priority
change, service class periods may be remapped to different dispatching priorities
such that there is an unoccupied priority between each occupied priority. This
process is referred to as priority unbunching.

The dispatching priority is recorded in the subtype 2 records.

MPL Targets
SRM defines an MPL-in and MPL-out target for each service class period. MPL-in
target represents the number of address spaces that must be in the swapped-in

106 z/OS V1R4.0 MVS Workload Management Services

state for the service class period to meet its goals. MPL-out target is the maximum
number of address spaces allowed in the swapped-in state.

The MPL targets are recorded in the subtype 2 records.

Swap Protect Time
SRM defines swap protect time for service class periods. Swap protect time is the
time in milliseconds swapped-out address spaces will remain in processor storage
before becoming candidates for swap to auxiliary storage.

The swap protect time is recorded in the subtype 2 records.

Expanded Storage Policies
An expanded storage policy controls how and which pages are written to expanded
or auxiliary storage. There is an expanded storage policy for each of the following
types of pages:
v Swap working set pages
v VIO pages
v Hiperspace pages
v Stolen pages and swap trim (demand pages)

To determine how to write the pages, each of the expanded storage policies is set
to one of the following:

Protected
Direct pages to expanded storage, where the system protects a specific
number of pages on expanded storage.

LRU Direct pages to expanded storage, where the system migrates pages in
least recently used (LRU) order.

Space available
Direct pages to auxiliary storage unless there is significant space available
on expanded storage.

SRM defines the expanded storage policy for swap working set pages on a service
class period basis.

SRM defines the expanded storage policy for all other types of pages depending on
the service class period goal. For a short response time goal (less than or equal to
20 seconds), SRM defines the expanded storage policy on a service class period
basis. For long response time goals (greater than 20 seconds), velocity goals,
discretionary goals, and server internal service classes ($SRMSnnn service class
names), SRM may define an individual expanded storage policy for each address
space in the service class period.

If there is an individual expanded storage policy for an address space, subtype 2
provides:
v The number of address spaces subject to each policy
v The offset to the address space expanded storage policy entries.
v The length of each address space expanded storage policy entry.
v The number of address space expanded storage policy entries.
v The policies for each address space.

Chapter 10. Using SMF Record Type 99 107

Storage Targets
SRM defines storage targets to manage expanded and central storage. The storage
targets are:

protective processor
The number of frames that are protected in processor (central + expanded)
storage. The system will not migrate below this value. There are targets for:
address spaces, common area storage, and shared storage.

protective central
The number of frames that are protected in central storage. The system will
not steal below this value.

restrictive processor
The number of frames in processor (central + expanded) storage to which
an address space is limited. If the target is exceeded, the system will
preferentially migrate the excess frames to auxiliary storage.

restrictive central
The number of frames in central storage to which an address space is
limited. If the target is exceeded, the system will preferentially steal the
excess frames.

The storage target assigned depends on the service class period goal.

For short response time goals, the service class period gets a protective processor
storage target. Every address space in the service class period has the same
target.

For long response time, velocity, or discretionary goals, or for server internal service
classes ($SRMSnnn), SRM may define individual storage targets for the address
spaces in the service class period. Each address spaces may have one or more of
each type of storage targets. Storage targets for individual address spaces are
recorded in subtype 5, in the monitored address space information section.

Cap Slices
SRM defines cap slices for resource groups to enforce resource group maximums.
Work is not dispatched during its cap slices in order to reduce access to the
processor to enforce the resource group maximum. Each cap slice represents
1/64th of total time. All address spaces in all service class periods in a resource
group are controlled by the same number of cap slices.

The number of cap slices is recorded in the subtype 1 records.

I/O Priority
SRM defines an I/O priority for each service class period. All address spaces in a
service class period have the same I/O priority. Multiple service class periods may
have the same I/O priority. I/O priority is used to prioritize requests on IOS’s UCB
queues.

The I/O priority is recorded in the subtype 2 records.

Number of Server Address Spaces
SRM manages the number of server address spaces for users of the queueing
manager services (see Chapter 4, “Using the Queueing Manager Services” on
page 49) and manages the number of initiators for WLM-managed JES job classes.

108 z/OS V1R4.0 MVS Workload Management Services

Information on how SRM manages these server address spaces is recorded in the
subtype 2 records in the queue server data section and in the remote queue server
data section.

Interpreting Plots
SRM creates the following plots to track how well work is being processed:
v System paging delay plot
v Period MPL delay plot
v Period ready user average plot
v Period swap delay plot
v Period paging rate plot
v Period proportional aggregate speed plot
v I/O delay plot
v Queue delay plot
v Address space paging plot
v I/O velocity plot

All plots except the address space paging plot are “one-curved” plots where one
variable is plotted against another. The address space paging plot is a “three
curved” plot where one variable is plotted against three variables.

System Paging Delay Plot
SRM uses the system paging delay plot to determine if the paging configuration is
close to capacity or if it can support additional work. There is one system paging
plot per system. The plot can show the point at which additional page faults will
start requiring a disproportionately longer time because the paging subsystem is
becoming overloaded.

System Paging Delay Plot

x axis
The system wide page fault rate, in page faults per second.

y axis
The system wide auxiliary storage delay sample rate, in samples per
minute.

Page faults and delay samples are for all types: private area, common area, and
cross memory.

The system paging delay plot is recorded in subtype 1 records.

Period MPL Delay Plot
SRM uses the period MPL delay plot to assess increasing or decreasing a service
class period’s MPL targets. The plot shows how response time may be improved by
increasing MPL slots or how response time may be degraded by reducing MPL
slots.

Chapter 10. Using SMF Record Type 99 109

Period MPL Delay Plot

x axis
The percentage of ready users who have an MPL slot available to them.

y axis
The MPL delay per completion in milliseconds.

The period MPL delay plot is recorded in subtype 3 records.

Period Ready User Average Plot
SRM uses the period ready user average plot to predict the number of ready users
when assessing an MPL target change. The plot can show the point at which users
will start backing up. The plot shows the approximate MPL target at which users
would be disproportionately delayed due to MPL.

Period Ready User Average Plot

x axis
The number of MPL slots, times 16, available to the service class period.

y axis
The maximum number of ready users, times 16, averaged over a two
second interval.

The period ready user average plot is recorded in subtype 3 records.

Period Swap Delay Plot
SRM uses the period swap delay plot to assess increasing or decreasing swap
protect time for a service class period. The plot shows how response time may be
improved or degraded by increasing or decreasing a service class period’s swap
protect time.

Period Swap Delay Plot

x axis
The average time an address space in the service class period is logically
swapped or swapped on expanded, in milliseconds.

y axis
The swap delay time per completion, in milliseconds.

The period swap delay plot is recorded in subtype 3 records.

Period Paging Rate Plot
SRM uses the period paging rate plot to assess increasing or decreasing period
wide storage isolation for a service class period.

110 z/OS V1R4.0 MVS Workload Management Services

Period Paging Rate Plot

x axis
The average address space size in frames.

y axis
The page fault rate in tenths of a page fault per departure from the period.

The period paging rate plot is recorded in subtype 3 records.

Period Proportional Aggregate Speed Plot
SRM uses the proportional aggregate speed plot to assess the effects of processor
access or storage allocation changes for served service classes. Proportional
aggregate speed is similar to velocity. Proportional aggregate speed applies to
service class periods that are served while velocity applies to service class periods
that are not served. The units for proportional aggregate speed are the same units
as for velocity:

The samples are an aggregate of the samples of all internal server service classes
that serve the service class. The server samples are apportioned to the served
classes based on the relative amount of time, also determined by state sampling,
that the server is serving the service class.

Proportional Aggregate Speed Plot

x axis
The proportional aggregate speed of a service class period.

y axis
The performance index at that speed, times 100.

The period proportional aggregate speed plot is recorded in subtype 3 records for
served service class periods.

I/O Delay Plot
SRM uses the I/O Delay plot when assessing increasing or decreasing a service
class period’s I/O priority.

I/O Delay Plot

x axis
The combined maximum I/O demand of service class periods with I/O
priorities above a given priority.

y axis
The ratio of I/O delay time to I/O using time at that priority scaled by 16.

using samples
100

using samples delay samples+
x

Chapter 10. Using SMF Record Type 99 111

Maximum I/O demand is the maximum percentage of time that work units in a
service class period would use non-paging DASD devices if they were experiencing
no I/O delay. Maximum I/O demand is represented as a percentage scaled by 10.

The I/O delay plots are recorded in the subtype 4 records.

Queue Delay Plot
SRM uses the queue delay plot to assess creating or removing server address
spaces. The plot shows how queue delay for a service class period may be
reduced by adding server address spaces for work running in the service class
period or how queue delay may be increased by removed server address spaces
for work running in the service class period.

Queue Delay Plot

x axis
The ratio of work requests that require a task in a server address space to
the number of server tasks. This ratio is scaled by 100.

y axis
The queue delay per work request in milliseconds.

The queue delay plots are recorded in the subtype 3 records.

Address Space Paging Plots
SRM uses address space paging plots when assessing whether to increase or
decrease the central storage or processor storage allocated to an address space.
There are two address space paging plots:

Central Storage Plot
SRM uses the central storage paging plot when assessing increasing or decreasing
the central storage allocated to an address space.

Central Storage Plot

x axis
Address space size in frames.

y axis
Each one of the following:
v Page-in rate per captured (task and SRB) second from auxiliary and

expanded storage.
v Paging cost in milliseconds per elapsed second from auxiliary and

expanded storage.
v Captured time in milliseconds per elapsed second.

Processor Storage Plot
SRM uses the processor storage paging plot when assessing increasing or
decreasing the processor storage allocated to an address space.

112 z/OS V1R4.0 MVS Workload Management Services

Processor Storage Plot

x axis
The address space size in frames.

y axis
Each one of the following:
v Page-in rate per captured (task+SRB) second from auxiliary storage.
v Paging cost in milliseconds per elapsed second from auxiliary storage.
v Captured time in milliseconds per elapsed second.

The address space paging plots are recorded in subtype 5 records.

I/O Velocity Plot
SRM uses the I/O velocity plot to keep track of the relationship between the number
of channel paths connected to a subsystem (along with the channel path’s
utilization) and the I/O velocity of that subsystem. There is one I/O velocity plot for
each I/O subsystem (control unit).

I/O Velocity Plot

x axis
The contention factor.

y axis
The I/O velocity.

If there is a single channel, the contention factor equals the channel utilization. If
there are multiple channels, the contention factor is the utilization a single channel
would have to have to be equivalent to the channels connected to the control unit,
given the number of channels and their average utilization. In this case, “equivalent”
means that an I/O operation would have the same probability of experiencing delay.

The I/O velocity plots are recorded in the subtype 9 records.

Interpreting Priority Table Data
Subtype 1 priority table data contains processor resource demand and consumption
at each dispatching priority in use. Subtype 2 records contain similar data for each
service class period. You can use the data in these two records to determine how
much processor capacity is available to each service class period or to explain the
actions being taken to increase or decrease access to the processor.

You can use the priority table data in subtype 1 to understand why dispatching
priority change actions are rejected. When a dispatching priority change is made,
the table shows the before and after demand and consumption data at each priority
in use. The before data is actual data. The after data is projected data.

Maximum demand is the theoretical maximum percentage of total system processor
time the address spaces in a service class period would consume if they were
suffering no processor delays. This value is calculated for each service class period
and accumulated for each priority.

Chapter 10. Using SMF Record Type 99 113

Achievable maximum demand is the percentage of total system processor time the
address spaces in a service class period are projected to use, given the maximum
demand of all work at higher dispatching priorities. SRM calculates achievable
maximum demand to assess dispatching priority changes.

Interpreting Lack of Action
Just as you can determine the actions SRM takes to manage work, you can
determine lack of action from SMF type 99. You can use the resource group and
service class period information in the subtype 1 and 2 records. If a service class
period is having a problem meeting its goals and isn’t selected as a receiver, it
could be one or more of the following:

v Other work is even worse off.

v The service class period is of lower importance than the receiver selected.

v The receiver selected may be in a resource group that is not meeting its
minimum.

The importances and performance indexes for all service class periods are in the
subtype 2 records. Resource group information is in the subtype 1 records.

In some cases, potential receivers may be skipped and not assessed as receivers.
They are skipped when the service class period hasn’t accumulated any state
samples that show it was delayed for any resource SRM manages during the last
policy interval. You can determine this from the needs help indicator in the service
class period data.

They are also skipped when a potential receiver’s skip clock hasn’t expired. If a
receiver is assessed and all actions to help it are rejected, a skip clock (counter) is
set and the service class period will not be selected as a receiver again until the
skip clock expires.

In other cases, a service class period is selected as a receiver but not helped. It
could be that there was no receiver value projected for a change. The subtype 1
trace entry indicates these cases with the no receiver value trace code.

For storage changes such as MPL targets, swap protect time, or storage targets,
you can determine the reasons for insufficient receiver value from the service class
period’s current targets in the subtype 2 records and the plots in the subtype 3 and
5 records.

For rejected dispatching priority actions, you can determine the reasons from the
service class period’s dispatching priority, service, and maximum demand data in
the subtype 2 records and at the priority table data in the subtype 1 records.

For no net value assessments, you can determine the reasons from the service
class period data, plot data, and priority table data. From this data, you can also
determine which service class periods are using the resources for which another
service class period is delayed.

Examples of Interpreting SMF Record Type 99
This section describes the following examples on interpreting the data in SMF type
99:
v Action trace
v MPL policy

114 z/OS V1R4.0 MVS Workload Management Services

The examples show information from SMF type 99 records that were combined and
displayed in a report format.

Action Trace Example
This example shows how to use subtype 1 trace data with subtype 2 service class
period data to understand what actions SRM is taking, why those actions are taken,
and which work is affected.

The table below shows the subtype 1 trace data output:

Subtype 1 Trace Data Output
CLASS P SPI LPI ACTION
NRBATCH 2 .02 .03 3610 rv_hsk_inc_mpl
TSO 1 .10 .11 2630 tdh_rem_prt
TSO 2 1.84 1.84 270 pa_rec_cand
TSO 1 .10 .11 880 pa_pro_rdon_cand
TSO 2 1.84 1.84 620 pa_pmuo_rec
APPC 1 1.10 1.10 960 pa_pro_unc_sec_don
APPC 3 1.10 1.10 960 pa_pro_unc_sec_don
NRBATCH 1 2.23 3.23 960 pa_pro_unc_sec_don
TSO 1 .10 .11 940 pa_pro_unc_don
TSO 2 1.08 1.08 750 pa_pro_incp_rec

The data has the following headings:
CLASS

The service class name.
P The service period number within the service class.
SPI The sysplex performance index for the service class period traced.
LPI The local performance index for the service class period traced.
ACTION

The action code and mnemonic.

The table below shows the subtype 2 service class period output.

The subtype 2 service class policy period output has the following headings:
CLASS

The service class name.
P The service period number within the service class.

Subtype 2 Service Class Period Data
CLASS P I N SC GT SPI LPI DP MPLI MPLO SWPT PSI EXP POL
APPC 1 2 N -99 SRT 1.10 1.10 251 0 999 488 0 L L L L
APPC 2 2 N -99 SRT 0 0 251 0 999 0 0 L L L L
APPC 3 2 N -72 SRT 1.10 1.10 251 1 999 76206 0 L L L L
APPC 4 3 N -99 VEL 0 0 249 1 999 0 n/a S 0/2/0 2/0 2/0
NRBATCH 1 3 N -99 LRT 2.16 3.04 249 1 11 0 n/a S 0/2/0 2/0 2/0
NRBATCH 2 4 Y -98 LRT .02 .03 247 2 999 0 n/a S 0/3/0 3/0 3/0
NRBATCH 3 6 Y -99 DIS .81 .81 192 0 14 0 n/a S 0/7/0 7/0 7/0
OFFBATCH 1 6 Y -99 DIS .81 .81 192 0 14 0 n/a S 0/7/0 7/0 7/0
TSO 1 2 Y -64 SRT .10 .11 251 1 11 0 0 L L L L
TSO 2 2 Y 0 SRT 1.84 1.84 251 1 999 1464 0 L L L L
TSO 3 2 Y -2 SRT .91 .93 247 2 12 2440 0 L L L L
TSO 4 3 Y -99 VEL .26 .26 245 7 999 0 n/a S 0/6/0 6/0 6/0
$SRMDISC 1 6 Y -99 DIS .81 .81 192 0 14 0 n/a S 0/7/0 7/0 7/0

Chapter 10. Using SMF Record Type 99 115

I The service class period’s importance, with 1 being highest.
N The “needs help” indicator. Y means the service class period needs help

and N means the service class period doesn’t need help.
SC The skip clock.
GT One of the following goal types:

v SRT - short response time goals
v LRT - long response time goals
v VEL - velocity goals
v DIS - discretionary goals.

SPI The sysplex performance index for the service class period traced.
LPI The local performance index for the service class period traced.
DP Dispatching priority
MPLI MPL-in target
MPLO MPL-out target
SWPT Swap protect time
PSI Protective processor storage target
EXP POL

The expanded storage access policies, in the following order from left to
right:
v Swap working set pages
v Stolen pages and swap trim (demand pages)
v VIO pages
v Hiperspace pages

Where P=protected, L=LRU, and S=space available. If there are policies for
individual address spaces, then there is a triplet indicating the number of
address spaces with each setting (P,L,or S).

Interpreting the Trace Data
Based on the information in these subtypes, SRM took the following actions:

v rv_hsk_inc_mpl, reverse housekeeping, to increase the MPL targets for service
class NRBATCH, period 2.

This action code indicates the service class period was using significantly more
MPL slots than guaranteed by its MPL control so its MPL in target was increased.

v tdh_rem_prt, time driven housekeeping, removing the swap protect time target
from first period TSO.

First period TSO is easily meeting its goals and was assessed to not need swap
protect time.

v pa_rec_cand indicates TSO period 2 was chosen as the receiver.

This shows the start of a series of actions where SRM is trying to improve the
performance of TSO period 2 by increasing its dispatching priority. SRM selected
TSO period 2 as the receiver because it had the worst performance index, 1.84,
of all the work at the highest importance defined, 2. Service class NRBATCH,
period 1, had a worse performance index, 2.16, but it also had a lower
importance, 3, so it would be chosen as a receiver after TSO period 2 which had
a higher importance and was not meeting goals.

v pa_pro_rdon_cand indicates that TSO period 1 has been selected as the
processor donor to be assessed.

SRM selected TSO period 1 as the first donor candidate because it had the best
performance index of all service class periods that were running at a dispatching
priority higher than or equal to the receiver’s dispatching priority.

v pa_pmuo_rec indicates that the first dispatching priority move to be assessed is
to move TSO period 2 up to a higher dispatching priority.

116 z/OS V1R4.0 MVS Workload Management Services

v The next several pa_pro_unc_sec_don trace entries show the other service class
periods whose processor access will be affected by the move up of TSO period 2
even though their priority remains unchanged. These service class periods were
all secondary donors. TSO period 1 was the primary donor. This is indicated by
the pa_pro_unc_don action.

v pa_pro_incp_rec shows that the primary receiver, TSO period 2, received a
dispatching priority increase.

The sysplex and local performance index projections are shown with the final action
for each service class period affected.

MPL Policy Example
This example shows how to use subtype 2 service class period data to analyze a
first period TSO problem. The example shows how SRM used the data to resolve
the problem. You can use the data in the same way to analyze why SRM isn’t
solving a problem. From this kind of information, a service administrator can decide
whether to change goals or service class importance in the service policy.

This subtype 2 data shows the controls SRM is using for first period TSO, and the
resulting performance delays.

At 13:15:01 TSO period 1 was meeting its goals easily. This is indicated by a
sysplex performance index (SPI) of 0.1 and a local performance index (LPI) of 0.09.
The dispatching priority (DP) was 251. The MPL in and out targets (MPLI/MPLO)
were 3 and 6. After being swapped out, work in the period was protected in
processor storage for 15.952 seconds (SWPT=15952). There was no period wide
storage isolation (PSI=0) and the expanded policy was space available for swap
working set, VIO, and hiperspace pages, and LRU for demand pages (EXP POL= S
L S S). At 13:15:01 TSO period 1 has a swap delay and an MPL delay but was
meeting its goals easily.

Conditions change between 13:15:01 and 13:15:11. The sysplex performance index
spiked to 6.18 and the local performance index was worse. This period needs help.
The delay samples show that the problem could be either swap delay, processor
delay, or MPL delay. Since it is the work furthest from meeting its goals, it is
selected as a receiver.

The following data, from the subtype 1 record at 13:15:11 shows what happens
next. The fields are explained in the first example.

Subtype 2 Service Class TSO Period Data
CLASS: TSO PERIOD: 1 IMPORTANCE: 2 GOAL TYPE: SHORT RESPONSE TIME

TIME SPI LPI DP MPLI MPLO SWPT PSI EXP POL LARGEST DELAYS
13:15:01 .10 .09 251 3 6 15952 0 S L S S OTHR/60 ASWP/55 MPLD/2
13:15:11 6.18 6.73 251 6 9 15952 0 S L S S ASWP/48 CPUD/44 MPLD/42
13:15:22 2.20 2.42 251 8 12 15952 0 S L S S CPUD/38 MPLD/34 ASWP/2
13:15:32 .06 .06 251 8 12 15952 0 S L S S OTHR/13 CPUD/3 MPLD/2
13:15:42 .06 .06 251 8 12 15952 0 S L S S OTHR/22 MPLD/3 CPUD/2
13:15:52 .16 .16 251 8 12 15952 0 S L S S OTHR/28 MPLD/1
13:16:03 .16 .16 251 8 12 15952 0 S L S S OTHR/53 ASWP/6 CPUD/2

Chapter 10. Using SMF Record Type 99 117

Subtype 1 Trace Data Output
CLASS P SPI LPI ACTION
TSO 1 6.18 6.73 270 pa_rec_cand
TSO 1 6.18 6.73 2540 pa_prt_na_rec_val
TSO 1 6.18 6.73 850 pa_pro_na_no_donor

290 pa_use_disc_cent
TSO 1 4.69 5.10 3530 pa_inc_mpl

TSO period 1 is selected as the receiver candidate. The trace entry, pa_rec_cand
indicates this.

The largest delay is selected to be worked on first. In this case the largest delay in
recent history is swap delay. The swap delay plot is shown below. ccc indicates the
current plot point. The current plot point shows that only 89 milliseconds of swap
delay per transaction could be eliminated even if all swap delay were eliminated.
The pa_prt_na_rec_val trace entry indicates that there was insufficient receiver
value to be gained by increasing the swap protect time. The swap delay plot data is
from the subtype 3 record.

Subtype 3: Swap Delay Plot
CLASS: TSO PERIOD: 1

SWAP DELAY PLOT ccc
SWAP DELAY 286 209 89 76 70 24 0
TIME IN PROC STOR 3572 4021 14407 23673 40803 71248 97323

The next largest delay is processor delay. However TSO period 1 is running alone
at the highest dispatching priority in use. Therefore there is no work to donate
processor time. This reason for lack of action is indicated by the
pa_pro_na_no_donor trace. The dispatch priorities are from the subtype 2 records.

Subtype 2 Dispatching Priority Data
CLASS P DP
NRBATCH 1 247
NRBATCH 2 243
NRBATCH 3 192
OFFBATCH 1 192
TSO 1 251
TSO 2 247
TSO 3 247
TSO 4 243
$SRMDISC 1 192

The third largest delay is MPL delay. The MPL delay plot below shows that here
there is value to increasing the MPL. The third entry in the MPL plot, indicated by
ccc shows that on average, only 48/100ths of the ready users have MPL slots. This
results in an MPL delay of 202 milliseconds per completion. This plot in recorded in
the subtype 3 record. The fact that MPL targets were increased is indicated by the
pa_inc_mpl trace. The new MPL targets are recorded in the subtype 2 record.

118 z/OS V1R4.0 MVS Workload Management Services

MPL Delay Plot
CLASS: TSO PERIOD: 1

MPL DELAY PLOT ccc
MPL DELAY 500 451 202 79 0 0 0 0 0 0
MPL SLOT PERCENTAGE 3 37 48 72 99 109 115 122 129 133

At 13:15:22 the performance index was improving but there was still significant MPL
delay and the MPL targets were increased again. At 13:15:32 the work was back to
meeting its goals as shown by sysplex and local performance indexes of less than
1.0.

Chapter 10. Using SMF Record Type 99 119

120 z/OS V1R4.0 MVS Workload Management Services

Part 2. Reference: Workload Management Services

© Copyright IBM Corp. 1988, 2002 121

122 z/OS V1R4.0 MVS Workload Management Services

Chapter 11. IWMCLSFY – Assign Work Request to a Service
Class

The purpose of this service is to factor in available information about an arriving
work request in order to associate a service class and possibly a report class with
it.

Environment
The requirements for the caller are:

Minimum authorization: Either problem state or supervisor state. PSW key must
either be 0 or match the value supplied on IWMCONN.

Dispatchable unit mode: Task or SRB

Cross memory mode: Any PASN, any HASN, any SASN

AMODE: 31-bit

ASC mode: Primary

Interrupt status: Enabled for I/O and external interrupts

Locks: Unlocked or locked.

Control parameters: Control parameters must be in the primary address space.

Programming Requirements
1. The macro IWMYCON must be included to use this macro.
2. Caller is responsible for error recovery.
3. The macro IWMPB must be in the library concatenation, since it is included by

IWMYCON.
4. Note that the high order halfword of register 0, and the reason code variable

when specified, may be non-zero and represents diagnostic data which is NOT
part of the external interface. The high order halfword should thus be excluded
from comparison with the reason code values described above. The constant,
IWMRSNCODE_MASK_CONST defined in IWMYCON, may be used for this
purpose.

5. All character data, unless otherwise specified, is assumed to be left justified and
padded with blanks on the right, as needed, to occupy the specified number of
bytes.

Restrictions
1. FRRs are allowed

2. This macro may not be used during task/address space termination for the
connect owner.

3. If the key specified on IWMCONN was a user key (8-F), then current primary
must equal primary at the time that IWMCONN was invoked.

4. Only limited checking is done of the connect token obtained from IWMCONN.

5. SOURCELU is mutually exclusive with NETID/LUNAME.

6. This macro supports multiple versions. Some keywords are unique to certain
versions. See the PLISTVER parameter description.

© Copyright IBM Corp. 1988, 2002 123

Input Register Information
Before issuing the IWMCLSFY macro, the caller must ensure that the following
general purpose registers (GPRs) contain the specified information:

Register
Contents

13 The address of a 72-byte standard save area in the primary address space

Output Register Information
When control returns to the caller, the GPRs contain:

Register
Contents

0 Reason code if GR15 return code is non-zero
1 Used as work registers by the system
2-13 Unchanged
14 Used as work registers by the system
15 Return code

When control returns to the caller, the ARs contain:

Register
Contents

0-1 Used as work registers by the system
2-13 Unchanged
14-15 Used as work registers by the system

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the
caller depends, the caller must save them before issuing the service, and restore
them after the system returns control.

Performance Implications
None.

IWMCLSFY Macro

124 z/OS V1R4.0 MVS Workload Management Services

Syntax

main diagram

��
name

� IWMCLSFY �
TRXNAME=NO_TRXNAME

TRXNAME=trxname

,USERID=NO_USERID

,USERID=userid
�

�
,TRXCLASS=NO_TRXCLASS

,TRXCLASS=trxclass ,ACCTINFO=NO_ACCTINFO ,ACCTINFL=acctinfl
,ACCTINFO=acctinfo

�

�
,SOURCELU=NO_SOURCELU

,SOURCELU=sourcelu

,NETID=NO_NETID

,NETID=netid

,LUNAME=NO_LUNAME

,LUNAME=luname
�

�
,SUBSYSPM=NO_SUBSYSPM ,SSPMLEN=sspmlen
,SUBSYSPM=subsyspm

�

�
,COLLECTION=NO_COLLECTION ,COLLECTION_LEN=collection_len
,COLLECTION=collection

�

�
,PLAN=NO_PLAN

,PLAN=plan

,PACKAGE=NO_PACKAGE

,PACKAGE=package

,CONNECTION=NO_CONNECTION

,CONNECTION=connection
�

�
,CORRELATION=NO_CORRELATION ,CORR_LEN=corr_len
,CORRELATION=correlation

�

�
,PERFORM=NO_PERFORM

,PERFORM=perform
�

�
,PRCNAME=NO_PRCNAME ,PRCNAME_LEN=prcname_len
,PRCNAME=prcname

�

�
,PRIORITY=NO_PRIORITY

,PRIORITY=priority
�

�
,PROCESSNAME=NOPROCESSNAME ,PROCESSNM_LEN=processnm_len
,PROCESSNAME=processname

�

� ,CONNTKN=conntkn
,SUBCOLN=NO_SUBCOLN

,SUBCOLN=subcoln

,SCHEDENV=NO_SCHEDENV

,SCHEDENV=schedenv
�

IWMCLSFY Macro

Chapter 11. IWMCLSFY – Assign Work Request to a Service Class 125

�
,SCHEDENV_LEN=16

,SCHEDENV_LEN=schedenv_len ,SRMTOKEN=srmtoken
,SERVCLS=servcls �

�
,SRVCLSNM=srvclsnm ,RPTCLSNM=rptclsnm ,TTRACETOKEN=ttracetoken

�

�
,RETCODE=retcode ,RSNCODE=rsncode

,PLISTVER=IMPLIED_VERSION

,PLISTVER=MAX
,PLISTVER=0
,PLISTVER=1
,PLISTVER=2
,PLISTVER=3
,PLISTVER=4
,PLISTVER=5

�

�
,MF=S

,0D
,MF=(L ,list addr)

,attr
,COMPLETE

,MF=(E ,list addr)
,NOCHECK
,COMPLETE

,MF=(M ,list addr)
,NOCHECK

�"

Parameters
The parameters are explained as follows:

name
An optional symbol, starting in column 1, that is the name on the IWMCLSFY
macro invocation. The name must conform to the rules for an ordinary
assembler language symbol.

,ACCTINFL=acctinfl
When ACCTINFO=acctinfo is specified, a required input parameter, which
contains the length of the accounting information field. The maximum value
supported is 143.

To code: Specify the RS-type address, or address in register (2)-(12), of a
fullword field.

,ACCTINFO=acctinfo
,ACCTINFO=NO_ACCTINFO

An optional input parameter, which contains the accounting information. For
environments where accounting information is available on some, but not all
flows, provision of a data area initialized to all blanks is equivalent to
specification of NO_ACCTINFO. The default is NO_ACCTINFO, which indicates
that no accounting information was passed.

To code: Specify the RS-type address, or address in register (2)-(12), of a
character field.

,COLLECTION=collection

IWMCLSFY Macro

126 z/OS V1R4.0 MVS Workload Management Services

,COLLECTION=NO_COLLECTION
An optional input parameter, which contains the customer defined name for a
group of associated packages. For environments where the collection name
may be available on some, but not all flows, provision of a data area initialized
to all blanks is equivalent to specification of NO_COLLECTION The default is
NO_COLLECTION. indicates that no COLLECTION name is passed.

To code: Specify the RS-type address, or address in register (2)-(12), of a
character field.

,COLLECTION_LEN=collection_len
When COLLECTION=collection is specified, a required input parameter, which
contains the length of the collection name. There is no restriction on the length
of data passed, but all storage between the start and end must be allocated
(getmained).

To code: Specify the RS-type address, or address in register (2)-(12), of a
fullword field.

,CONNECTION=connection
,CONNECTION=NO_CONNECTION

An optional input parameter, which contains the name associated with the
environment creating the work request, which may reside anywhere within the
network. For environments where the connection name may be available on
some, but not all flows, provision of a data area initialized to all blanks is
equivalent to specification of NO_CONNECTION The default is
NO_CONNECTION. indicates that no CONNECTION name is passed.

To code: Specify the RS-type address, or address in register (2)-(12), of an
8-character field.

,CONNTKN=conntkn
A required input parameter, which is returned by IWMCONN for use by the
classify routine.

To code: Specify the RS-type address, or address in register (2)-(12), of a 32
bit field.

,CORR_LEN=corr_len
When CORRELATION=correlation is specified, a required input parameter,
which contains the length of the correlation identifier. There is no restriction on
the length of data passed, but all storage between the start and end must be
allocated (getmained).

To code: Specify the RS-type address, or address in register (2)-(12), of a
fullword field.

,CORRELATION=correlation
,CORRELATION=NO_CORRELATION

An optional input parameter, which contains the name associated with the
user/program creating the work request, which may reside anywhere within the
network. For environments where the correlation name may be available on
some, but not all flows, provision of a data area initialized to all blanks is
equivalent to specification of NO_CORRELATION The default is
NO_CORRELATION. indicates that no CORRELATION name is passed.

To code: Specify the RS-type address, or address in register (2)-(12), of a
character field.

,LUNAME=luname
,LUNAME=NO_LUNAME

An optional input parameter, which contains the local LU name associated with

IWMCLSFY Macro

Chapter 11. IWMCLSFY – Assign Work Request to a Service Class 127

the requestor. For environments where the local LU name may be available on
some, but not all flows, provision of a data area initialized to all blanks is
equivalent to specification of NO_LUNAME.

SOURCELU is mutually exclusive with LUNAME. The default is NO_LUNAME.
indicates that no local LU name is passed.

To code: Specify the RS-type address, or address in register (2)-(12), of an
8-character field.

,MF=S
,MF=(L,list addr)
,MF=(L,list addr,attr)
,MF=(L,list addr,0D)
,MF=(E,list addr)
,MF=(E,list addr,COMPLETE)
,MF=(E,list addr,NOCHECK)
,MF=(M,list addr)
,MF=(M,list addr,COMPLETE)
,MF=(M,list addr,NOCHECK)

An optional input parameter that specifies the macro form.

Use MF=S to specify the standard form of the macro, which builds an inline
parameter list and generates the macro invocation to transfer control to the
service. MF=S is the default.

Use MF=L to specify the list form of the macro. Use the list form together with
the execute form of the macro for applications that require reentrant code. The
list form defines an area of storage that the execute form uses to store the
parameters. Only the PLISTVER parameter may be coded with the list form of
the macro.

Use MF=E to specify the execute form of the macro. Use the execute form
together with the list form of the macro for applications that require reentrant
code. The execute form of the macro stores the parameters into the storage
area defined by the list form, and generates the macro invocation to transfer
control to the service.

Use MF=M together with the list and execute forms of the macro for service
routines that need to provide different options according to user-provided input.
Use the list form to define a storage area; use the modify form to set the
appropriate options; then use the execute form to call the service.

IBM recommends that you use the modify and execute forms of IWMCLSFY in
the following order:

v Use IWMCLSFY ...MF=(M,list-addr,COMPLETE) specifying appropriate
parameters, including all required ones.

v Use IWMCLSFY ...MF=(M,list-addr,NOCHECK), specifying the parameters
that you want to change.

v Use IWMCLSFY ...MF=(E,list-addr,NOCHECK), to execute the macro.

,list addr
The name of a storage area to contain the parameters. For MF=S, MF=E,
and MF=M, this can be an RS-type address or an address in register
(1)-(12).

,attr
An optional 1- to 60-character input string that you use to force boundary
alignment of the parameter list. Use a value of 0F to force the parameter

IWMCLSFY Macro

128 z/OS V1R4.0 MVS Workload Management Services

list to a word boundary, or 0D to force the parameter list to a doubleword
boundary. If you do not code attr, the system provides a value of 0D.

,COMPLETE
Specifies that the system is to check for required parameters and supply
defaults for omitted optional parameters.

,NOCHECK
Specifies that the system is not to check for required parameters and is not
to supply defaults for omitted optional parameters.

,NETID=netid
,NETID=NO_NETID

An optional input parameter, which contains the network identifier associated
with the requestor. For environments where the network identifier may be
available on some, but not all flows, provision of a data area initialized to all
blanks is equivalent to specification of NO_NETID.

SOURCELU is mutually exclusive with NETID. The default is NO_NETID.
indicates that no network identifier is passed.

To code: Specify the RS-type address, or address in register (2)-(12), of an
8-character field.

,PACKAGE=package
,PACKAGE=NO_PACKAGE

An optional input parameter, which contains the package name for a set of
associated SQL statements. Products using this attribute must chose a specific
package name to be associated with the work request, e.g. the first package
name used in the unit of work. Individual product documentation will describe
how this choice is made to allow the installation to use the WLM administrative
application. For environments where the package name may be available on
some, but not all flows, provision of a data area initialized to all blanks is
equivalent to specification of NO_PACKAGE The default is NO_PACKAGE.
indicates that no PACKAGE name is passed.

To code: Specify the RS-type address, or address in register (2)-(12), of an
8-character field.

,PERFORM=perform
,PERFORM=NO_PERFORM

An optional input parameter, which contains the performance group number
(PGN) associated with the work request. If specified, the performance group
number value must be within the range of 1-999, represented as character data,
left justified and padded with blanks on the right. For environments where the
perform value may be available on some, but not all flows, provision of a data
area initialized to all blanks is equivalent to specification of NO_PERFORM. The
default is NO_PERFORM. indicates that no PERFORM value is passed.

To code: Specify the RS-type address, or address in register (2)-(12), of an
8-character field.

,PLAN=plan
,PLAN=NO_PLAN

An optional input parameter, which contains the access plan name for a set of
associated SQL statements. For environments where the plan name may be
available on some, but not all flows, provision of a data area initialized to all
blanks is equivalent to specification of NO_PLAN The default is NO_PLAN.
indicates that no PLAN name is passed.

IWMCLSFY Macro

Chapter 11. IWMCLSFY – Assign Work Request to a Service Class 129

To code: Specify the RS-type address, or address in register (2)-(12), of an
8-character field.

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX
,PLISTVER=0
,PLISTVER=1
,PLISTVER=2
,PLISTVER=3
,PLISTVER=4
,PLISTVER=5

An optional input parameter that specifies the version of the macro. PLISTVER
determines which parameter list the system generates. PLISTVER is an
optional input parameter on all forms of the macro, including the list form. When
using PLISTVER, specify it on all macro forms used for a request and with the
same value on all of the macro forms. The values are:

v IMPLIED_VERSION, which is the lowest version that allows all parameters
specified on the request to be processed. If you omit the PLISTVER
parameter, IMPLIED_VERSION is the default.

v MAX, if you want the parameter list to be the largest size currently possible.
This size might grow from release to release and affect the amount of
storage that your program needs.

If you can tolerate the size change, IBM recommends that you always specify
PLISTVER=MAX on the list form of the macro. Specifying MAX ensures that
the list-form parameter list is always long enough to hold all the parameters
you might specify on the execute form; in this way, MAX ensures that the
parameter list does not overwrite nearby storage.

v 0, which supports all parameters except those specifically referenced in
higher versions.

v 1, which supports the following parameters along with those from version 0:

PERFORM PRCNAME PRCNAME_LEN

v 2, which supports the following parameters along with those from version 0
and 1:

PRIORITY

v 3, which supports the following parameters along with those from version 0, 1
and 2:

PROCESSNAME PROCESSNM_LEN

v 4, which supports the following parameters along with those from version 0,
1, 2 and 3:

TTRACETOKEN

v 5, which supports both the following parameters and those from version 0,1,
2, 3 and 4:

SCHEDENV SCHEDENV_LEN SRMTOKEN
SUBCOLN

To code: Specify one of the following:

IWMCLSFY Macro

130 z/OS V1R4.0 MVS Workload Management Services

v IMPLIED_VERSION
v MAX
v A decimal value of 0,1, 2, 3, 4, or 5

,PRCNAME=prcname
,PRCNAME=NO_PRCNAME

An optional input parameter, which contains the DB2 Stored SQL Procedure
name associated with the work request. For environments where the SQL
procedure name may be available on some, but not all flows, provision of a
data area initialized to all blanks is equivalent to specification of
NO_PRCNAME. The default is NO_PRCNAME, which indicates that no
PRCNAME value is passed.

To code: Specify the RS-type address, or address in register (2)-(12), of a
18-character field.

,PRCNAME_LEN=prcname_len
When PRCNAME=prcname is specified, a required input parameter, which
contains the length of the procedure name. There is no restriction on the length
of data passed, but all storage between the start and end must be allocated
(getmained).

To code: Specify the RS-type address, or address in register (2)-(12), of a
fullword field.

,PRIORITY=priority
,PRIORITY=NO_PRIORITY

An optional input parameter, which contains the priority associated with the
work request. For environments where the priority value may be available on
some, but not all flows, provision of a data area initialized to hexadecimal
80000000 (the largest negative integer) is equivalent to specification of
NO_PRIORITY. The default is NO_PRIORITY.

To code: Specify the RS-type address, or address in register (2)-(12), of a
fullword field.

,PROCESSNAME=processname
,PROCESSNAME=NOPROCESSNAME

An optional input parameter, which contains the process name associated with
the work request. The default is NOPROCESSNAME. indicates that no
PROCESSNAME value is passed.

To code: Specify the RS-type address, or address in register (2)-(12), of a
32-character field.

,PROCESSNM_LEN=processnm_len
When PROCESSNAME=processname is specified, a required input parameter,
which contains the length of the process name. There is no restriction on the
length of data passed, but all storage between the start and end must be
allocated (getmained).

To code: Specify the RS-type address, or address in register (2)-(12), of a
fullword field.

,RETCODE=retcode
An optional output parameter into which the return code is to be copied from
GPR 15.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

,RPTCLSNM=rptclsnm
An optional output parameter, which is to receive the output report class name.

IWMCLSFY Macro

Chapter 11. IWMCLSFY – Assign Work Request to a Service Class 131

To code: Specify the RS-type address, or address in register (2)-(12), of an
8-character field.

,RSNCODE=rsncode
An optional output parameter into which the reason code is to be copied from
GPR 0.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

,SCHEDENV=schedenv
,SCHEDENV=NO_SCHEDENV

An optional input parameter, which contains the scheduling environment value
associated with the work request. The default is NO_SCHEDENV. indicates that
no scheduling environment value is passed.

To code: Specify the RS-type address, or address in register (2)-(12), of a
16-character field.

,SCHEDENV_LEN=schedenv_len
,SCHEDENV_LEN=16

When SCHEDENV=schedenv is specified, an optional input parameter, which
contains the length of the scheduling environment. There is no restriction on the
length of data passed, but all storage between the start and end must be
allocated (getmained). The default is 16.

To code: Specify the RS-type address, or address in register (2)-(12), of a
fullword field.

,SERVCLS=servcls
A required output parameter, which is to receive the output token which
represents the service and report class for the work request.

To code: Specify the RS-type address, or address in register (2)-(12), of a 32
bit field.

,SOURCELU=sourcelu
,SOURCELU=NO_SOURCELU

An optional input parameter, which contains the LU name associated with the
requestor. This may be the fully qualified NETID.LUNAME, e.g. network name
(1-8 bytes), followed by a period, followed by the LU name for the requestor
(1-8 bytes). It may also be the 1-8 byte local LU name, with no network
qualifier. The SOURCELU field may be from 1-17 characters. In the assembler
form, the macro will determine the length of the field as follows:
1. if the field is specified by register notation, it will be assumed to be 17

characters (padded with blanks).
2. if the field is specified using an RS form name, then the length will be

determined using the L’ assembler function.

In the PL/AS form, the rules for the PL/AS compiler will determine the length.
The product using IWMCLSFY is responsible for documenting which form is
used so that the customer may specify the correct format.

For environments where the LU name may be available on some, but not all
flows, provision of a data area initialized to all blanks is equivalent to
specification of NO_SOURCELU.

SOURCELU is mutually exclusive with NETID/LUNAME. The default is
NO_SOURCELU. indicates that no source LU name was passed.

To code: Specify the RS-type address, or address in register (2)-(12), of a
character field.

IWMCLSFY Macro

132 z/OS V1R4.0 MVS Workload Management Services

,SRMTOKEN=srmtoken
An optional output parameter, token for SRM internal use only.

To code: Specify the RS-type address, or address in register (2)-(12), of a 32
bit field.

,SRVCLSNM=srvclsnm
An optional output parameter, which is to receive the output service class name.

To code: Specify the RS-type address, or address in register (2)-(12), of an
8-character field.

,SSPMLEN=sspmlen
When SUBSYSPM=subsyspm is specified, a required input parameter, which
contains the length of the data passed by the work manager. There is no
restriction on the length of data passed, but all storage between the start and
end must be allocated (getmained).

To code: Specify the RS-type address, or address in register (2)-(12), of a
fullword field.

,SUBCOLN=subcoln
,SUBCOLN=NO_SUBCOLN

An optional input parameter, which contains the subsystem collection name
associated with the work request. A subsystem collection is a named group of
related subsystem address spaces — for instance, the XCF group name of
JES2 and JES3 work. The default is NO_SUBCOLN, indicating that no
subsystem collection name is passed.

To code: Specify the RS-type address, or address in register (2)-(12), of an
8-character field.

,SUBSYSPM=subsyspm
,SUBSYSPM=NO_SUBSYSPM

An optional input parameter, which contains character data related to the work
request which is passed by the work manager for use in classification. The
nature of the contents of this data must be documented for customer use. For
environments where the subsystem parameter is available on some, but not all
flows, provision of a data area initialized to all blanks is equivalent to
specification of NO_SUBSYSPM. The default is NO_SUBSYSPM. indicates that
no parameter was passed.

To code: Specify the RS-type address, or address in register (2)-(12), of a
character field.

,TRXCLASS=trxclass
,TRXCLASS=NO_TRXCLASS

An optional input parameter, which contains a class name within the subsystem.
This can be any meaningful value that the installation can recognize and specify
to match the value presented by the work manager. For environments where
the transaction class is available on some, but not all flows, provision of a data
area initialized to all blanks is equivalent to specification of NO_TRXCLASS.
The default is NO_TRXCLASS. indicates that no transaction class was passed.

To code: Specify the RS-type address, or address in register (2)-(12), of an
8-character field.

TRXNAME=trxname
TRXNAME=NO_TRXNAME

An optional input parameter, which contains the transaction name for the work
request, as known by the work manager. For environments where the
transaction name is available on some, but not all flows, provision of a data

IWMCLSFY Macro

Chapter 11. IWMCLSFY – Assign Work Request to a Service Class 133

area initialized to all blanks is equivalent to specification of NO_TRXNAME. The
default is NO_TRXNAME. indicates that no transaction name is passed.

To code: Specify the RS-type address, or address in register (2)-(12), of an
8-character field.

,TTRACETOKEN=ttracetoken
An optional output parameter, which is to receive the output transaction trace
token associated with the work request.

To code: Specify the RS-type address, or address in register (2)-(12), of a
32-character field.

,USERID=userid
,USERID=NO_USERID

An optional input parameter, which contains the userid associated with the work
request. For environments where the user id is available on some, but not all
flows, provision of a data area initialized to all blanks is equivalent to
specification of NO_USERID. The default is NO_USERID. indicates that no
userid is passed.

To code: Specify the RS-type address, or address in register (2)-(12), of an
8-character field.

ABEND Codes
None.

Return and Reason Codes
When the IWMCLSFY macro returns control to your program:
v GPR 15 (and retcode, if you coded RETCODE) contains a return code.
v When the value in GPR 15 is not zero, GPR 0 (and rsncode, if you coded

RSNCODE) contains reason code.

The following table identifies the hexadecimal return and reason codes and the
equate symbol associated with each reason code. IBM support personnel may
request the entire reason code, including the xxxx value.

Table 17. Return and Reason Codes for the IWMCLSFY Macro

Return Code Reason Code Equate Symbol Meaning and Action

0 — Equate Symbol: IwmRetCodeOk

Meaning: Successful completion.

Action: None required.

4 — Equate Symbol: IwmRetCodeWarning

Meaning: Successful completion, unusual conditions noted.

4 xxxx0409 Equate Symbol: IwmRsnCodeNoConn

Meaning: Connect token does not reflect a successful
Connect.

Action: None required.

8 — Equate Symbol: IwmRetCodeInvocError

Meaning: Invalid invocation environment or parameters.

IWMCLSFY Macro

134 z/OS V1R4.0 MVS Workload Management Services

Table 17. Return and Reason Codes for the IWMCLSFY Macro (continued)

Return Code Reason Code Equate Symbol Meaning and Action

8 xxxx0821 Equate Symbol: IwmRsnCodeBadConn

Meaning: Input connect token does not pass validity
checking.

Action: Check for possible storage overlay.

8 xxxx0840 Equate Symbol: IwmRsnCodeServiceNotEnabled

Meaning: Caller’s space connection is not enabled for this
service.

Action: Avoid requesting this function under the input
connection. IWMCONN options must be specified previously
to enable this service.

C — Equate Symbol: IwmRetCodeEnvError

Meaning: Environmental error.

C xxxx0C01 Equate Symbol: IwmRsnCodeNoStg

Meaning: Storage is not available for the request.

Action: There is a storage shortage. The function may work
successfully at a later time.

10 — Equate Symbol: IwmRetCodeCompError

Meaning: Component error.

Action: No action required. The function may be successful
if invoked again.

IWMCLSFY Macro

Chapter 11. IWMCLSFY – Assign Work Request to a Service Class 135

Examples
Suppose the transactions processed by a subsystem work manager have the
following qualifiers:
v Userid
v Transaction name
v Transaction class

To get the service class associated with an incoming work request, specify:
IWMCLSFY USERID=AUSERID,TRXCLASS=ATRXCLS,TRXNAME=ATRXNM,

CONNTKN=(R7),SERVCLS=(R9),
RETCODE=RETCODE,RSNCODE=RSNCODE

Where the following are declared:
AUSERID DS CL8
ATRXCLS DS CL8
ATRXNM DS CL8

IWMCLSFY Macro

136 z/OS V1R4.0 MVS Workload Management Services

Chapter 12. IWMCNTN macro — WLM Contention Notification

The IWMCNTN service allows resource managers to notify WLM of changes to the
list of resources, work units, or transactions involved with resources that have been
in contention (waiters exist) for longer than a resource manager defined interval.
The interval should be chosen so that only contention which has lasted long enough
to be considered chronic for the issuing resource manager results in calling this
service.

The caller can run in task or SRB mode.

Environment
The requirements for the caller are:

Minimum authorization: Supervisor state or program key mask (PKM) allowing keys
0-7.

Dispatchable unit mode: Task or SRB
Cross memory mode: Any PASN, any HASN, any SASN
AMODE: 31-bit
ASC mode: Primary
Interrupt status: Enabled for I/O and external interrupts
Locks: No locks may be held.
Control parameters: Control parameters must be in the primary address space.

Programming Requirements
1. The macro CVT must be included to use this macro.
2. The macro IWMYCON must be included to use this macro.
3. The macro IWMPB must be in the library concatenation, since it is included by

IWMYCON.
4. Note that the high order halfword of register 0, and the reason code variable

when specified, may be non-zero and represents diagnostic data which is NOT
part of the external interface. The high order halfword should thus be excluded
from comparison with the reason code values described above. The constant,
IWMRSNCODE_MASK_CONST defined in IWMYCON, may be used for this
purpose.

5. All character data, unless otherwise specified, is assumed to be left justified and
padded with blanks on the right, as needed, to occupy the specified number of
bytes.

6. Since this service may only be used by system-like code, some validity
checking on the parameter list is not performed. These checks would only be
needed if the macro were not used to invoke the service routine.

Restrictions
None

Input Register Information
Before issuing the IWMCNTN macro, the caller does not have to place any
information into any register unless using it in register notation for a particular
parameter, or using it as a base register.

© Copyright IBM Corp. 1988, 2002 137

|

|

|
|
|
|
|
|

|

|
|

|

|||
|
||
||
||
||
||
||
||
|

|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|

|

|
|

|
|
|

Output Register Information
When control returns to the caller, the GPRs contain:

Register
Contents

0 Reason code if GR15 return code is non-zero
1 Used as work registers by the system
2-13 Unchanged
14 Used as work registers by the system
15 Return code

When control returns to the caller, the ARs contain:

Register
Contents

0-1 Used as work registers by the system
2-13 Unchanged
14-15 Used as work registers by the system

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the
caller depends, the caller must save them before issuing the service, and restore
them after the system returns control.

Performance Implications
None

Syntax

main diagram

��
name

IWMCNTN SUBSYS=subsys ,SUBSYSNM=subsysnm �

�
,RESOURCESCOPE=SINGLESYSTEM

,RESOURCESCOPE=MULTISYSTEM
�

� ,RESOURCEID=resourceid ,RESOURCEID_LEN=resourceid_len �

� ,INVOCATIONTYPE=UPDATE ,REQUESTLIST=requestlist
,INVOCATIONTYPE=REPLACE ,REQUESTLIST=requestlist
,INVOCATIONTYPE=ENDOFCONTENTION

,RETCODE=retcode
�

�
,RSNCODE=rsncode

,PLISTVER=IMPLIED_VERSION

,PLISTVER=MAX
,PLISTVER=0

�

IWMCNTN Macro

138 z/OS V1R4.0 MVS Workload Management Services

|
|

|

|
|
||
||
||
||
||

|

|
|
||
||
||

|
|
|
|

|
|

|

|
|

|

||||||||||||||||
|

|
|||||||||||||
|

|
|||||||
|

|
||||||||||||||||||||||||||
|

|
|||||||||||||||||||||||
|

||

�
,MF=S

,0D
,MF=(L ,list addr)

,attr
,COMPLETE

,MF=(E ,list addr)

�"

Parameters
The parameters are explained as follows:

name
An optional symbol, starting in column 1, that is the name on the IWMCNTN
macro invocation. The name must conform to the rules for an ordinary
assembler language symbol.

,INVOCATIONTYPE=UPDATE
,INVOCATIONTYPE=REPLACE
,INVOCATIONTYPE=ENDOFCONTENTION

A required parameter, which indicates the type of operation requested

,INVOCATIONTYPE=UPDATE
indicates that the operations described in the request list have to be applied
to the resource. If contention information for the resource does not already
exist, it is created. If after applying the operations there are no holders or
waiters (local or remote), tracking of the resource is abandoned locally.

,INVOCATIONTYPE=REPLACE
same as UPDATE, except that any existing local resource topology is
discarded first.

,INVOCATIONTYPE=ENDOFCONTENTION
indicates that all topology information for the resource is discarded.

,MF=S
,MF=(L,list addr)
,MF=(L,list addr,attr)
,MF=(L,list addr,0D)
,MF=(E,list addr)
,MF=(E,list addr,COMPLETE)

An optional input parameter that specifies the macro form.

Use MF=S to specify the standard form of the macro, which builds an inline
parameter list and generates the macro invocation to transfer control to the
service. MF=S is the default.

Use MF=L to specify the list form of the macro. Use the list form together with
the execute form of the macro for applications that require reentrant code. The
list form defines an area of storage that the execute form uses to store the
parameters. Only the PLISTVER parameter may be coded with the list form of
the macro.

Use MF=E to specify the execute form of the macro. Use the execute form
together with the list form of the macro for applications that require reentrant
code. The execute form of the macro stores the parameters into the storage
area defined by the list form, and generates the macro invocation to transfer
control to the service.

IWMCNTN Macro

Chapter 12. IWMCNTN macro — WLM Contention Notification 139

|||||||||||||||||||||||||||||||||||||||

|

|
|

|

|
|
|
|

|
|
|
|

|
|
|
|
|

|
|
|

|
|

|
|
|
|
|
|
|

|
|
|

|
|
|
|
|

|
|
|
|
|

,list addr
The name of a storage area to contain the parameters. For MF=S and
MF=E, this can be an RS-type address or an address in register (1)-(12).

,attr
An optional 1- to 60-character input string that you use to force boundary
alignment of the parameter list. Use a value of 0F to force the parameter
list to a word boundary, or 0D to force the parameter list to a doubleword
boundary. If you do not code attr, the system provides a value of 0D.

,COMPLETE
Specifies that the system is to check for required parameters and supply
defaults for omitted optional parameters.

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX
,PLISTVER=0

An optional input parameter that specifies the version of the macro. PLISTVER
determines which parameter list the system generates. PLISTVER is an
optional input parameter on all forms of the macro, including the list form. When
using PLISTVER, specify it on all macro forms used for a request and with the
same value on all of the macro forms. The values are:

v
v IMPLIED_VERSION, which is the lowest version that allows all parameters

specified on the request to be processed. If you omit the PLISTVER
parameter, IMPLIED_VERSION is the default.

v MAX, if you want the parameter list to be the largest size currently possible.
This size might grow from release to release and affect the amount of
storage that your program needs.

If you can tolerate the size change, IBM recommends that you always specify
PLISTVER=MAX on the list form of the macro. Specifying MAX ensures that
the list-form parameter list is always long enough to hold all the parameters
you might specify on the execute form, when both are assembled with the
same level of the system. In this way, MAX ensures that the parameter list
does not overwrite nearby storage.

v 0, if you use the currently available parameters.

To code: Specify one of the following:
v
v IMPLIED_VERSION
v MAX
v A decimal value of 0

,REQUESTLIST=requestlist
When INVOCATIONTYPE=UPDATE or REPLACE is specified, a required input
parameter, which specifies a list of topology requests. For each request, you
must specify
v whether you want to add or to delete the contention information
v whether the entity (address space, enclave, or work unit) is holding the

resource or is waiting for it,
v the identification of the entity in terms of STOKEN, TCB address or enclave

token.

The macro returns for each request a return and reason code. See IWMCNTRL
for the mapping of the request list.

IWMCNTN Macro

140 z/OS V1R4.0 MVS Workload Management Services

|
|
|

|
|
|
|
|

|
|
|

|
|
|
|
|
|
|
|

|

|
|
|

|
|
|

|
|
|
|
|
|

|

|
|
|
|
|

|
|
|
|
|
|
|
|
|

|
|

The entity id varies based on the resource ownership model (transaction or task
resource) used by the IWMCNTN exploiter and the work unit type involved, as
described in the table below.

Work unit type Exploiters using the
transaction model will pass

Exploiters using the task
resource model will pass

Global SRB,
local SRB,
preemptible SRB
(but not a client or
enclave SRB)

Home STOKEN,
TCB=0,
Etoken=0

same as transaction resource
ownership model

Client SRB Client STOKEN
TCB=0,
Etoken=0

same as transaction resource
ownership model

Enclave SRB STOKEN=0,
TCB=0,
Etoken=e

same as transaction resource
ownership model

Non-enclave task Home STOKEN,
TCB= 0,
Etoken=0

Home STOKEN,
TCB= t,
Etoken=0

Enclave task STOKEN=0,
TCB= 0,
Etoken=e

Home STOKEN,
TCB= t,
Etoken=0

The following return/reason codes may be returned per request:

Return_Code A 2 byte output field set based on whether or not the entity
identification information passed validity checks.

0 Name: IwmRetCodeOk
Meaning: Successful completion.
Action: None required.

8 Name: IwmRetCodeInvocError
Meaning: Invalid invocation environment or parameters.
Action: Check reason code

Reason_Code
A 2 byte output field set based on whether or not the entity
identification information passed validity checks.

0807 Name: IwmRsnCodeBadSTOKEN
Meaning: The specified STOKEN does not pass
verification.
Action: Check for possible storage overlay of the
address space token, or termination of the address
space between the time you fetched the STOKEN and
calling IWMCNTN.

083A Name: IwmRsnCodeBadEnclave
Meaning: Enclave token does not pass verification.
Action: Check for possible storage overlay of the
enclave token, or termination of the enclave between
the time you fetched the ETOKEN and calling
IWMCNTN.

0886 Name: IwmRsnCodeBadRequestCode
Meaning: The request code must be either ADD or

IWMCNTN Macro

Chapter 12. IWMCNTN macro — WLM Contention Notification 141

|
|
|

|||
|
|
|

|
|
|
|
|

|
|
|

|
|

||
|
|

|
|

||
|
|

|
|

||
|
|

|
|
|

||
|
|

|
|
|
|

|

||
|

||
|
|

||
|
|

|
|
|

||
|
|
|
|
|
|

||
|
|
|
|
|

||
|

DELETE
Action: Correct the request code.

0887 Name: IwmRsnCodeBadEntityType
Meaning: The entity type must be either HOLDER or
WAITER
Action: Correct the entity type.

088A Name: IwmRsnCodeBadEntityId
Meaning: The specified combination of STOKEN, TCB
and/or enclave token does not pass verification.
Action: Correct the entity id.

088B Name: IwmRsnCodeBadTCB
Meaning: The specified TCB address does not pass
verification.
Action: Correct the TCB address. Task may have
terminated since the parameter list was built. TCB may
not match STOKEN.

To code: Specify the RS-type address, or address in register (2)-(12), of a
character field.

,RESOURCEID=resourceid
A required input parameter, which identifies the resource uniquely within all
resources for a subsystem type and name.

For resources whose type is multisystem, the value must be unique within the
subsystem type and name across all systems where the interface might ever be
invoked for this resource.

To code: Specify the RS-type address, or address in register (2)-(12), of a
character field.

,RESOURCEID_LEN=resourceid_len
A required input parameter, which contains the length of the resource identifier.
A resource identifier may not exceed 264 bytes.

To code: Specify the RS-type address, or address in register (2)-(12), of a
fullword field.

,RESOURCESCOPE=SINGLESYSTEM
,RESOURCESCOPE=MULTISYSTEM

An optional parameter, which identifies if the resource information is shared with
other WLM instances in the cluster. The default is
RESOURCESCOPE=SINGLESYSTEM.

,RESOURCESCOPE=SINGLESYSTEM
indicates that the resource information is used on the issuing system only.

,RESOURCESCOPE=MULTISYSTEM
indicates that the resource information is shared among other systems.

,RETCODE=retcode
An optional output parameter into which the return code is to be copied from
GPR 15.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

,RSNCODE=rsncode
An optional output parameter into which the reason code is to be copied from
GPR 0.

IWMCNTN Macro

142 z/OS V1R4.0 MVS Workload Management Services

|
|

||
|
|
|

||
|
|
|

||
|
|
|
|
|

|
|

|
|
|

|
|
|

|
|

|
|
|

|
|

|
|
|
|
|

|
|

|
|

|
|
|

|

|
|
|

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

SUBSYS=subsys
A required input parameter, which contains the generic subsystem type (e.g.
IMS, CICS, etc.).

To code: Specify the RS-type address, or address in register (2)-(12), of a
4-character field.

,SUBSYSNM=subsysnm
A required input parameter, which identifies the subsystem instance.

To code: Specify the RS-type address, or address in register (2)-(12), of an
8-character field.

ABEND Codes
None.

Return and Reason Codes
When the IWMCNTN macro returns control to your program:
v GPR 15 (and retcode, when you code RETCODE) contains a return code.
v When the value in GPR 15 is not zero, GPR 0 (and rsncode, when you code

RSNCODE) contains reason code.

The following table identifies the hexadecimal return and reason codes and the
equate symbol associated with each reason code. IBM support personnel may
request the entire reason code, including the xxxx value.

Table 18. Return and Reason Codes for the IWMCNTN Macro

Return Code Reason Code Equate Symbol Meaning and Action

0 — Equate Symbol: IwmRetCodeOk

Meaning: Successful completion.

Action: None required.

8 — Equate Symbol: IwmRetCodeInvocError

Meaning: Invalid invocation environment or parameters.

8 xxxx0803 Equate Symbol: IwmRsnCodeDisabled

Meaning: Caller is disabled.

Action: Avoid requesting this function while disabled.

8 xxxx0804 Equate Symbol: IwmRsnCodeLocked

Meaning: Caller is locked.

Action: Avoid requesting this function while locked.

8 xxxx080B Equate Symbol: IwmRsnCodeBadPl

Meaning: Error accessing parameter list.

Action: Check for possible storage overlay.

8 xxxx0824 Equate Symbol: IwmRsnCodeAmode24

Meaning: Caller invoked service but was in 24 bit
addressing mode.

Action: Request this function only when you are in 31 bit
addressing mode.

IWMCNTN Macro

Chapter 12. IWMCNTN macro — WLM Contention Notification 143

|

|
|
|

|
|

|
|

|
|

|
|

|

|
|

|
|
|
|

|
|
|

||

|||

|||

|

|

|||

|

|||

|

|

|||

|

|

|||

|

|

|||

|
|

|
|

Table 18. Return and Reason Codes for the IWMCNTN Macro (continued)

Return Code Reason Code Equate Symbol Meaning and Action

8 xxxx0825 Equate Symbol: IwmRsnCodeAscModeNotPrimary

Meaning: Caller invoked service but was not DAT on
primary ASC mode.

Action: Avoid requesting this function in this environment.

8 xxxx0828 Equate Symbol: IwmRsnCodeBadVersion

Meaning: Version number in parameter list is not valid.

Action: Check for possible storage overlay of the parameter
list.

8 xxxx0888 Equate Symbol: IwmRsnCodeBadRequestList

Meaning: The request list does not pass verification.

Action: Check the return and reason codes in the request
list.

8 xxxx0889 Equate Symbol: IwmRsnCodeBadResourceIdLen

Meaning: The length of the resource id must not exceed
264 bytes.

Action: Specify a correct resource id length.

8 xxxx088C Equate Symbol: IwmRsnCodeBadRequestListVersion

Meaning: The version specified in the request list is not
supported.

Action: Specify a correct request list version.

8 xxxx088D Equate Symbol: IwmRsnCodeBadRequestListLength

Meaning: The specified request list length is too small to
carry the specified number of request entries.

Action: Specify a correct request list length or correct the
entry count.

10 — Equate Symbol: IwmRetCodeCompError

Meaning: Component error.

Action: No action required. The function may be successful
if invoked again.

Example
IWMCNTN SUBSYS=SUBSTYPE,SUBSYSNM=SUBSNAME,

RESOURCEID=RESOURCE,RESOURCEID_LEN=128,
INVOCATIONTYPE=REPLACE,
REQUESTLIST=REQUESTS

*
* Storage areas
*
SUBSTYPE DS CL4 Subsystem type
SUBSNAME DS CL8 Subsystem name
RESOURCE DS CL128 Resource id
REQUESTS DS 0D Request list
EYE DC CL8’IWMCNTRL’
VERSION DC XL1’01’
RSRV_1 DS CL3
LENGTH# DC F’96’
ENTRY# DC F’2’

IWMCNTN Macro

144 z/OS V1R4.0 MVS Workload Management Services

|

|||

|||

|
|

|

|||

|

|
|

|||

|

|
|

|||

|
|

|

|||

|
|

|

|||

|
|

|
|

|||

|

|
|
|

|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

RSRV_2 DS CL12
ENTRY_1 DS 0CL32 1st entry
E#1_CODE DC CL1’A’ code = add
E#1_TYPE DC CL1’H’ type = holder
E#1_RSRV DS CL6 reserved
E#1_STKN DC XL8’0000000000000000’ STOKEN not specified
E#1_TCB DC A’0’ TCB not specified
E#1_ETKN DS XL8 enclave token
E#1_RC DS H entity return code
E#1_RSN DS H entity reason code
ENTRY_2 DS 0CL32 2nd entry
E#2_CODE DC CL1’A’ code = add
E#2_TYPE DC CL1’W’ type = waiter
E#2_RSRV DS CL6 reserved
E#2_STKN DS XL8 STOKEN
E#2_TCB DC A’0’ TCB not specified
E#2_ETKN DC XL8’0000000000000000’ enclave token not specified
E#2_RC DS H entity return code
E#2_RSN DS H entity reason code

IWMCNTN Macro

Chapter 12. IWMCNTN macro — WLM Contention Notification 145

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

IWMCNTN Macro

146 z/OS V1R4.0 MVS Workload Management Services

Chapter 13. IWMCONN – Connecting to Workload
Management

The purpose of this service is to connect a calling address space to WLM. This
service returns a token which is needed to invoke other services. This service can
be used to:

v Request that WLM Work Management services be available to the connecting
address space and optionally to pass topology information to WLM.

v Request that WLM Work Queuing services be available to the connecting
address space.

v Request that WLM Work Execution services be available to the connecting
address space.

v Request that WLM Work Balancing services be available to the connecting
address space.

v Request that WLM export and import services be available to the connecting
address space.

Note that:

v The space which is connected is the current home address space.

v Only a single connection is allowed to be active for a given address space at any
given time.

v For each connected task/space, WLM will establish a dynamic resource manager
(RESMGR) to be associated with the current task/space. When it receives
control, it will free any accumulated resources and delete any enclaves
associated with the connect token. This implies that the resource manager will
logically perform the disconnect function and the connect token can no longer be
passed to WLM services.

Exit Routines

See “Using the Queueing Manager Connect Exit” on page 57 for more
information on the QMGR_EXIT@ parameter, and “Using the Routing Server
Connect Exit” on page 65 for more information on the SRV_MGR_EXIT@
paramater. These exit routines are provided by a queueing manager or a
routing manager (respectively) when they connect to workload management.

Environment
The requirements for the caller are:

Minimum authorization: For WORK_MANAGER=YES or ROUTER=YES,
QUEUE_MANAGER=YES or EXPTIMPT=YES, supervisor
state or program key mask (PKM) allowing keys 0-7.

For SERVER_MANAGER=YES, problem state with any PSW
key.

Dispatchable unit mode: Task

Cross memory mode: Non-XMEM when input key is a user key or
SERVER_MANAGER = YES, otherwise XMEM, any P,S,H.

AMODE: 31-bit

© Copyright IBM Corp. 1988, 2002 147

|

ASC mode: Primary

Interrupt status: Enabled for I/O and external interrupts

Locks: No locks may be held.

Control parameters: Control parameters must be in the primary address space.

Programming Requirements
1. Make sure no EUT FRRs are established.
2. The macro CVT must be included to use this macro.
3. The macro IWMYCON must be included to use this macro.
4. The macro IWMPB must be in the library concatenation, since it is included by

IWMYCON.
5. Note that the high order halfword of register 0, and the reason code variable

when specified, may be non-zero and represents diagnostic data which is NOT
part of the external interface. The high order halfword should thus be excluded
from comparison with the reason code values described above. The constant,
IWMRSNCODE_MASK_CONST defined in IWMYCON, may be used for this
purpose.

6. All character data, unless otherwise specified, is assumed to be left justified and
padded with blanks on the right, as needed, to occupy the specified number of
bytes.

Restrictions
1. This macro may only be used on MVS/ESA (version 3 or later), NOT versions 1

or 2 of MVS.

2. This macro may not be used during task/address space termination.

3. Only a single connection is allowed to be active for a given address space at
any given time.

4. Specification of both Queue_Manager=Yes, and Server_Manager=Yes requires
that Server_Type=Queue. Specification of Server_Type=Routing is rejected.

5. Specification of both Router=Yes, and Server_Manager=Yes requires that
Server_Type=Routing. Specification of Server_Type=Queue is rejected.

6. If the callers recovery routine should get control as a result of requesting this
service, the function cannot be guaranteed to be complete. It is possible that a
token has been saved in the parameter list where the connect token would
reside upon successful completion. This token may be passed to IWMDISC to
prevent the address space from being disabled from future IWMCONN requests,
but the token should not be used for other services. IWMDISC in these
circumstances may give a warning return code indicating that no connection
was established, however.

7. If the key specified on IWMCONN is a user key (8-F) or
SERVER_MANAGER=YES was specified, then the caller must be in
non-cross-memory mode (P=S=H)

8. While not a restriction for IWMCONN, it should be noted that when the key
specified is a user key (8-F), the Connect token may only be passed to
IWMCLSFY, IWMRPT, or IWMMNTFY services, when the then current primary
matches primary at the time IWMCONN is invoked.

9. This macro supports multiple versions. Some keywords are unique to certain
versions. See the PLISTVER parameter description.

IWMCONN Macro

148 z/OS V1R4.0 MVS Workload Management Services

Input Register Information
Before issuing the IWMCONN macro, the caller does not have to place any
information into any register unless using it in register notation for a particular
parameter, or using it as a base register.

Output Register Information
When control returns to the caller, the GPRs contain:

Register
Contents

0 Reason code if GR15 return code is non-zero
1 Used as work registers by the system
2-13 Unchanged
14 Used as work registers by the system
15 Return code

When control returns to the caller, the ARs contain:

Register
Contents

0-1 Used as work registers by the system
2-13 Unchanged
14-15 Used as work registers by the system

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the
caller depends, the caller must save them before issuing the service, and restore
them after the system returns control.

Performance Implications
None.

IWMCONN Macro

Chapter 13. IWMCONN – Connecting to Workload Management 149

Syntax

main diagram

��
name

� IWMCONN �
WORK_MANAGER=YES

parameters-1
WORK_MANAGER=NO

�

�
,ROUTER=NO ,QUEUE_MANAGER=NO

,QMGR_EXIT@=NO_QMGR_EXIT@
,QUEUE_MANAGER=YES

,QMGR_EXIT@=qmgr_exit@
,ROUTER=YES

�

�
,SERVER_MANAGER=NO

,SERVER_MANAGER=YES parameters-2

,EXPTIMPT=NO

,EXPTIMPT=YES
,SUBSYS=subsys �

� ,SUBSYSNM=subsysnm ,CONNTKN=conntkn
,RETCODE=retcode

�

�
,RSNCODE=rsncode

,PLISTVER=IMPLIED_VERSION

,PLISTVER=MAX
,PLISTVER=0
,PLISTVER=1
,PLISTVER=2

�

�
,MF=S

,0D
,MF=(L ,list addr)

,attr
,COMPLETE

,MF=(E ,list addr)

�"

parameters-1

��
,TOPOLOGY=NO_TOPOLOGY ,NUMBERASCB=numberascb
,TOPOLOGY=topology

�

� ,CONNTKNKEYP=VALUE ,CONNTKNKEY=conntknkey
,CONNTKNKEYP=PSWKEY

�"

parameters-2

�� ,APPLENV=applenv ,PARALLEL_EU=parallel_eu �

�
,SERVER_TYPE=QUEUE

,MANAGE_TASKS=NO

,SERVER_LIMIT=1000
,MANAGE_TASKS=YES

,SERVER_LIMIT=server_limit
,SERVER_TYPE=ROUTING ,SERVER_DATA=server_data ,SRV_MGR_EXIT@=srv_mgr_exit@

�"

IWMCONN Macro

150 z/OS V1R4.0 MVS Workload Management Services

Parameters
The parameters are explained as follows:

name
An optional symbol, starting in column 1, that is the name on the IWMCONN
macro invocation. The name must conform to the rules for an ordinary
assembler language symbol.

,APPLENV=applenv
When SERVER_MANAGER=YES is specified, a required input parameter,
which contains the application environment under which work requests are
served.

To code: Specify the RS-type address, or address in register (2)-(12), of a
32-character field.

,CONNTKN=conntkn
A required output parameter, which will receive the connect token.

To code: Specify the RS-type address, or address in register (2)-(12), of a 32
bit field.

,CONNTKNKEY=conntknkey
When CONNTKNKEYP=VALUE and WORK_MANAGER=YES are specified, a
required input parameter, which contains the key for which the various branch
entry services using the CONNTKN returned by Iwmconn must have PSW
update authority. These other services include Classify (Iwmclsfy), Report
(Iwmrpt), Notify (Iwmmntfy). Create (Iwmmcrea) is a PC interface and hence is
excluded. The low order 4 bits (bits 4-7) contain the key value. The high order 4
bits (bits 0-3) must be zeros.

To code: Specify the RS-type address, or address in register (2)-(12), of an 8
bit field.

,CONNTKNKEYP=VALUE
,CONNTKNKEYP=PSWKEY

When WORK_MANAGER=YES is specified, a required parameter, which
describes how the input key should be obtained.

,CONNTKNKEYP=VALUE
indicates that the key is being passed explicitly via CONNTKNKEY.

,CONNTKNKEYP=PSWKEY
indicates that the current PSW key should be used.

,EXPTIMPT=NO
,EXPTIMPT=YES

An optional parameter indicating whether the space needs access to the export
and import services (IWMEXPT, IWMUEXPT, IWMIMPT, IWMUIMPT). The
default is EXPTIMPT=NO.

,EXPTIMPT=NO
The connecting address space will not use the export and import services.

,EXPTIMPT=YES
The connecting address space will use the export and import services.

,MANAGE_TASKS=NO
,MANAGE_TASKS=YES

When SERVER_TYPE=QUEUE and SERVER_MANAGER=YES are specified,
an optional parameter indicating that WLM will manage the server instances
(tasks), selecting work from a work queue.

IWMCONN Macro

Chapter 13. IWMCONN – Connecting to Workload Management 151

If YES is specified the caller must use service IWMSINF to obtain the number
of server instances to start from WLM.

The meaning of PARALLEL_EU chenges in this case. PARALLEL_EU is only
used to determine the number of tasks to start if the appliaction environment
cannot be managed by WLM. Other wise PARALLEL_EU can be used to limit
the number of server tasks to start initialy.

The server can define the SERVER_LIMIT parameter to specify a limit for the
number of server tasks supported by the application.

,MANAGE_TASKS=NO
The connecting address space starts the number of server instances as
provided with parallel_eu.

,MANAGE_TASKS=YES
The connecting address space uses IWMSINF to obtain the number of
server instances to start from WLM.

,MF=S
,MF=(L,list addr)
,MF=(L,list addr,attr)
,MF=(L,list addr,0D)
,MF=(E,list addr)
,MF=(E,list addr,COMPLETE)

An optional input parameter that specifies the macro form.

Use MF=S to specify the standard form of the macro, which builds an inline
parameter list and generates the macro invocation to transfer control to the
service. MF=S is the default.

Use MF=L to specify the list form of the macro. Use the list form together with
the execute form of the macro for applications that require reentrant code. The
list form defines an area of storage that the execute form uses to store the
parameters. Only the PLISTVER parameter may be coded with the list form of
the macro.

Use MF=E to specify the execute form of the macro. Use the execute form
together with the list form of the macro for applications that require reentrant
code. The execute form of the macro stores the parameters into the storage
area defined by the list form, and generates the macro invocation to transfer
control to the service.

,list addr
The name of a storage area to contain the parameters. For MF=S and
MF=E, this can be an RS-type address or an address in register (1)-(12).

,attr
An optional 1- to 60-character input string that you use to force boundary
alignment of the parameter list. Use a value of 0F to force the parameter
list to a word boundary, or 0D to force the parameter list to a doubleword
boundary. If you do not code attr, the system provides a value of 0D.

,COMPLETE
Specifies that the system is to check for required parameters and supply
defaults for omitted optional parameters.

,NUMBERASCB=numberascb
When TOPOLOGY=topology and WORK_MANAGER=YES are specified, a
required input parameter, which contains the number of ASCBs in the list
passed via xTOPOLOGY. While there is no restriction on the number of entries

IWMCONN Macro

152 z/OS V1R4.0 MVS Workload Management Services

in the list, the current support will only look at the first 10 entries. The number
specified must be positive (hence also non-zero).

To code: Specify the RS-type address, or address in register (2)-(12), of a
fullword field.

,PARALLEL_EU=parallel_eu
When SERVER_MANAGER=YES is specified, a required input parameter,
which contains the maximum number of tasks (TCBs) within the address space
which will be used to concurrently process distinct work requests. When Select
(Iwmssel) is used to obtain a work request, which might then be passed to
another task (TCB) for processing under a Begin (Iwmstbgn) environment, this
count represents the number of tasks (TCBs) which can be running concurrently
against these work requests, i.e. the number of concurrent Begin environments.
It is important that this count represent the actual number of tasks (TCBs) which
can be utilized, and not merely some approximate upper bound, as this value
will influence system algorithms. If MANAGE_TASKS=YES is in effect, the
application environment managed by WLM PARALLEL_EU is not used. In this
case the parameter is only used as described above if no procedure name was
defined for the application environment.

To code: Specify the RS-type address, or address in register (2)-(12), of a
fullword field.

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX
,PLISTVER=0
,PLISTVER=1
,PLISTVER=1

An optional input parameter that specifies the version of the macro. PLISTVER
determines which parameter list the system generates. PLISTVER is an
optional input parameter on all forms of the macro, including the list form. When
using PLISTVER, specify it on all macro forms used for a request and with the
same value on all of the macro forms. The values are:

v IMPLIED_VERSION, which is the lowest version that allows all parameters
specified on the request to be processed. If you omit the PLISTVER
parameter, IMPLIED_VERSION is the default.

v MAX, if you want the parameter list to be the largest size currently possible.
This size might grow from release to release and affect the amount of
storage that your program needs.

If you can tolerate the size change, IBM recommends that you always specify
PLISTVER=MAX on the list form of the macro. Specifying MAX ensures that
the list-form parameter list is always long enough to hold all the parameters
you might specify on the execute form; in this way, MAX ensures that the
parameter list does not overwrite nearby storage.

v 0, which supports all parameters except those specifically referenced in
higher versions.

v 1, which supports the following parameters along with the parameters from
version 0:

APPLENV QUEUE_MANAGER SERVER_TYPE
EXPTIMPT ROUTER SRV_MGR_EXIT@
PARALLEL_EU SERVER_DATA WORK_MANAGER
QMGR_EXIT@ SERVER_MANAGER

IWMCONN Macro

Chapter 13. IWMCONN – Connecting to Workload Management 153

v 2, which supports the following parameters and those from version 0 and 1::

MANAGE_TASKS SERVER_LIMIT

To code: Specify one of the following:
v IMPLIED_VERSION
v MAX
v A decimal value of 0 or 1

,QMGR_EXIT@=qmgr_exit@
,QMGR_EXIT@=NO_QMGR_EXIT@

When QUEUE_MANAGER=YES and ROUTER=NO are specified, an optional
input parameter that is to contain the address of the Queue Manager Connect
Exit to be invoked when the system wishes to inform the queue manager of
actions it should perform. The exit will be called in enabled, unlocked TCB
mode with no FRRs set, but may be called in a cross-memory environment.
The mapping of the parameter list for the exit and its invocation environment is
given by the list form of the IWMQCXIT macro.

The system may chose to discontinue calling the exit upon repetitive abnormal
completions, i.e. where the system recovery routine is percolated to from an
error within the exit. The exit must be callable from any address space and
remain available after the queue manager disconnects or terminates. The
default is NO_QMGR_EXIT@, which indicates that no queue manager exit is
provided.

To code: Specify the RS-type address, or address in register (2)-(12), of a
pointer field.

,QUEUE_MANAGER=NO
,QUEUE_MANAGER=YES

When ROUTER=NO is specified, an optional parameter indicating that WLM
Work Queuing services be available to the connecting address space. For
example:
v Insert (Iwmqins)
v Delete (Iwmqdel)

If YES is specified, the combination of the subsystem type and the subsystem
name must be unique to that MVS system. The default is
QUEUE_MANAGER=NO.

,QUEUE_MANAGER=NO
The connecting address space will not use the WLM Work Queuing
services.

,QUEUE_MANAGER=YES
The connecting address space will be using the WLM Work Queuing
services.

,RETCODE=retcode
An optional output parameter into which the return code is to be copied from
GPR 15.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

,ROUTER=NO
,ROUTER=YES

An optional parameter, which describes whether recommendations for sysplex
routing to servers associated with the same subsystem type and name are
requested. The default is ROUTER=NO.

IWMCONN Macro

154 z/OS V1R4.0 MVS Workload Management Services

,ROUTER=NO
indicates that recommendations for sysplex routing via IWMSRFSV are not
required.

,ROUTER=YES
indicates that recommendations for sysplex routing via IWMSRFSV is
required. Note that only server spaces which have the same Subsystem
type and name AND which specified Server_Type=Routing are considered
when IWMSRFSV is invoked.

If YES is specified, the combination of the subsystem type and the
subsystem name must be unique to that MVS system.

,RSNCODE=rsncode
An optional output parameter into which the reason code is to be copied from
GPR 0.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

,SERVER_DATA=server_data
When SERVER_TYPE=ROUTING and SERVER_MANAGER=YES are
specified, a required input parameter, which contains whatever data is needed
to uniquely identify the server when recommended by MVS through use of the
IWMSRFSV interface. The structure of this data is undefined to MVS, and will
be returned to the program invoking IWMSRFSV when the server is returned.

To code: Specify the RS-type address, or address in register (2)-(12), of a
32-character field.

,SERVER_LIMIT=server_limit
,SERVER_LIMIT=1000

When MANAGE_TASKS=YES, SERVER_TYPE=QUEUE and
SERVER_MANAGER=YES are specified, an optional input parameter indicating
the architectural limit of the application for the number of server instances which
can be supported.

This parameter can be used to tell WLM the upper limit up to which WLM will
recommend to start server instances. If the parameter is omitted or is set higher
than 1000, WLM will use 1000 as upper limit instead. The default is 1000.

To code: Specify the RS-type address of a fullword field.

,SERVER_MANAGER=NO
,SERVER_MANAGER=YES

An optional parameter indicating whether the space needs access to a family of
services specified by SERVER_TYPE. The default is
SERVER_MANAGER=NO.

,SERVER_MANAGER=NO
The connecting address space will not use any of the various server related
WLM services documented under SERVER_TYPE.

,SERVER_MANAGER=YES
The connecting address space will be acting in the role of a server and
needs access to the family of services specified by SERVER_TYPE.

Specification of both Queue_Manager=Yes, and Server_Manager=Yes
requires that Server_Type=Queue. Specification of Server_Type=Routing is
rejected.

Specification of both Router=Yes, and Server_Manager=Yes requires that
Server_Type=Routing. Specification of Server_Type=Queue is rejected.

IWMCONN Macro

Chapter 13. IWMCONN – Connecting to Workload Management 155

,SERVER_TYPE=QUEUE
,SERVER_TYPE=ROUTING

When SERVER_MANAGER=YES is specified, an optional parameter, which
describes what type of services are used by the server. The default is
SERVER_TYPE=QUEUE.

,SERVER_TYPE=QUEUE
indicates that the server selects work from a queue, and thus requests that
WLM Work Execution services be available to the connecting address
space. For example:
v Select (Iwmssel)
v Begin (Iwmstbgn)
v End (Iwmstend)

The server also has the WLM Work Queuing services available to the
connecting address space when the corresponding Queue Manager with
the same subsystem type and name is active on the same MVS image (see
following macros for macro specific restrictions). For example:
v Insert (Iwmqins)
v Delete (Iwmqdel)

,SERVER_TYPE=ROUTING
indicates that the server receives work by way of routing, and may be
selected by the IWMSRFSV (Find Server) macro interface. Note that the
space which invokes the IWMSRFSV service must Connect with
Router=Yes.

Termination of the router with the same subsystem type and name on the
same MVS image will not cause notification to the server to terminate. This
coordination, if required, must be handled through a different protocol than
use of Connect.

,SRV_MGR_EXIT@=srv_mgr_exit@
When SERVER_TYPE=ROUTING and SERVER_MANAGER=YES are
specified, a required input parameter that is to contain the address of the
Server Manager Connect Exit to be invoked when the system wishes to inform
the server of actions it should perform. This exit will be called in SRB mode,
with a non cross-memory environment, where HASN=SASN=PASN=HASN at
the time IWMCONN was invoked. The mapping of the parameter list for the exit
and its invocation environment is given by the list form of the IWMSCXIT
macro.

Note that it may be possible for the exit to be called before the caller has
received control back from IWMCONN. The exit or any program it drives
(synchronously or asynchronously) must synchronize with the program issuing
IWMCONN to ensure that IWMCONN has returned a connect token prior to
issuing IWMDISC (disconnect) or any other services that need the connect
token.

The system may cause the space to become ineligible to be recommended by
IWMSRFSV upon repetitive errors in calling the exit specified. The exit must be
callable from the server address space and remain available after the server
manager disconnects or the connecting server TCB terminates. The exit need
not persist upon memory termination of the server.

To code: Specify the RS-type address, or address in register (2)-(12), of a
pointer field.

,SUBSYS=subsys
A required input parameter, which contains the generic subsystem type (e.g.

IWMCONN Macro

156 z/OS V1R4.0 MVS Workload Management Services

IMS, CICS, etc.). When WORK_MANAGER=YES is specified, this is the
primary category under which classification rules are grouped.

If the caller connects to the WLM work queueing services by specifying
QUEUE_MANAGER=YES, or requests sysplex routing by specifying
ROUTER=YES, the combination of the subsystem type and the subsystem
name must be unique to that MVS system.

To code: Specify the RS-type address, or address in register (2)-(12), of a
4-character field.

,SUBSYSNM=subsysnm
A required input parameter, which contains the subsystem name to be used for
classifying work requests when Work_Manager=Yes is specified or taken as
default. The subsystem name identifies a specific instance of the generic
subsystem type.

When Server_Manager=Yes and Server_Type=Queue is specified, the
subsystem name should match the subsystem name specified on the
corresponding Connect for the Queue_Manager, i.e. all servers associated with
the Queue_Manager have identical subsystem names.

When Server_Manager=Yes and Server_Type=Routing is specified, the
subsystem name should match the subsystem name specified on the
corresponding Connect for Router=Yes, i.e. all servers associated with the
Router have identical subsystem names.

If a product choses to use both Work_Manager=Yes and Server_Manager=Yes
on a single invocation of IWMCONN for a space, then the rules for
Server_Manager apply, i.e. the subsystem name refers to the subsystem name
of the space playing the role of Queue_Manager or Router.

If the caller connects to the WLM work queueing services, or to sysplex routing
services, the combination of the subsystem type and the subsystem name must
be unique to that MVS system.

To code: Specify the RS-type address, or address in register (2)-(12), of an
8-character field.

,TOPOLOGY=topology
,TOPOLOGY=NO_TOPOLOGY

When WORK_MANAGER=YES is specified, an optional input parameter, which
represents a list of ASCB addresses for the address spaces which comprise the
subsystem. This list should ONLY include address spaces which do NOT
surface as the current home address space when Iwmminit or Iwmmrela are
used to establish the delay monitoring environments, but that may participate as
dispatchable units (TCBs or SRBs) in serving work requests. If the current
primary or home space is a space not surfacing in a monitoring environment
and its execution can affect the response time of work flowing through the
subsystem, then it should appear in the list. Neither current primary nor current
home are defaults. While there are no limits on the number of address spaces,
this information is less precise than that provided by monitoring environments.
The default is NO_TOPOLOGY, which indicates that no topology information
was passed.

To code: Specify the RS-type address, or address in register (2)-(12), of a
character field.

WORK_MANAGER=YES

IWMCONN Macro

Chapter 13. IWMCONN – Connecting to Workload Management 157

WORK_MANAGER=NO
An optional parameter indicating that WLM Work Management services be
available to the connecting address space. For example:
v Classify (Iwmclsfy)
v Report (Iwmrpt)
v Notify (Iwmmntfy)
v Enclave Create (Iwmecrea)
v Modify Connect (Iwmwmcon)

If NO is specified, the above services cannot be used, except for the form of
Notify that doesn’t pass an input connect token. The default is
WORK_MANAGER=YES.

WORK_MANAGER=YES
The connecting address space will be using the WLM Work Management
services.

WORK_MANAGER=NO
The connecting address space will not use the WLM Work Management
services. Specifying this keyword may reduce the use of system resources.

ABEND Codes
None.

Return and Reason Codes
When the IWMCONN macro returns control to your program:
v GPR 15 (and retcode, if you coded RETCODE) contains a return code.
v When the value in GPR 15 is not zero, GPR 0 (and rsncode, if you coded

RSNCODE) contains reason code.

The following table identifies the hexadecimal return and reason codes and the
equate symbol associated with each reason code. IBM support personnel may
request the entire reason code, including the xxxx value.

Table 19. Return and Reason Codes for the IWMCONN Macro

Return Code Reason Code Equate Symbol Meaning and Action

0 — Equate Symbol: IwmRetCodeOk

Meaning: Successful completion.

Action: None required.

4 — Equate Symbol: IwmRetCodeWarning

Meaning: Successful completion, unusual conditions noted.

4 xxxx0401 Equate Symbol: IwmRsnCodeNoWLM

Meaning: System does not support work manager services.
This return code is only set when the MVS release is prior
to MVS/ESA SP5.1.0 or prior to HBB6603 for IWMCONN
QUEUE_MANAGER/SERVER_MANAGER services.

Action: None required.

8 — Equate Symbol: IwmRetCodeInvocError

Meaning: Invalid invocation environment or parameters.

IWMCONN Macro

158 z/OS V1R4.0 MVS Workload Management Services

Table 19. Return and Reason Codes for the IWMCONN Macro (continued)

Return Code Reason Code Equate Symbol Meaning and Action

8 xxxx0801 Equate Symbol: IwmRsnCodeSrbMode

Meaning: Caller is in SRB mode.

Action: Avoid requesting this function while in SRB mode.

8 xxxx0802 Equate Symbol: IwmRsnCodeXmemUserKeyTkn

Meaning: Caller is in cross-memory mode while the token
was requested in user key.

Action: Avoid requesting this function while in
cross-memory mode.

8 xxxx0803 Equate Symbol: IwmRsnCodeDisabled

Meaning: Caller is disabled.

Action: Avoid requesting this function while disabled.

8 xxxx0804 Equate Symbol: IwmRsnCodeLocked

Meaning: Caller is locked.

Action: Avoid requesting this function while locked.

8 xxxx080B Equate Symbol: IwmRsnCodeBadPl

Meaning: Error accessing parameter list.

Action: Check for possible storage overlay.

8 xxxx0810 Equate Symbol: IwmRsnCodeEutFrr

Meaning: Caller has EUT FRR established.

Action: Avoid requesting this function with an EUT FRR set.

8 xxxx0812 Equate Symbol: IwmRsnCodeBadAscb

Meaning: Bad ASCB address passed.

Action: Check for possible storage overlay.

8 xxxx0823 Equate Symbol: IwmRsnCodeDatoff

Meaning: Caller invoked service while DATOFF

Action: Avoid requesting this function in this environment.

8 xxxx0824 Equate Symbol: IwmRsnCodeAmode24

Meaning: Caller invoked service but was in 24 bit
addressing mode.

Action: Request this function only when you are in 31 bit
addressing mode.

8 xxxx0825 Equate Symbol: IwmRsnCodeAscModeNotPrimary

Meaning: Caller invoked service but was not DAT on
Primary ASC mode.

Action: Avoid requesting this function in this environment.

8 xxxx0826 Equate Symbol: IwmRsnCodeTaskTerm

Meaning: Caller invoked service while task termination is in
progress for the TCB associated with the owner.

Action: Avoid requesting this function in this environment.

IWMCONN Macro

Chapter 13. IWMCONN – Connecting to Workload Management 159

Table 19. Return and Reason Codes for the IWMCONN Macro (continued)

Return Code Reason Code Equate Symbol Meaning and Action

8 xxxx0827 Equate Symbol: IwmRsnCodeRsvdNot0

Meaning: Reserved field in parameter list was non-zero.

Action: Check for possible storage overlay of the parameter
list.

8 xxxx0828 Equate Symbol: IwmRsnCodeBadVersion

Meaning: Version number in parameter list is not valid.

Action: Check for possible storage overlay of the parameter
list.

8 xxxx0829 Equate Symbol: IwmRsnCodeBadOptions

Meaning: Parameter list omits required parameters or
supplies mutually exclusive parameters or provides data
associated with options not selected.

Action: Check for possible storage overlay of the parameter
list.

8 xxxx082C Equate Symbol: IwmRsnCodeBadNumberAscb

Meaning: NUMBERASCB variable is not a positive value.

Action: Check for possible storage overlay of the parameter
list or variable.

8 xxxx082E Equate Symbol: IwmRsnCodeConnectExists

Meaning: Connect has already been established for the
current home address space.

Action: Avoid requesting this function when a connection
already exists.

8 xxxx0840 Equate Symbol: IwmRsnCodeServiceNotEnabled

Meaning: Requested connection type cannot be established
in the current execution environment.

Action: Invoke the function in the proper environment.

8 xxxx0841 Equate Symbol: IwmRsnCodeXMemMode

Meaning: Caller is in cross memory mode.

Action: Invoke the function in non-cross memory mode.

8 xxxx0847 Equate Symbol: IwmRsnCodeOtherSpaceConnected

Meaning: Another address space with the same subsystem
type and name is connected to WLM on the MVS image
and has the role of queue manager or router.

Action: Avoid requesting this function with duplicate values.

8 xxxx0849 Equate Symbol: IwmRsnCodeWLMServBadAPPL

Meaning: The application environment name (APPLENV=)
specified is not the same as the one used by WLM to start
the server.

Action: Verify that the start parameters for the application
environment are coded correctly in the WLM ISPF
application, and that those parameters are used by the
started JCL procedure.

IWMCONN Macro

160 z/OS V1R4.0 MVS Workload Management Services

Table 19. Return and Reason Codes for the IWMCONN Macro (continued)

Return Code Reason Code Equate Symbol Meaning and Action

8 xxxx084A Equate Symbol: IwmRsnCodeWLMServBadSSN

Meaning: The subsystem name (SUBSYSNM=) specified is
not the same as the one used by WLM to start the server.

Action: Verify that the start parameters for the application
environment are coded correctly in the WLM ISPF
application, and that those parameters are used by the
started JCL procedure.

8 xxxx084B Equate Symbol: IwmRsnCodeWLMServBadSST

Meaning: The subsystem type (SUBSYS=) specified is not
the same as the one used by WLM to start the server.

Action: Verify that the start parameters for the application
environment are coded correctly in the WLM ISPF
application, and that those parameters are used by the
started JCL procedure.

8 xxxx084D Equate Symbol: IwmRsnCodeNotAuthConnect

Meaning: The caller must be supervisor state or have PSW
key mask 0-7 authority to connect to the requested WLM
services.

Action: Avoid requesting this function in this environment.

8 xxxx084E Equate Symbol: IwmRsnCodeWlmServBadType

Meaning: For WLM started servers, the SERVER_TYPE= is
not the one used to start the server.

Action: Specify the correct SERVER_TYPE.

8 xxxx0853 Equate Symbol: IwmRsnCodeWlmQmBadType

Meaning: There is a queue manager or router environment
of the specified subsystem name, but of a different type
than that specified by the caller.

Action: Verify that the option for queue manager/router is
specified correctly on IWMCONN. If the option is correct,
then server address spaces for a different Server_Type
exist and must terminate before the current space may
connect as a queue manager or router.

8 xxxx0855 Equate Symbol: IwmRsnCodeBadNumEUMax

Meaning: PARALLEL_EU variable is greater than the
maximum of ’03E2’x.

Action: Specify a value between 1 and ’03E2’x.

8 xxxx0856 Equate Symbol: IwmRsnCodeBadNumEUMin

Meaning: PARALLEL_EU variable is less than the minimum
of 1.

Action: Specify a value between 1 and ’03E2’x.

8 xxxx085C Equate Symbol: IwmRsnCodeWrongNumEU

Meaning: Caller invoked service with a PARALLEL_EU
value which is different from the PARALLEL_EU of existing
servers in the application environment

Action: Ensure that all servers in the application
environment specify the same PARALLEL_EU value.

IWMCONN Macro

Chapter 13. IWMCONN – Connecting to Workload Management 161

Table 19. Return and Reason Codes for the IWMCONN Macro (continued)

Return Code Reason Code Equate Symbol Meaning and Action

8 xxxx0873 Equate Symbol: IwmRsnCodeWrongSrvLmtl

Meaning: Caller invoked service with a SERVER_LIMIT
parameter setting which is different from the
SERVER_LIMIT of existing servers in the application
environment

Action: Ensure that all servers in the application
environment specify the same SERVER_LIMIT value.

8 xxxx0874 Equate Symbol: IwmRsnCodeWrongMngTskl

Meaning: Caller invoked service with a MANAGE_TASKS
parameter setting which is different from the
MANAGE_TASKS of existing servers in the application
environment

Action: Ensure that all servers in the application
environment specify the same MANAGE_TASKS value.

8 xxxx0878 Equate Symbol: IwmRsnCodeBadNumLimitMax

Meaning: Caller invoked service with a SERVER_LIMIT
parameter setting which exceeds tje maximim number of
tasks which can be started in a server address space.

Action: Correct number or do not specify SERVER_LIMIT
parameter in order to use the default.

8 xxxx0879 Equate Symbol: IwmRsnCodeBadNumLimitMin

Meaning: Caller invoked service with a SERVER_LIMIT
parameter setting which is less than what has been defined
on the PARALLEL_EU parameter.

Action: Ensure that SERVER_LIMIT is always greater or
equal to PARALLEL_EU..

8 xxxx087A Equate Symbol: IwmRsnCodeNoQServer

Meaning: The MANAGE_TASKS parameter is not allowed
when QUEUE_SERVER=YES has been specified.

Action: Ensure to use the parameters correctly..

C — Equate Symbol: IwmRetCodeEnvError

Meaning: Environmental error.

C xxxx0C01 Equate Symbol: IwmRsnCodeNoStg

Meaning: Storage is not available for the request.

Action: There is a storage shortage. The function may work
successfully at a later time.

C xxxx0C09 Equate Symbol: IwmRsnCodeNoResmgr

Meaning: Resource manager could not be established.

Action: No action required. This condition may be due to a
storage shortage condition.

C xxxx0C14 Equate Symbol: IwmRsnCodeNoWorkShutDown

Meaning: No work selected. Caller is to shutdown.

Action: The server should shut down (terminate).

IWMCONN Macro

162 z/OS V1R4.0 MVS Workload Management Services

Table 19. Return and Reason Codes for the IWMCONN Macro (continued)

Return Code Reason Code Equate Symbol Meaning and Action

C xxxx0C19 Equate Symbol: IwmRsnCodeNotSecAuthConnect

Meaning: The caller is not authorized by SAF to connect to
WLM with SERVER_MANAGER=YES.

Action: The security administrator must grant access to the
appropriate resource.

C xxxx0C1A Equate Symbol: IwmRsnCodeApplNotDefined

Meaning: The application environment name is not defined
in the active WLM policy.

Action: Check whether the correct application environment
name is being used. If so, a service administrator must
define the application environment in the WLM service
definition.

C xxxx0C1B Equate Symbol: IwmRsnCodeApplNotSST

Meaning: The application environment name is defined for
use by a different subsystem type in the active WLM policy.

Action: Check whether the correct application environment
name is being used. If so, a service administrator must
change the application environment in the WLM service
definition to specify the correct subsystem type.

C xxxx0C1F Equate Symbol: IwmRsnCodeServerExists

Meaning: A server exists for the specified application
environment which only allows 1 such server in the sysplex.

Action: Check whether the correct application environment
name is being used. If so and the current server is shutting
down, a retry may be successful after a delay.

C xxxx0C22 Equate Symbol: IwmRsnCodeApplEnvQuiesced

Meaning: The application environment has been quiesced.
A server cannot be started for the request.

Action: Restart the application environment and then retry
the request.

10 — Equate Symbol: IwmRetCodeCompError

Meaning: Component error.

Action: No action required. The function may be successful
if invoked again.

Examples
To connect to workload management specifying: a connect token key value of 8,
and a list of 7 address spaces involved in processing work, specify:
IWMCONN SUBSYS=GENSUB,SUBSYSNM=SUBNAME,

TOPOLOGY=LISTASCBS,NUMBERASCB=NUMSPACE
CONNTKN=CTKN,CONNTKNKEYP=VALUE,CONNTKNKEY=KEY,
RETCODE=RC,RSNCODE=RSN,

Where the following are declared:

IWMCONN Macro

Chapter 13. IWMCONN – Connecting to Workload Management 163

GENSUB DS CL4 Generic subsystem type
SUBNAME DS CL8 Subsystem name
LISTASCBS DS CL28 Space for a list of 7 address spaces
NUMSPACE DC F’7’ Number of ASCBs
CTKN DS FL4 Connect token
KEY DS XL1 Key value

IWMCONN Macro

164 z/OS V1R4.0 MVS Workload Management Services

Chapter 14. IWMCPAFN – WLM CPU Affinity Service

During the program execution, the program can establish processor affinity to
certain CPUs. If all these CPUs are not currently on-line, the program will fail to
execute. If the program can not handle this failure, it should use IWMCPAFN
service to enforce the CPU affinity. Prior to establishing CPU affinity, program
should invoke the IWMCPAFN service to bring on-line any CPU that was taken
off-line by WLM and is required to be on-line to satisfy the CPU affinity requirement
of the program. This service can not bring on-line any processor which is currently
taken off-line by operator.

The IWMCPAFN service can also be used to make sure that WLM CPU
management processing keeps on-line at least one of the CPUs from the set of
CPUs to which program is establishing CPU affinity.

WLM CPU management processing brings a CPU on-line and off-line to provide
consistent speed between the logical and physical CPUs. Use of this service
restricts WLM from bringing a CPU off-line when it is necessary to provide optimal
CPU resources. So, when the program does not require the CPU affinity, the
IWMCPAFN service should be invoked again to release the enforcement of the
CPU affinity. This enables WLM to move the CPU off-line to offer optimal number of
on-line CPUs and to provide consistent speed between the logical and physical
CPUs.

The caller can use the service in the following ways:

1. REQUEST = ENFORCE

If all of the CPUs specified on CPUMASK are currently off-line, WLM brings
on-line one of the CPUs which was taken off-line by WLM previously. WLM
keeps this CPU on-line until IWMCPAFN is invoked to release the CPU affinity
enforcement or until the address space which issued this request ends. If all of
the CPUs specified on CPUMASK are currently on-line, WLM makes sure that
at least one of the CPUs stays on-line to satisfy the CPU affinity required by the
program.

2. REQUEST = RELEASE

CPU affinity enforcement that was established earlier is now released. WLM
CPU management processing is now enabled to bring any CPU off-line
provided there are no other jobs that require CPU affinity to the CPU.

Environment
The requirements for the caller are:

Minimum authorization: Supervisor state or program key mask (PKM) allowing keys
0-7.

Dispatchable unit mode: Task

Cross memory mode: PASN=HASN=SASN

AMODE: 31-bit

ASC mode: Primary

Interrupt status: Enabled for I/O and external interrupts

Locks: No locks may be held.

Control parameters: Control parameters must be in the primary address space.

© Copyright IBM Corp. 1988, 2002 165

Programming Requirements
1. Make sure no EUT FRRs are established.
2. The macro CVT must be included to use this macro.
3. The macro IWMYCON must be included to use this macro.
4. The macro IWMPB must be in the library concatenation, since it is included by

IWMYCON.
5. Note that the high order halfword of register 0, and the reason code variable

when specified, may be non-zero and represents diagnostic data which is NOT
part of the external interface. The high order halfword should thus be excluded
from comparison with the reason code values described above. The constant,
IWMRSNCODE_MASK_CONST defined in IWMYCON, may be used for this
purpose.

Restrictions
1. This macro may not be used during task/address space termination.

Input Register Information
Before issuing the IWMCPAFN macro, the caller does not have to place any
information into any register unless using it in register notation for a particular
parameter, or using it as a base register.

Output Register Information
When control returns to the caller, the GPRs contain:

Register
Contents

0 Reason code if GR15 return code is non-zero
1 Used as work registers by the system
2-13 Unchanged
14 Used as work registers by the system
15 Return code

When control returns to the caller, the ARs contain:

Register
Contents

0-1 Used as work registers by the system
2-13 Unchanged
14-15 Used as work registers by the system

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the
caller depends, the caller must save them before issuing the service, and restore
them after the system returns control.

Performance Implications
None

IWMCPAFN Macro

166 z/OS V1R4.0 MVS Workload Management Services

Syntax

main diagram

��
name

� IWMCPAFN � REQUEST=ENFORCE ,CPUMASK=cpumask
,REQUEST=RELEASE

�

�
,RETCODE=retcode ,RSNCODE=rsncode

,PLISTVER=IMPLIED_VERSION

,PLISTVER=MAX
,PLISTVER=0

�

�
,MF=S

,0D
,MF=(L ,list addr)

,attr
,COMPLETE

,MF=(E ,list addr)

�"

Parameters
The parameters are explained as follows:

name
An optional symbol, starting in column 1, that is the name on the IWMCPAFN
macro invocation. The name must conform to the rules for an ordinary
assembler language symbol.

,CPUMASK=cpumask
When REQUEST=ENFORCE is specified, a required input parameter, CP mask
which specifies the CPU affinity to be enforced. If all of the bits in the mask are
zeroes or ones, then no affinity is enforced. Otherwise, the mask contains bits
which represent processor affinity to be enforced. Bits that have a value of 1
(on) indicate that the program has affinity to the processor with the same
physical address as the bit position. For example, if the 4th bit is on in the
mask, the program will have affinity to the processor with physical address 3. To
enforce the program’s affinity to CP 0, CP 3, and CP 4, the bit mask would be
B’1001 1000 0000 0000’. WLM will make sure that at least one of the CPUs is
on-line. If all of the CPUs are off-line, WLM brings on-line one of the CPUs that
was previously taken off-line by WLM and keeps it on-line. If all the CPUs are
on-line, WLM makes sure that at least one of the CPUs remains on-line to
satisfy the CPU affinity requirement of the program. WLM keeps the CPU
on-line unless the IWMCPAFN request is invoked with REQUEST=RELEASE or
the address space that issued this service terminates.

To code: Specify the RS-type address, or address in register (2)-(12), of a 16
bit field.

,MF=S
,MF=(L,list addr)
,MF=(L,list addr,attr)
,MF=(L,list addr,0D)
,MF=(E,list addr)
,MF=(E,list addr,COMPLETE)

An optional input parameter that specifies the macro form.

IWMCPAFN Macro

Chapter 14. IWMCPAFN – WLM CPU Affinity Service 167

Use MF=S to specify the standard form of the macro, which builds an inline
parameter list and generates the macro invocation to transfer control to the
service. MF=S is the default.

Use MF=L to specify the list form of the macro. Use the list form together with
the execute form of the macro for applications that require reentrant code. The
list form defines an area of storage that the execute form uses to store the
parameters. Only the PLISTVER parameter may be coded with the list form of
the macro.

Use MF=E to specify the execute form of the macro. Use the execute form
together with the list form of the macro for applications that require reentrant
code. The execute form of the macro stores the parameters into the storage
area defined by the list form, and generates the macro invocation to transfer
control to the service.

,list addr
The name of a storage area to contain the parameters. For MF=S and
MF=E, this can be an RS-type address or an address in register (1)-(12).

,attr
An optional 1- to 60-character input string that you use to force boundary
alignment of the parameter list. Use a value of 0F to force the parameter
list to a word boundary, or 0D to force the parameter list to a doubleword
boundary. If you do not code attr, the system provides a value of 0D.

,COMPLETE
Specifies that the system is to check for required parameters and supply
defaults for omitted optional parameters.

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX
,PLISTVER=0

An optional input parameter that specifies the version of the macro. PLISTVER
determines which parameter list the system generates. PLISTVER is an
optional input parameter on all forms of the macro, including the list form. When
using PLISTVER, specify it on all macro forms used for a request and with the
same value on all of the macro forms. The values are:

v IMPLIED_VERSION, which is the lowest version that allows all parameters
specified on the request to be processed. If you omit the PLISTVER
parameter, IMPLIED_VERSION is the default.

v MAX, if you want the parameter list to be the largest size currently possible.
This size might grow from release to release and affect the amount of
storage that your program needs.

If you can tolerate the size change, IBM recommends that you always specify
PLISTVER=MAX on the list form of the macro. Specifying MAX ensures that
the list-form parameter list is always long enough to hold all the parameters
you might specify on the execute form, when both are assembled with the
same level of the system. In this way, MAX ensures that the parameter list
does not overwrite nearby storage.

v 0, if you use the currently available parameters.

IWMCPAFN Macro

168 z/OS V1R4.0 MVS Workload Management Services

To code: Specify one of the following:
v IMPLIED_VERSION
v MAX
v A decimal value of 0

REQUEST=ENFORCE
REQUEST=RELEASE

A required parameter that is a required keyword input which indicates the
request type.

REQUEST=ENFORCE
indicates that the caller wants to enforce the CPU affinity to the CPUs
specified on the CPUMASK keyword.

REQUEST=RELEASE
indicates that the caller wants to release the enforcement of the CPU
affinity which was established earlier. WLM CPU management processing
will be able to bring any CPU off-line when necessary provided there are no
other jobs that require CPU affinity to the CPU.

,RETCODE=retcode
An optional output parameter into which the return code is to be copied from
GPR 15.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

,RSNCODE=rsncode
An optional output parameter into which the reason code is to be copied from
GPR 0.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

ABEND Codes
None.

Return and Reason Codes
When the IWMCPAFN macro returns control to your program:
v GPR 15 (and retcode, when you code RETCODE) contains a return code.
v When the value in GPR 15 is not zero, GPR 0 (and rsncode, when you code

RSNCODE) contains reason code.

The following table identifies the hexadecimal return and reason codes and the
equate symbol associated with each reason code. IBM support personnel may
request the entire reason code, including the xxxx value.

Table 20. Return and Reason Codes for the IWMCPAFN Macro

Return Code Reason Code Equate Symbol Meaning and
Action

0 — Equate Symbol: IwmRetCodeOk

Meaning: Successful completion.

Action: None required.

8 — Equate Symbol:
IwmRetCodeInvocError

Meaning: Invalid invocation
environment or parameters.

IWMCPAFN Macro

Chapter 14. IWMCPAFN – WLM CPU Affinity Service 169

Table 20. Return and Reason Codes for the IWMCPAFN Macro (continued)

Return Code Reason Code Equate Symbol Meaning and
Action

8 xxxx0801 Equate Symbol:
IwmRsnCodeSrbMode

Meaning: Caller is in SRB mode.

Action: Avoid requesting this
function while in SRB mode.

8 xxxx0803 Equate Symbol:
IwmRsnCodeDisabled

Meaning: Caller is disabled.

Action: Avoid requesting this
function while disabled.

8 xxxx0804 Equate Symbol:
IwmRsnCodeLocked

Meaning: Caller is locked.

Action: Avoid requesting this
function while locked.

8 xxxx080B Equate Symbol:
IwmRsnCodeBadPl

Meaning: Error accessing
parameter list.

Action: Check for possible
storage overlay.

8 xxxx0823 Equate Symbol:
IwmRsnCodeDatoff

Meaning: Caller invoked service
while DATOFF

Action: Avoid requesting this
function in this environment.

8 xxxx0824 Equate Symbol:
IwmRsnCodeAmode24

Meaning: Caller invoked service
but was in 24 bit addressing
mode.

Action: Request this function
only when you are in 31 bit
addressing mode.

8 xxxx0825 Equate Symbol:
IwmRsnCodeAscModeNotPrimary

Meaning: Caller invoked service
but was not in primary ASC
mode.

Action: Avoid requesting this
function in this environment.

IWMCPAFN Macro

170 z/OS V1R4.0 MVS Workload Management Services

Table 20. Return and Reason Codes for the IWMCPAFN Macro (continued)

Return Code Reason Code Equate Symbol Meaning and
Action

8 xxxx0827 Equate Symbol:
IwmRsnCodeRsvdNot0

Meaning: Reserved field in
parameter list was non-zero

Action: Check for use of
keywords that are not supported
by the OS/390 release on which
the program is running.

8 xxxx0828 Equate Symbol:
IwmRsnCodeBadVersion

Meaning: Version number in
parameter list is not valid.

Action: Check for possible
storage overlay of the parameter
list.

8 xxxx0841 Equate Symbol:
IwmRsnCodeXmemMode

Meaning: Caller is in
cross-memory mode.

Action: Request this function
only when you are not in
cross-memory mode.

8 xxxx0876 Equate Symbol:
IwmRsnCodeNoCPUOnline

Meaning: The system can not
enforce the CPU affinity because
all of the CPUs specified on
CPUMASK keyword are either
not configured on-line yet or
currently taken off-line by
operator.

Action: Request operator to
bring on-line the CPUs
necessary to satisfy the CPU
affinity requirement.

C — Equate Symbol:
IwmRetCodeEnvError

Meaning: Environmental Error

C xxxx0C01 Equate Symbol:
IwmRsnCodeNoStg

Meaning: No storage is available
for the request.

Action: Contact your system
programmer.

IWMCPAFN Macro

Chapter 14. IWMCPAFN – WLM CPU Affinity Service 171

Table 20. Return and Reason Codes for the IWMCPAFN Macro (continued)

Return Code Reason Code Equate Symbol Meaning and
Action

C xxxx0C3C Equate Symbol:
IwmRsnCodeConfigFailed

Meaning: The system can not
enforce the CPU affinity because
the CPU required to satisfy the
affinity is currently off-line and
the system failed to configure the
CPU on-line.

Action: Contact your system
programmer.

10 — Equate Symbol:
IwmRetCodeCompError

Meaning: Component Error

Action: Contact your system
programmer.

Example
To enforce CPU affinity to CP 0, CP 3 and CP4

IWMCPAFN REQUEST=ENFORCE,
CPUMASK=’1001100000000000’b,
RETCODE=RC,RSNCODE=RSN

*
* Storage areas
*
RC DS F Return code
RSN DS F Reason code

IWMCPAFN Macro

172 z/OS V1R4.0 MVS Workload Management Services

Chapter 15. IWMCQRY – Query Classification Attributes

The Query Active Classification Rules routine is given control from the IWMCQRY
macro. The Query Active Classification Rules macro will complete the parameter list
with caller provided data and generate a stacking, space switching, program call to
the query service.

The purpose of this routine is to return a representation of the classification rules
that are associated with the active policy that is in effect for the sysplex. The data
returned by this service describes the installation-defined rules that determine how
incoming work is assigned a service class and/or report class by MVS.

The classification rule data returned by this service is mapped by macro
IWMSVDCR. This macro is also used to map the classification rules associated with
the WLM service definition. As a result, some data sections in this mapping will not
be available (filled in) when it is obtained via this service. An example of some of
the information that will not be available, are the timestamps indicating when a
classification GROUP was last updated and by whom. For a complete list of fields
that will not be available refer to the field comments in macro IWMSVDCR.

The classification rules can be used in conjunction with the active service policy to
determine what performance goals will be associated with incoming work. The
performance goals for a service class are contained within service policy mapping
returned by the IWMPQRY service.

The information returned is not serialized upon return to the caller, and so may be
out-of-date if a modified service definition was installed and a new policy activated.

The caller can optionally request that the identifier of the active policy that these
classification rules are part of, be returned in an area specified by the POLICY_ID
keyword. The caller can then compare the policy identification information returned
with the policy data returned by the IWMPQRY macro to ensure they are in synch.

The Query Active Classification Rules macro is provided in list, execute, and
standard form. The list form accepts no variable parameters and is used only to
reserve space for the query parameter list. The standard form is provided for use
with routines which do not require reentrant code. The execute form is provided for
use with the list format for reentrant routines. The query macro is provided in PL/AS
and assembler formats.

The parameter list must be in the caller’s primary address space or be addressable
by the dispatchable unit access list.

Environment
The requirements for the caller are:

Minimum authorization: Supervisor state or program key mask (PKM) allowing keys
0-7.

Dispatchable unit mode: Task

Cross memory mode: Any PASN, any HASN, any SASN

AMODE: 31-bit

© Copyright IBM Corp. 1988, 2002 173

ASC mode: Primary or access register (AR) If in Access Register ASC
mode, specify SYSSTATE ASCENV=AR before invoking this
macro.

Interrupt status: Enabled for I/O and external interrupts

Locks: No locks may be held.

Control parameters: All parameter areas must reside in current primary or be
addressable by the dispatchable unit access list.

Programming Requirements
1. The macro CVT must be included to use this macro.
2. This functions provided by this macro are only supported on MVS/ESA SP5.2.0

or later. If code with this macro expansion is executed on lower MVS/ESA
releases (version 3 or later) a return code of 4 and reason code of xxxx041A
(constant IwmRsnCodeNoPolMgt) will be returned indicating that the service is
not available. This macro should NOT be executed on MVS versions 1 or 2.

3. The macro IWMYCON must be included to use this macro.
4. The macro IWMPB must be in the library concatenation, since it is included by

IWMYCON.
5. Note that the high order halfword of register 0, and the reason code variable

when specified, may be non-zero and represents diagnostic data which is NOT
part of the external interface. The high order halfword should thus be excluded
from comparison with the reason code values described above. The constant,
IWMRSNCODE_MASK_CONST defined in IWMYCON, may be used for this
purpose.

Restrictions
The caller cannot have an EUT FRR established.

Input Register Information
Before issuing the IWMCQRY macro, the caller does not have to place any
information into any register unless using it in register notation for a particular
parameter, or using it as a base register.

Output Register Information
When control returns to the caller, the GPRs contain:

Register
Contents

0 Reason code if GR15 return code is non-zero
1 Used as work registers by the system
2-13 Unchanged
14 Used as a work register by the system
15 Return code

When control returns to the caller, the ARs contain:

Register
Contents

0-1 Used as work registers by the system
2-13 Unchanged
14-15 Used as work registers by the system

IWMCQRY Macro

174 z/OS V1R4.0 MVS Workload Management Services

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the
caller depends, the caller must save them before issuing the service, and restore
them after the system returns control.

Performance Implications
None.

Syntax

main diagram

��
name

� IWMCQRY � ANSAREA=ansarea ,ANSLEN=anslen �

� ,QUERYLEN=querylen
,POLICY_ID=policy_id ,RETCODE=retcode

�

�
,RSNCODE=rsncode

,PLISTVER=IMPLIED_VERSION

,PLISTVER=MAX
,PLISTVER=0

�

�
,MF=S

,0D
,MF=(L ,list addr)

,attr
,COMPLETE

,MF=(E ,list addr)

�"

Parameters
The parameters are explained as follows:

name
An optional symbol, starting in column 1, that is the name on the IWMCQRY
macro invocation. The name must conform to the rules for an ordinary
assembler language symbol.

ANSAREA=ansarea
A required output parameter, variable specifying an area to contain the data
being returned by IWMCQRY. The answer area is defined by the IWMSVDCR
macro.

To code: Specify the RS-type address, or address in register (2)-(12), of a
character field.

,ANSLEN=anslen
A required input parameter, variable which contains the length of the area
provided to contain the data being returned by IWMCQRY.

To code: Specify the RS-type address, or address in register (2)-(12), of a
fullword field.

,MF=S

IWMCQRY Macro

Chapter 15. IWMCQRY – Query Classification Attributes 175

,MF=(L,list addr)
,MF=(L,list addr,attr)
,MF=(L,list addr,0D)
,MF=(E,list addr)
,MF=(E,list addr,COMPLETE)

An optional input parameter that specifies the macro form.

Use MF=S to specify the standard form of the macro, which builds an inline
parameter list and generates the macro invocation to transfer control to the
service. MF=S is the default.

Use MF=L to specify the list form of the macro. Use the list form together with
the execute form of the macro for applications that require reentrant code. The
list form defines an area of storage that the execute form uses to store the
parameters. Only the PLISTVER parameter may be coded with the list form of
the macro.

Use MF=E to specify the execute form of the macro. Use the execute form
together with the list form of the macro for applications that require reentrant
code. The execute form of the macro stores the parameters into the storage
area defined by the list form, and generates the macro invocation to transfer
control to the service.

,list addr
The name of a storage area to contain the parameters. For MF=S and
MF=E, this can be an RS-type address or an address in register (1)-(12).

,attr
An optional 1- to 60-character input string that you use to force boundary
alignment of the parameter list. Use a value of 0F to force the parameter
list to a word boundary, or 0D to force the parameter list to a doubleword
boundary. If you do not code attr, the system provides a value of 0D.

,COMPLETE
Specifies that the system is to check for required parameters and supply
defaults for omitted optional parameters.

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX
,PLISTVER=0

An optional input parameter that specifies the version of the macro. PLISTVER
determines which parameter list the system generates. PLISTVER is an
optional input parameter on all forms of the macro, including the list form. When
using PLISTVER, specify it on all macro forms used for a request and with the
same value on all of the macro forms. The values are:

v IMPLIED_VERSION, which is the lowest version that allows all parameters
specified on the request to be processed. If you omit the PLISTVER
parameter, IMPLIED_VERSION is the default.

v MAX, if you want the parameter list to be the largest size currently possible.
This size might grow from release to release and affect the amount of
storage that your program needs.

If you can tolerate the size change, IBM recommends that you always specify
PLISTVER=MAX on the list form of the macro. Specifying MAX ensures that
the list-form parameter list is always long enough to hold all the parameters
you might specify on the execute form; in this way, MAX ensures that the
parameter list does not overwrite nearby storage.

v 0, if you use the currently available parameters.

IWMCQRY Macro

176 z/OS V1R4.0 MVS Workload Management Services

To code: Specify one of the following:
v IMPLIED_VERSION
v MAX
v A decimal value of 0

,POLICY_ID=policy_id
An optional output parameter, variable specifying an area to contain the
identifier of the active policy that these classification rules are a part of. This
answer is mapped by the SVIDSSVP DSECT in the IWMSVIDS macro.

To code: Specify the RS-type address, or address in register (2)-(12), of a
character field.

,QUERYLEN=querylen
A required output parameter, variable which contains the number of bytes
needed to contain the classification rule information.

To code: Specify the RS-type address, or address in register (2)-(12), of a
fullword field.

,RETCODE=retcode
An optional output parameter into which the return code is to be copied from
GPR 15.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

,RSNCODE=rsncode
An optional output parameter into which the reason code is to be copied from
GPR 0.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

ABEND Codes
Reason Code (Hex)

Explanation

0Axx0005
An attempt to reference caller’s parameters caused an OC4 abend.

Return and Reason Codes
When the IWMCQRY macro returns control to your program:
v GPR 15 (and retcode, if you coded RETCODE) contains a return code.
v When the value in GPR 15 is not zero, GPR 0 (and rsncode, if you coded

RSNCODE) contains reason code.

The following table identifies the hexadecimal return and reason codes and the
equate symbol associated with each reason code. IBM support personnel may
request the entire reason code, including the xxxx value.

Table 21. Return and Reason Codes for the IWMCQRY Macro

Return Code Reason Code Equate Symbol Meaning and Action

0 — Equate Symbol: IwmRetCodeOk

Meaning: Successful completion.

Action: None required.

4 — Equate Symbol: IwmRetCodeWarning

Meaning: Successful completion, unusual conditions noted.

IWMCQRY Macro

Chapter 15. IWMCQRY – Query Classification Attributes 177

Table 21. Return and Reason Codes for the IWMCQRY Macro (continued)

Return Code Reason Code Equate Symbol Meaning and Action

4 xxxx040A Equate Symbol: IwmRsnCodeOutputAreaTooSmall

Meaning: The output area supplied is too small to receive
all the available information. The variable specified in the
QUERYLEN keyword will contain the size of the storage
required to hold the returned data area.

Action: None required. If necessary, reinvoke the service
with an output area of sufficient size to receive all
information.

4 xxxx041A Equate Symbol: IwmRsnCodeNoPolMgt

Meaning: System does not support policy management
services. This return code is only set when the MVS release
is prior to MVS/ESA SP5.2.0.

Action: None required.

8 — Equate Symbol: IwmRetCodeInvocError

Meaning: Invalid invocation environment or parameters.

8 xxxx0801 Equate Symbol: IwmRsnCodeSrbMode

Meaning: Caller is in SRB mode.

Action: Avoid requesting this function while in SRB mode.

8 xxxx0803 Equate Symbol: IwmRsnCodeDisabled

Meaning: Caller is disabled.

Action: Avoid requesting this function while disabled.

8 xxxx0804 Equate Symbol: IwmRsnCodeLocked

Meaning: Caller is locked.

Action: Avoid requesting this function while locked.

8 xxxx0810 Equate Symbol: IwmRsnCodeEutFrr

Meaning: Caller has EUT FRR established.

Action: Avoid requesting this function with an EUT FRR set.

8 xxxx0823 Equate Symbol: IwmRsnCodeDatoff

Meaning: Caller invoked service while DATOFF

Action: Avoid requesting this function in this environment.

8 xxxx0824 Equate Symbol: IwmRsnCodeAmode24

Meaning: Caller invoked service but was in 24 bit
addressing mode.

Action: Request this function only when you are in 31 bit
addressing mode.

8 xxxx0827 Equate Symbol: IwmRsnCodeRsvdNot0

Meaning: Reserved field in parameter list was non-zero.

Action: Check for possible storage overlay of the parameter
list.

IWMCQRY Macro

178 z/OS V1R4.0 MVS Workload Management Services

Table 21. Return and Reason Codes for the IWMCQRY Macro (continued)

Return Code Reason Code Equate Symbol Meaning and Action

8 xxxx0828 Equate Symbol: IwmRsnCodeBadVersion

Meaning: Version number in parameter list is not valid or
the length specified is incorrect.

Action: Check for possible storage overlay of the parameter
list.

8 xxxx0830 Equate Symbol: IwmRsnCodeBadAlet

Meaning: Caller has passed an invalid ALET.

Action: Check for possible storage overlay of the parameter
list or variable.

10 — Equate Symbol: IwmRetCodeCompError

Meaning: Component error.

Action: No action required. The function may be successful
if invoked again.

IWMCQRY Macro

Chapter 15. IWMCQRY – Query Classification Attributes 179

IWMCQRY Macro

180 z/OS V1R4.0 MVS Workload Management Services

Chapter 16. IWMDEXTR – Extract Service Definition

The Extract Service Definition routine is given control from the IWMDEXTR macro.
The Extract Service Definition macro will complete the parameter list with caller
provided data and generate a stacking, program call to the extract service.

The purpose of this routine is to return a representation of the Workload
Management Service Definition currently installed in the WLM couple dataset for the
current sysplex. The service definition returned contains all the policies that are
currently eligible to be activated in the sysplex.

The information returned can be used by an application to be presented and
manipulated by an end user. The Install Service Definition macro IWMDINST, may
be used to install a Service Definition into the WLM couple dataset.

The service definition is a single logical entity decribed by the service definition
descriptor element, defined by IWMSERVD. The service definition descriptor
element contains offsets to the 5 distinct areas that comprise the service definition:

v The general service definition data area.

This data area contains general service definition information like the service
definition name and description along with more detailed information like the
policy, workload, service class and resource group information. This area is
mapped by IWMSVDEF.

v The service definition classification rules data area.

This data area contains the definitions of the classification rules and classification
groups that govern which service and report classes are associated with
incoming work when the work enters MVS. This area is mapped by IWMSVDCR.

v The notepad data area.

This data area contains any comments (or change history) that an installation
chooses to associate with the service definition. This area is mapped by
IWMSVNPA.

v The service definition application environment data area.

This data area contains the definitions of the application environments. This area
is mapped by IWMSVAEA.

v The service definition scheduling environment data area.

This data area contains the definitions of the scheduling environments. This area
is mapped by IWMSVSEA.

The caller must provide sufficient storage to contain the service definition data
requested. If insufficient storage is passed, no data is returned, an appropriate
return and reason code is set, and the length required is returned in the variable
specified in the QUERYLEN keyword.

Since the data returned is not serialized against future installs, the length returned
may still change before the extract is issued again. Therefore, the caller must issue
the extract service in a loop, checking return and reason codes, and obtaining a
larger storage area as necessary.

The Extract Service Definition macro is provided in list, execute, and standard form.
The list form accepts no variable parameters and is used only to reserve space for
the extract parameter list. The standard form is provided for use with routines which

© Copyright IBM Corp. 1988, 2002 181

do not require reentrant code. The execute form is provided for use with the list
format for reentrant routines. The extract macro is provided in PL/AS and assembler
formats.

The parameter list must be in the caller’s primary address space or be addressable
by the dispatchable unit access list.

Environment
The requirements for the caller are:

Minimum authorization: Problem state. Any PSW key

Dispatchable unit mode: Task

Cross memory mode: PASN=HASN=SASN

AMODE: 31-bit

ASC mode: Primary or access register (AR) If in Access Register ASC
mode, specify SYSSTATE ASCENV=AR before invoking this
macro.

Interrupt status: Enabled for I/O and external interrupts

Locks: No locks may be held.

Control parameters: All parameter areas must reside in current primary or be
addressable by the dispatchable unit access list.

In addition, all parameters must reside in storage of the
same key as the caller is executing in when the macro is
invoked unless the the caller is in key 0.

Programming Requirements
1. The macro CVT must be included to use this macro.
2. This functions provided by this macro are only supported on MVS/ESA SP5.2.0

or later. If code with this macro expansion is executed on lower MVS/ESA
releases (version 3 or later) a return code of 4 and reason code of xxxx041A
(constant IwmRsnCodeNoPolMgt) will be returned indicating that the service is
not available. This macro should NOT be executed on MVS versions 1 or 2.

3. The macro IWMYCON must be included to use this macro.
4. The macro IWMPB must be in the library concatenation, since it is included by

IWMYCON.
5. Note that the high order halfword of register 0, and the reason code variable

when specified, may be non-zero and represents diagnostic data which is NOT
part of the external interface. The high order halfword should thus be excluded
from comparison with the reason code values described above. The constant,
IWMRSNCODE_MASK_CONST defined in IWMYCON, may be used for this
purpose.

Restrictions
The caller cannot have an EUT FRR established.

Input Register Information
Before issuing the IWMDEXTR macro, the caller does not have to place any
information into any register unless using it in register notation for a particular
parameter, or using it as a base register.

IWMDEXTR Macro

182 z/OS V1R4.0 MVS Workload Management Services

Output Register Information
When control returns to the caller, the GPRs contain:

Register
Contents

0 Reason code if GR15 return code is non-zero
1 Used as work registers by the system
2-13 Unchanged
14 Used as a work register by the system
15 Return code

When control returns to the caller, the ARs contain:

Register
Contents

0-1 Used as work registers by the system
2-13 Unchanged
14-15 Used as work registers by the system

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the
caller depends, the caller must save them before issuing the service, and restore
them after the system returns control.

Performance Implications
None.

Syntax

main diagram

��
name

� IWMDEXTR � �

� ANSAREA=ansarea ,ANSLEN=anslen ,QUERYLEN=querylen
,RETCODE=retcode

�

�
,RSNCODE=rsncode

,PLISTVER=IMPLIED_VERSION

,PLISTVER=MAX
,PLISTVER=0

�

�
,MF=S

,0D
,MF=(L ,list addr)

,attr
,COMPLETE

,MF=(E ,list addr)

�"

Parameters
The parameters are explained as follows:

IWMDEXTR Macro

Chapter 16. IWMDEXTR – Extract Service Definition 183

name
An optional symbol, starting in column 1, that is the name on the IWMDEXTR
macro invocation. The name must conform to the rules for an ordinary
assembler language symbol.

ANSAREA=ansarea
A required output parameter, variable specifying an area to contain the service
definition data returned by the extract service. This area is defined by the
IWMSERVD macro.

To code: Specify the RS-type address, or address in register (2)-(12), of a
character field.

,ANSLEN=anslen
A required input parameter, variable to contain the length of the area specified
on ANSAREA keyword to contain the service definition data returned by the
extract service.

To code: Specify the RS-type address, or address in register (2)-(12), of a
fullword field.

,MF=S
,MF=(L,list addr)
,MF=(L,list addr,attr)
,MF=(L,list addr,0D)
,MF=(E,list addr)
,MF=(E,list addr,COMPLETE)

An optional input parameter that specifies the macro form.

Use MF=S to specify the standard form of the macro, which builds an inline
parameter list and generates the macro invocation to transfer control to the
service. MF=S is the default.

Use MF=L to specify the list form of the macro. Use the list form together with
the execute form of the macro for applications that require reentrant code. The
list form defines an area of storage that the execute form uses to store the
parameters. Only the PLISTVER parameter may be coded with the list form of
the macro.

Use MF=E to specify the execute form of the macro. Use the execute form
together with the list form of the macro for applications that require reentrant
code. The execute form of the macro stores the parameters into the storage
area defined by the list form, and generates the macro invocation to transfer
control to the service.

,list addr
The name of a storage area to contain the parameters. For MF=S and
MF=E, this can be an RS-type address or an address in register (1)-(12).

,attr
An optional 1- to 60-character input string that you use to force boundary
alignment of the parameter list. Use a value of 0F to force the parameter
list to a word boundary, or 0D to force the parameter list to a doubleword
boundary. If you do not code attr, the system provides a value of 0D.

,COMPLETE
Specifies that the system is to check for required parameters and supply
defaults for omitted optional parameters.

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX

IWMDEXTR Macro

184 z/OS V1R4.0 MVS Workload Management Services

,PLISTVER=0
An optional input parameter that specifies the version of the macro. PLISTVER
determines which parameter list the system generates. PLISTVER is an
optional input parameter on all forms of the macro, including the list form. When
using PLISTVER, specify it on all macro forms used for a request and with the
same value on all of the macro forms. The values are:

v IMPLIED_VERSION, which is the lowest version that allows all parameters
specified on the request to be processed. If you omit the PLISTVER
parameter, IMPLIED_VERSION is the default.

v MAX, if you want the parameter list to be the largest size currently possible.
This size might grow from release to release and affect the amount of
storage that your program needs.

If you can tolerate the size change, IBM recommends that you always specify
PLISTVER=MAX on the list form of the macro. Specifying MAX ensures that
the list-form parameter list is always long enough to hold all the parameters
you might specify on the execute form; in this way, MAX ensures that the
parameter list does not overwrite nearby storage.

v 0, if you use the currently available parameters.

To code: Specify one of the following:
v IMPLIED_VERSION
v MAX
v A decimal value of 0

,QUERYLEN=querylen
A required output parameter, variable which contains the number of bytes of
service defininition data returned by the extract service, or the number of bytes
of storage required to contain the service definition if insufficient storage was
provided.

To code: Specify the RS-type address, or address in register (2)-(12), of a
fullword field.

,RETCODE=retcode
An optional output parameter into which the return code is to be copied from
GPR 15.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

,RSNCODE=rsncode
An optional output parameter into which the reason code is to be copied from
GPR 0.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

ABEND Codes
Reason Code (Hex)

Explanation

0Axx0005
An attempt to reference caller’s parameters caused an OC4 abend.

Return and Reason Codes
When the IWMDEXTR macro returns control to your program:
v GPR 15 (and retcode, if you coded RETCODE) contains a return code.

IWMDEXTR Macro

Chapter 16. IWMDEXTR – Extract Service Definition 185

v When the value in GPR 15 is not zero, GPR 0 (and rsncode, if you coded
RSNCODE) contains reason code.

The following table identifies the hexadecimal return and reason codes and the
equate symbol associated with each reason code. IBM support personnel may
request the entire reason code, including the xxxx value.

Table 22. Return and Reason Codes for the IWMDEXTR Macro

Return Code Reason Code Equate Symbol Meaning and Action

0 — Equate Symbol: IwmRetCodeOk

Meaning: Successful completion.

Action: None required.

4 — Equate Symbol: IwmRetCodeWarning

Meaning: Successful completion, unusual conditions noted.

4 xxxx040A Equate Symbol: IwmRsnCodeOutputAreaTooSmall

Meaning: The output area supplied for the service definition
area (ANSAREA keyword on macro IWMDEXTR) is too
small to receive all the available information. As a result no
service definition data is returned. The length required to
receive all the service definition data is returned in the
variable specified on the QUERYLEN keyword.

Action: None required. If necessary, reinvoke the service
with an output area of sufficient size to receive all
information.

4 xxxx0414 Equate Symbol: IwmRsnCodeNullCDS

Meaning: No service definition is currently installed. As a
result, no service definition data is returned.

Action: None required.

4 xxxx0417 Equate Symbol: IwmRsnCodeBadServDE

Meaning: Service Definition retrieved from WLM CDS has
failed validation but the structure is still returned to the
caller.

Action: None required. Caution is advised in using the
structure.

4 xxxx041A Equate Symbol: IwmRsnCodeNoPolMgt

Meaning: System does not support policy management
services. This return code is only set when the MVS release
is prior to MVS/ESA SP5.2.0.

Action: None required.

8 — Equate Symbol: IwmRetCodeInvocError

Meaning: Invalid invocation environment or parameters.

8 xxxx0801 Equate Symbol: IwmRsnCodeSrbMode

Meaning: Caller is in SRB mode.

Action: Avoid requesting this function while in SRB mode.

8 xxxx0803 Equate Symbol: IwmRsnCodeDisabled

Meaning: Caller is disabled.

Action: Avoid requesting this function while disabled.

IWMDEXTR Macro

186 z/OS V1R4.0 MVS Workload Management Services

Table 22. Return and Reason Codes for the IWMDEXTR Macro (continued)

Return Code Reason Code Equate Symbol Meaning and Action

8 xxxx0804 Equate Symbol: IwmRsnCodeLocked

Meaning: Caller is locked.

Action: Avoid requesting this function while locked.

8 xxxx0810 Equate Symbol: IwmRsnCodeEutFrr

Meaning: Caller has EUT FRR established.

Action: Avoid requesting this function with an EUT FRR set.

8 xxxx0823 Equate Symbol: IwmRsnCodeDatoff

Meaning: Caller invoked service while DATOFF

Action: Avoid requesting this function in this environment.

8 xxxx0824 Equate Symbol: IwmRsnCodeAmode24

Meaning: Caller invoked service but was in 24 bit
addressing mode.

Action: Request this function only when you are in 31 bit
addressing mode.

8 xxxx0827 Equate Symbol: IwmRsnCodeRsvdNot0

Meaning: Reserved field in parameter list was non-zero.

Action: Check for possible storage overlay of the parameter
list.

8 xxxx0828 Equate Symbol: IwmRsnCodeBadVersion

Meaning: Version number in parameter list is not valid or
the length specified is incorrect.

Action: Check for possible storage overlay of the parameter
list.

8 xxxx0830 Equate Symbol: IwmRsnCodeBadAlet

Meaning: Caller has passed an invalid ALET.

Action: Check for possible storage overlay of the parameter
list or variable.

8 xxxx0841 Equate Symbol: IwmRsnCodeXMemMode

Meaning: Caller is in cross memory mode.

Action: Invoke the function in non-cross memory mode.

C — Equate Symbol: IwmRetCodeEnvError

Meaning: Environmental error.

C xxxx0C01 Equate Symbol: IwmRsnCodeNoStg

Meaning: Storage is not available for the request.

Action: There is a storage shortage. The function may work
successfully at a later time.

IWMDEXTR Macro

Chapter 16. IWMDEXTR – Extract Service Definition 187

Table 22. Return and Reason Codes for the IWMDEXTR Macro (continued)

Return Code Reason Code Equate Symbol Meaning and Action

C xxxx0C0E Equate Symbol: IwmRsnCodeInsufAccess

Meaning: The RACF facility class is active and a profile has
been defined for the MVSADMIN.WLM.POLICY RACF
facility class profile to which the caller does not have
sufficient (read) access.

Action: Invoke the function when the conditions are
alleviated.

C xxxx0C0F Equate Symbol: IwmRsnCodeCDSNotAvail

Meaning: A couple dataset for WLM has not been defined
or it has been defined but this system does not have
connectivity to the dataset.

Action: No action required.

10 — Equate Symbol: IwmRetCodeCompError

Meaning: Component error.

Action: No action required. The function may be successful
if invoked again.

IWMDEXTR Macro

188 z/OS V1R4.0 MVS Workload Management Services

Chapter 17. IWMDINST – Install Service Definition

The Install Service Definition routine is given control from the IWMDINST macro.
The Install Service Definition macro will complete the parameter list with caller
provided data and generate a stacking, program call to the install service.

The purpose of this routine is to install the WLM service definition supplied into the
WLM couple dataset for the current sysplex. After this service definition is installed
in the couple dataset all policies contained in it are eligible to be activated in the
sysplex.

The service definition is a single logical entity decribed by the service definition
descriptor element, defined by IWMSERVD. The service definition descriptor
element contains offsets to the 5 distinct areas that comprise the service definition:

v The general service definition data area.

This data area contains general service definition information like the service
definition name and description along with more detailed information like the
policy, workload, service class and resource group information. This area is
mapped by the IWMSVDEF.

v The service definition classification rules data area.

This data area contains the definitions of the classification rules and classification
groups that govern which service and report classes are associated with
incoming work when the work enters MVS. This area is mapped by IWMSVDCR.

v The notepad data area.

This data area contains any comments (or change history) that an installation
chooses to associate with the service definition. This area is mapped by
IWMSVNPA.

v The service definition application environment data area.

This data area contains the definitions of the application environments. This area
is mapped by IWMSVAEA.

v The service definition scheduling environment data area.

This data area contains the definitions of the scheduling environments. This area
is mapped by IWMSVSEA.

The Service definition descriptor element and all four data areas of the service
definition must be passed as inputs to the install service definition service. Even if
certain data areas are non-applicable, for example no notepad information exists,
the data area header information must still be completely filled in and pointed to by
the descriptor element.

All input data areas must represent a valid service definition in order for the install
to occur. If validity checking for any section of the service definition fails, the entire
install process is aborted and a return and reason code indicating that validation of
the service definition failed is returned. In addition, a reason code describing the
specific error detected is returned in the variable specified on keyword
VALCHECK_RSN and an offset to the specific section of the service definition
where the error was detected is returned in the variable specified on the
VALCHECK_OFFSET keyword. Validity check processing occurs until the first error
is detected and only a single error is identified on an invocation of this macro.

The caller can also request that the install occurs only if the service definition that
was used as a base for the definition being installed is still the currently installed

© Copyright IBM Corp. 1988, 2002 189

service definition in the WLM couple dataset. This allows the caller the ability to
prevent inadvertent over-writes of service defininition updates that some other user
(caller) made in the window, from when the service definition was initially read, to
when the current install with the updated service definition was issued. For more
details, refer to the COND keyword below.

The parameter list must be in the caller’s primary address space or be addressable
by the dispatchable unit access list.

Environment
The requirements for the caller are:

Minimum authorization: Problem state. Any PSW key

Dispatchable unit mode: Task

Cross memory mode: PASN=HASN=SASN

AMODE: 31-bit

ASC mode: Primary or access register (AR) If in Access Register ASC
mode, specify SYSSTATE ASCENV=AR before invoking this
macro.

Interrupt status: Enabled for I/O and external interrupts

Locks: No locks may be held.

Control parameters: All parameter areas must reside in current primary or be
addressable by the dispatchable unit access list.

In addition, all parameters must reside in storage of the
same key as the caller is executing in when the macro is
invoked unless the the caller is in key 0.

Programming Requirements
1. The macro CVT must be included to use this macro.
2. This functions provided by this macro are only supported on MVS/ESA SP5.2.0

or later. If code with this macro expansion is executed on lower MVS/ESA
releases (version 3 or later) a return code of 4 and reason code of xxxx041A
(constant IwmRsnCodeNoPolMgt) will be returned indicating that the service is
not available. This macro should NOT be executed on MVS versions 1 or 2.

3. The macro IWMYCON must be included to use this macro.
4. The macro IWMPB must be in the library concatenation, since it is included by

IWMYCON.
5. Note that the high order halfword of register 0, and the reason code variable

when specified, may be non-zero and represents diagnostic data which is NOT
part of the external interface. The high order halfword should thus be excluded
from comparison with the reason code values described above. The constant,
IWMRSNCODE_MASK_CONST defined in IWMYCON, may be used for this
purpose.

Restrictions
The caller cannot have an EUT FRR established.

IWMDINST Macro

190 z/OS V1R4.0 MVS Workload Management Services

Input Register Information
Before issuing the IWMDINST macro, the caller does not have to place any
information into any register unless using it in register notation for a particular
parameter, or using it as a base register.

Output Register Information
When control returns to the caller, the GPRs contain:

Register
Contents

0 Reason code if GR15 return code is non-zero
1 Used as work registers by the system
2-13 Unchanged
14 Used as a work register by the system
15 Return code

When control returns to the caller, the ARs contain:

Register
Contents

0-1 Used as work registers by the system
2-13 Unchanged
14-15 Used as work registers by the system

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the
caller depends, the caller must save them before issuing the service, and restore
them after the system returns control.

Performance Implications
None.

Syntax

main diagram

��
name

� IWMDINST � SERVD_AREA=servd_area �

�
,QRY_BASEID=qry_baseid

,PRODUCT_ID=product_id �

� ,VALCHECK_RSN=valcheck_rsn ,VALCHECK_OFFSET=valcheck_offset �

� ,COND=YES ,IN_BASEID=in_baseid
,COND=NO ,RETCODE=retcode

�

IWMDINST Macro

Chapter 17. IWMDINST – Install Service Definition 191

�
,RSNCODE=rsncode

,PLISTVER=IMPLIED_VERSION

,PLISTVER=MAX
,PLISTVER=0

�

�
,MF=S

,0D
,MF=(L ,list addr)

,attr
,COMPLETE

,MF=(E ,list addr)

�"

Parameters
The parameters are explained as follows:

name
An optional symbol, starting in column 1, that is the name on the IWMDINST
macro invocation. The name must conform to the rules for an ordinary
assembler language symbol.

,COND=YES
,COND=NO

A required parameter, which indicates whether checking is performed prior to
the install, to determine if the service definition that the input definition was
based on is still the currently installed service definition (i.e. another user has
not made updates).

,COND=YES
indicates that the input service definition should only be installed if the
identifier of currently installed service definition matches the base identifier
passed on IN_BASEID keyword. This allows the user to detect changes in
the installed service definition, since the last extract was done, and allows
the user to confirm whether the install should still occur.

,COND=NO
indicates that the input service definition should be installed unconditionally.

,IN_BASEID=in_baseid
When COND=YES is specified, a required input parameter, variable specifying
an area that contains the identifier of the service definition that was used as a
base for the service definition being installed. This area is mapped by the
SVIDSSVD DESCT in macro IWMSVIDS.

To code: Specify the RS-type address, or address in register (2)-(12), of a
character field.

,MF=S
,MF=(L,list addr)
,MF=(L,list addr,attr)
,MF=(L,list addr,0D)
,MF=(E,list addr)
,MF=(E,list addr,COMPLETE)

An optional input parameter that specifies the macro form.

Use MF=S to specify the standard form of the macro, which builds an inline
parameter list and generates the macro invocation to transfer control to the
service. MF=S is the default.

IWMDINST Macro

192 z/OS V1R4.0 MVS Workload Management Services

Use MF=L to specify the list form of the macro. Use the list form together with
the execute form of the macro for applications that require reentrant code. The
list form defines an area of storage that the execute form uses to store the
parameters. Only the PLISTVER parameter may be coded with the list form of
the macro.

Use MF=E to specify the execute form of the macro. Use the execute form
together with the list form of the macro for applications that require reentrant
code. The execute form of the macro stores the parameters into the storage
area defined by the list form, and generates the macro invocation to transfer
control to the service.

,list addr
The name of a storage area to contain the parameters. For MF=S and
MF=E, this can be an RS-type address or an address in register (1)-(12).

,attr
An optional 1- to 60-character input string that you use to force boundary
alignment of the parameter list. Use a value of 0F to force the parameter
list to a word boundary, or 0D to force the parameter list to a doubleword
boundary. If you do not code attr, the system provides a value of 0D.

,COMPLETE
Specifies that the system is to check for required parameters and supply
defaults for omitted optional parameters.

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX
,PLISTVER=0

An optional input parameter that specifies the version of the macro. PLISTVER
determines which parameter list the system generates. PLISTVER is an
optional input parameter on all forms of the macro, including the list form. When
using PLISTVER, specify it on all macro forms used for a request and with the
same value on all of the macro forms. The values are:

v IMPLIED_VERSION, which is the lowest version that allows all parameters
specified on the request to be processed. If you omit the PLISTVER
parameter, IMPLIED_VERSION is the default.

v MAX, if you want the parameter list to be the largest size currently possible.
This size might grow from release to release and affect the amount of
storage that your program needs.

If you can tolerate the size change, IBM recommends that you always specify
PLISTVER=MAX on the list form of the macro. Specifying MAX ensures that
the list-form parameter list is always long enough to hold all the parameters
you might specify on the execute form; in this way, MAX ensures that the
parameter list does not overwrite nearby storage.

v 0, if you use the currently available parameters.

IWMDINST Macro

Chapter 17. IWMDINST – Install Service Definition 193

To code: Specify one of the following:
v IMPLIED_VERSION
v MAX
v A decimal value of 0

,PRODUCT_ID=product_id
A required input parameter, variable specifying an area that contains an
identifier of the product (application) performing the install. The identifier should
include information like product name, a unique version/release identifier, and
any other information that can help identify your product. This area is mapped
by the SVIDSPRD DSECT in the IWMSVIDS macro.

To code: Specify the RS-type address, or address in register (2)-(12), of a
32-character field.

,QRY_BASEID=qry_baseid
An optional output parameter, variable specifying an area to contain the
identifier of the service definition that is currently installed on the WLM couple
dataset. This area is mapped by the SVIDSSVD DSECT in macro IWMSVIDS.
When this keyword is specified, the data is returned when the return code
indicates successful completion (return code 0) regardless of whether
COND(YES) or COND(NO) was specified. In addition, this data is returned on a
conditional request (COND(YES)) if the return and reason code indicate that
specified IN_BASEID does not match the baseid of the installed service
definition (return code 4, reason code ’0413’X).

To code: Specify the RS-type address, or address in register (2)-(12), of a
character field.

,RETCODE=retcode
An optional output parameter into which the return code is to be copied from
GPR 15.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

,RSNCODE=rsncode
An optional output parameter into which the reason code is to be copied from
GPR 0.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

SERVD_AREA=servd_area
A required input parameter, variable specifying an area that contains the service
definition data to be installed. This area is defined by the IWMSERVD macro.

To code: Specify the RS-type address, or address in register (2)-(12), of a
character field.

,VALCHECK_OFFSET=valcheck_offset
A required output parameter, variable to contain the offset from the beginning of
the service definition (IWMSERVD) to the section of the input service definition
where validity check processing found an error described by the reason code
returned in VALCHECK_RSN. This offset is returned under the same conditions
as when VALCHECK_RSN is returned.

To code: Specify the RS-type address, or address in register (2)-(12), of a
fullword field.

,VALCHECK_RSN=valcheck_rsn
A required output parameter, variable that will contain the reason code
identifying the specific error in the input service definition found during validity

IWMDINST Macro

194 z/OS V1R4.0 MVS Workload Management Services

checking. This reason code is only returned if validation of the input service
definition fails and a primary return code of 8 and reason code of xxxx083D is
returned.

To code: Specify the RS-type address, or address in register (2)-(12), of a
fullword field.

ABEND Codes
Reason Code (Hex)

Explanation

0Axx0005
An attempt to reference caller’s parameters caused an OC4 abend.

Return and Reason Codes
When the IWMDINST macro returns control to your program:
v GPR 15 (and retcode, if you coded RETCODE) contains a return code.
v When the value in GPR 15 is not zero, GPR 0 (and rsncode, if you coded

RSNCODE) contains reason code.

The following table identifies the hexadecimal return and reason codes and the
equate symbol associated with each reason code. IBM support personnel may
request the entire reason code, including the xxxx value.

Table 23. Return and Reason Codes for the IWMDINST Macro

Return Code Reason Code Equate Symbol Meaning and Action

0 — Equate Symbol: IwmRetCodeOk

Meaning: Successful completion.

Action: None required.

4 — Equate Symbol: IwmRetCodeWarning

Meaning: Successful completion, unusual conditions noted.

4 xxxx0413 Equate Symbol: IwmRsnCodeIdsDontMatch

Meaning: COND=YES was specified on the IWMDINST
macro, yet the service definition identifier specified on the
IN_BASEID keyword did not match the identifier of the
installed service definition. The identifier of the currently
installed service definition is returned in the area specified
on the QRY_BASEID keyword.

Action: None required.

4 xxxx041A Equate Symbol: IwmRsnCodeNoPolMgt

Meaning: System does not support policy management
services. This return code is only set when the MVS release
is prior to MVS/ESA SP5.2.0.

Action: None required.

8 — Equate Symbol: IwmRetCodeInvocError

Meaning: Invalid invocation environment or parameters.

8 xxxx0801 Equate Symbol: IwmRsnCodeSrbMode

Meaning: Caller is in SRB mode.

Action: Avoid requesting this function while in SRB mode.

IWMDINST Macro

Chapter 17. IWMDINST – Install Service Definition 195

Table 23. Return and Reason Codes for the IWMDINST Macro (continued)

Return Code Reason Code Equate Symbol Meaning and Action

8 xxxx0803 Equate Symbol: IwmRsnCodeDisabled

Meaning: Caller is disabled.

Action: Avoid requesting this function while disabled.

8 xxxx0804 Equate Symbol: IwmRsnCodeLocked

Meaning: Caller is locked.

Action: Avoid requesting this function while locked.

8 xxxx0810 Equate Symbol: IwmRsnCodeEutFrr

Meaning: Caller has EUT FRR established.

Action: Avoid requesting this function with an EUT FRR set.

8 xxxx0823 Equate Symbol: IwmRsnCodeDatoff

Meaning: Caller invoked service while DATOFF

Action: Avoid requesting this function in this environment.

8 xxxx0824 Equate Symbol: IwmRsnCodeAmode24

Meaning: Caller invoked service but was in 24 bit
addressing mode.

Action: Request this function only when you are in 31 bit
addressing mode.

8 xxxx0827 Equate Symbol: IwmRsnCodeRsvdNot0

Meaning: Reserved field in parameter list was non-zero.

Action: Check for possible storage overlay of the parameter
list.

8 xxxx0828 Equate Symbol: IwmRsnCodeBadVersion

Meaning: Version number in parameter list is not valid or
the length specified is incorrect.

Action: Check for possible storage overlay of the parameter
list.

8 xxxx0829 Equate Symbol: IwmRsnCodeBadOptions

Meaning: Parameter list omits required parameters or
supplies mutually exclusive parameters or provides data
associated with options not selected.

Action: Check for possible storage overlay of the parameter
list.

8 xxxx0830 Equate Symbol: IwmRsnCodeBadAlet

Meaning: Caller has passed an invalid ALET.

Action: Check for possible storage overlay of the parameter
list or variable.

8 xxxx083D Equate Symbol: IwmRsnCodeBadServDI

Meaning: Caller has passed a Service Definition area that
failed validation.

Action: See values in VALCHECK_RSN and
VALCHECK_OFFSET parameters for more information
concerning the specific failure.

IWMDINST Macro

196 z/OS V1R4.0 MVS Workload Management Services

Table 23. Return and Reason Codes for the IWMDINST Macro (continued)

Return Code Reason Code Equate Symbol Meaning and Action

8 xxxx0841 Equate Symbol: IwmRsnCodeXMemMode

Meaning: Caller is in cross memory mode.

Action: Invoke the function in non-cross memory mode.

8 xxxx085B Equate Symbol: IwmRsnCodeNoSERVDArea

Meaning: Caller invoked service without a required SERVD
area or the SERVD area address is 0.

Action: Check for possible storage overlay of the parameter
list or variable.

C — Equate Symbol: IwmRetCodeEnvError

Meaning: Environmental error.

C xxxx0C01 Equate Symbol: IwmRsnCodeNoStg

Meaning: Storage is not available for the request.

Action: There is a storage shortage. The function may work
successfully at a later time.

C xxxx0C0E Equate Symbol: IwmRsnCodeInsufAccess

Meaning: The RACF FACILITY class is active and a profile
has been defined for the MVSADMIN.WLM.POLICY RACF
facility class profile to which the caller does not have
sufficient (update) access.

Action: Invoke the function when the conditions are
alleviated.

C xxxx0C0F Equate Symbol: IwmRsnCodeCDSNotAvail

Meaning: A couple dataset for WLM has not been defined
or it has been defined but this system does not have
connectivity to the dataset.

Action: No action required.

C xxxx0C10 Equate Symbol: IwmRsnCodeCDSTooSmall

Meaning: WLM CDS is too small to process the request.

Action: No action required.

10 — Equate Symbol: IwmRetCodeCompError

Meaning: Component error.

Action: No action required. The function may be successful
if invoked again.

IWMDINST Macro

Chapter 17. IWMDINST – Install Service Definition 197

IWMDINST Macro

198 z/OS V1R4.0 MVS Workload Management Services

Chapter 18. IWMDISC – Disconnecting from Workload
Management

IWMDISC allows the caller to disconnect from the workload management services.
This means that the input connect token can no longer be passed to workload
management macros such as IWMCLSFY and IWMRPT. When a program
disconnects, any enclaves associated with the input connect token are deleted from
the system. Any SRBs running in the enclave are run as preemptible SRBs at the
priority of the home address space. Any enclave TCBs are converted to ordinary
TCBs.

You should issue this macro once during shutdown of the connecting address
space.

Environment
The requirements for the caller are:

Minimum authorization: When the corresponding Connect (IWMCONN) invocation
specified WORK_MANAGER=YES or
QUEUE_MANAGER=YES, ROUTER=YES, or
EXPTIMPT=YES, supervisor state or program key mask
(PKM) allowing keys 0-7.

When the corresponding Connect (IWMCONN) invocation
specified WORK_MANAGER=NO, QUEUE_MANAGER=NO,
ROUTER=NO, EXPTIMPT=NO, and
SERVER_MANAGER=YES, problem state with any PSW
key.

Dispatchable unit mode: Task or SRB

When the corresponding Connect (IWMCONN) invocation
specified SERVER_MANAGER=YES, task mode.

Cross memory mode: The current Home address space must be the same as
Home when the corresponding Connect was invoked. Any
PASN, any SASN.

When the corresponding Connect (IWMCONN) invocation
specified SERVER_MANAGER=YES, non-cross memory
mode, P=S=H.

AMODE: 31-bit

ASC mode: Primary

Interrupt status: Enabled for I/O and external interrupts

Locks: No locks may be held.

When the corresponding Connect (IWMCONN) invocation
specified SERVER_MANAGER=YES,
SERVER_TYPE=ROUTING, NO FRRs may be set.

Control parameters: Control parameters must be in the primary address space.

Programming Requirements
1. The macro CVT must be included to use this macro.
2. The macro IWMYCON must be included to use this macro.

© Copyright IBM Corp. 1988, 2002 199

3. The macro IWMPB must be in the library concatenation, since it is included by
IWMYCON.

4. Note that the high order halfword of register 0, and the reason code variable
when specified, may be non-zero and represents diagnostic data which is NOT
part of the external interface. The high order halfword should thus be excluded
from comparison with the reason code values described above. The constant,
IWMRSNCODE_MASK_CONST defined in IWMYCON, may be used for this
purpose.

Restrictions
1. No FRRs may be set when calling to disconnect a space which is connected as

a server manager with server type = routing.
2. If the key specified on IWMCONN was a user key (8-F), then the following must

ALL be true:
v caller must be in non-cross-memory mode (P=S=H). This implies that the

current primary must match the primary at the time that IWMCONN was
invoked. Running in a subspace is not supported.

v must be in TCB mode (not SRB)
v current TCB must match the TCB at the time that IWMCONN was invoked.

3. This service should not be invoked while in a RTM termination routine (resource
manager) for the TCB owning the connect token since MVS will have its own
resource cleanup routine and unpredictable results would occur. It is legitimate
to use this service while in a recovery routine, however, or in mainline
processing.

Input Register Information
Before issuing the IWMDISC macro, the caller does not have to place any
information into any register unless using it in register notation for a particular
parameter, or using it as a base register.

Output Register Information
When control returns to the caller, the GPRs contain:

Register
Contents

0 Reason code if GR15 return code is non-zero
1 Used as work registers by the system
2-13 Unchanged
14 Used as work registers by the system
15 Return code

When control returns to the caller, the ARs contain:

Register
Contents

0-1 Used as work registers by the system
2-13 Unchanged
14-15 Used as work registers by the system

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the
caller depends, the caller must save them before issuing the service, and restore
them after the system returns control.

IWMDISC Macro

200 z/OS V1R4.0 MVS Workload Management Services

Performance Implications
None.

Syntax

main diagram

��
name

� IWMDISC � CONNTKN=conntkn
,RETCODE=retcode

�

�
,RSNCODE=rsncode

,PLISTVER=IMPLIED_VERSION

,PLISTVER=MAX
,PLISTVER=0

�

�
,MF=S

,0D
,MF=(L ,list addr)

,attr
,COMPLETE

,MF=(E ,list addr)

�"

Parameters
The parameters are explained as follows:

name
An optional symbol, starting in column 1, that is the name on the IWMDISC
macro invocation. The name must conform to the rules for an ordinary
assembler language symbol.

CONNTKN=conntkn
A required input parameter, which contains the connect token for the
environment to be disconnected.

To code: Specify the RS-type address, or address in register (2)-(12), of a 32
bit field.

,MF=S
,MF=(L,list addr)
,MF=(L,list addr,attr)
,MF=(L,list addr,0D)
,MF=(E,list addr)
,MF=(E,list addr,COMPLETE)

An optional input parameter that specifies the macro form.

Use MF=S to specify the standard form of the macro, which builds an inline
parameter list and generates the macro invocation to transfer control to the
service. MF=S is the default.

Use MF=L to specify the list form of the macro. Use the list form together with
the execute form of the macro for applications that require reentrant code. The
list form defines an area of storage that the execute form uses to store the
parameters. Only the PLISTVER parameter may be coded with the list form of
the macro.

IWMDISC Macro

Chapter 18. IWMDISC – Disconnecting from Workload Management 201

Use MF=E to specify the execute form of the macro. Use the execute form
together with the list form of the macro for applications that require reentrant
code. The execute form of the macro stores the parameters into the storage
area defined by the list form, and generates the macro invocation to transfer
control to the service.

,list addr
The name of a storage area to contain the parameters. For MF=S and
MF=E, this can be an RS-type address or an address in register (1)-(12).

,attr
An optional 1- to 60-character input string that you use to force boundary
alignment of the parameter list. Use a value of 0F to force the parameter
list to a word boundary, or 0D to force the parameter list to a doubleword
boundary. If you do not code attr, the system provides a value of 0D.

,COMPLETE
Specifies that the system is to check for required parameters and supply
defaults for omitted optional parameters.

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX
,PLISTVER=0

An optional input parameter that specifies the version of the macro. PLISTVER
determines which parameter list the system generates. PLISTVER is an
optional input parameter on all forms of the macro, including the list form. When
using PLISTVER, specify it on all macro forms used for a request and with the
same value on all of the macro forms. The values are:

v IMPLIED_VERSION, which is the lowest version that allows all parameters
specified on the request to be processed. If you omit the PLISTVER
parameter, IMPLIED_VERSION is the default.

v MAX, if you want the parameter list to be the largest size currently possible.
This size might grow from release to release and affect the amount of
storage that your program needs.

If you can tolerate the size change, IBM recommends that you always specify
PLISTVER=MAX on the list form of the macro. Specifying MAX ensures that
the list-form parameter list is always long enough to hold all the parameters
you might specify on the execute form; in this way, MAX ensures that the
parameter list does not overwrite nearby storage.

v 0, if you use the currently available parameters.

To code: Specify one of the following:
v IMPLIED_VERSION
v MAX
v A decimal value of 0

,RETCODE=retcode
An optional output parameter into which the return code is to be copied from
GPR 15.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

,RSNCODE=rsncode
An optional output parameter into which the reason code is to be copied from
GPR 0.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

IWMDISC Macro

202 z/OS V1R4.0 MVS Workload Management Services

ABEND Codes
None.

Return and Reason Codes
When the IWMDISC macro returns control to your program:
v GPR 15 (and retcode, if you coded RETCODE) contains a return code.
v When the value in GPR 15 is not zero, GPR 0 (and rsncode, if you coded

RSNCODE) contains reason code.

The following table identifies the hexadecimal return and reason codes and the
equate symbol associated with each reason code. IBM support personnel may
request the entire reason code, including the xxxx value.

Table 24. Return and Reason Codes for the IWMDISC Macro

Return Code Reason Code Equate Symbol Meaning and Action

0 — Equate Symbol: IwmRetCodeOk

Meaning: Successful completion.

Action: None required.

4 — Equate Symbol: IwmRetCodeWarning

Meaning: Successful completion, unusual conditions noted.

4 xxxx0401 Equate Symbol: IwmRsnCodeNoWLM

Meaning: System does not support work manager services.
This return code is only set when the MVS release is prior
to MVS/ESA SP5.1.0.

Action: None required.

4 xxxx0409 Equate Symbol: IwmRsnCodeNoConn

Meaning: Input connection token does not reflect an active
connection to WLM.

Action: None required.

8 — Equate Symbol: IwmRetCodeInvocError

Meaning: Invalid invocation environment or parameters.

8 xxxx0801 Equate Symbol: IwmRsnCodeSrbMode

Meaning: Caller is in SRB mode.

Action: Avoid requesting this function while in SRB mode.

8 xxxx0802 Equate Symbol: IwmRsnCodeXmemUserKeyTkn

Meaning: Caller is in cross-memory mode while the token
was obtained in a user key.

Action: Avoid requesting this function while in
cross-memory mode.

8 xxxx0803 Equate Symbol: IwmRsnCodeDisabled

Meaning: Caller is disabled.

Action: Avoid requesting this function while disabled.

IWMDISC Macro

Chapter 18. IWMDISC – Disconnecting from Workload Management 203

Table 24. Return and Reason Codes for the IWMDISC Macro (continued)

Return Code Reason Code Equate Symbol Meaning and Action

8 xxxx0804 Equate Symbol: IwmRsnCodeLocked

Meaning: Caller is locked.

Action: Avoid requesting this function while locked.

8 xxxx0809 Equate Symbol: IwmRsnCodeSrbUserKeyTkn

Meaning: Caller is in SRB mode, while the token was
obtained in a user key (8-F).

Action: Avoid requesting this function in SRB mode for
tokens associated with user key.

8 xxxx080A Equate Symbol: IwmRsnCodeTcbNotOwnerUserKeyTkn

Meaning: Current TCB is not the owner, while the token
was obtained in a user key (8-F).

Action: Avoid requesting this function under a TCB other
than the owner for a token associated with user key.

8 xxxx080B Equate Symbol: IwmRsnCodeBadPl

Meaning: Error accessing parameter list.

Action: Check for possible storage overlay.

8 xxxx0810 Equate Symbol: IwmRsnCodeEutFrr

Meaning: Caller has EUT FRR established.

Action: Avoid requesting this function with an EUT FRR set.

8 xxxx0823 Equate Symbol: IwmRsnCodeDatoff

Meaning: Caller invoked service while DATOFF

Action: Avoid requesting this function in this environment.

8 xxxx0824 Equate Symbol: IwmRsnCodeAmode24

Meaning: Caller invoked service but was in 24 bit
addressing mode.

Action: Request this function only when you are in 31 bit
addressing mode.

8 xxxx0825 Equate Symbol: IwmRsnCodeAscModeNotPrimary

Meaning: Caller invoked service but was not DAT on
Primary ASC mode.

Action: Avoid requesting this function in this environment.

8 xxxx0826 Equate Symbol: IwmRsnCodeTaskTerm

Meaning: Caller invoked service while task termination is in
progress for the TCB associated with the owner.

Action: Avoid requesting this function in this environment.

8 xxxx0827 Equate Symbol: IwmRsnCodeRsvdNot0

Meaning: Reserved field in parameter list was non-zero.

Action: Check for possible storage overlay of the parameter
list.

IWMDISC Macro

204 z/OS V1R4.0 MVS Workload Management Services

Table 24. Return and Reason Codes for the IWMDISC Macro (continued)

Return Code Reason Code Equate Symbol Meaning and Action

8 xxxx0828 Equate Symbol: IwmRsnCodeBadVersion

Meaning: Version number in parameter list is not valid.

Action: Check for possible storage overlay of the parameter
list.

8 xxxx082F Equate Symbol: IwmRsnCodeWrongHome

Meaning: Caller invoked the service from the wrong home
address space.

Action: Invoke the function with the correct home address
space.

8 xxxx0841 Equate Symbol: IwmRsnCodeXMemMode

Meaning: Caller is in cross memory mode.

Action: Invoke the function in non-cross memory mode.

8 xxxx084D Equate Symbol: IwmRsnCodeNotAuthConnect

Meaning: The caller must be supervisor state or have PSW
key mask 0-7 authority to disconnect from the requested
WLM services.

Action: Avoid requesting this function in this environment.

10 — Equate Symbol: IwmRetCodeCompError

Meaning: Component error.

Action: No action required. The function may be successful
if invoked again.

IWMDISC Macro

Chapter 18. IWMDISC – Disconnecting from Workload Management 205

IWMDISC Macro

206 z/OS V1R4.0 MVS Workload Management Services

Chapter 19. IWMECQRY – Query Enclave Classification
Attributes

The purpose of this service is to query the classification attributes of an Enclave.
The output is mapped by IWMECD.

The Query macro is provided in list, execute, and standard form. The list form
accepts no variable parameters and is used only to reserve space for the parameter
list. The standard form is provided for use with routines which do not require
reentrant code. The execute form is provided for use with the list format for
reentrant routines.

The parameter list must be in the caller’s primary address space or be addressable
by the dispatchable unit access list.

Environment
The requirements for the caller are:

Minimum authorization: Supervisor state or program key mask (PKM) allowing keys
0-7.

Dispatchable unit mode: Task or SRB

Cross memory mode: Any PASN, any HASN, any SASN

AMODE: 31-bit

ASC mode: Primary or access register (AR) Any P,S,H.

If in Access Register ASC mode, specify SYSSTATE
ASCENV=AR before invoking this macro.

Interrupt status: Enabled for I/O and external interrupts

Locks: No locks may be held.

Control parameters: Control parameters must be in the primary address space.

Programming Requirements
1. This macro may only be used on MVS/ESA SP5.2 or later levels.
2. The macro IWMYCON must be included to use this macro.
3. The macro IWMPB must be in the library concatenation, since it is included by

IWMYCON.
4. Reason code and return code constants are defined within IWMYCON.
5. Note that the high order halfword of register 0, and the reason code variable

when specified, may be non-zero and represents diagnostic data which is NOT
part of the external interface. The high order halfword should thus be excluded
from comparison with the reason code values described above.

The constant, IWMRSNCODE_MASK_CONST defined in IWMYCON, may be
used for this purpose.

Restrictions
1. This macro may not be used prior to the completion of WLM address space

initialization
2. All parameter areas must reside in current primary or be addressable by the

dispatchable unit access list.

© Copyright IBM Corp. 1988, 2002 207

3. The caller must provide storage for an answer area mapped by IWMECD. This
answer area may reside in the caller’s primary address space, or in a dataspace
accessible via the current unit of work’s dispatchable unit access list (DUal).

Input Register Information
Before issuing the IWMECQRY macro, the caller does not have to place any
information into any register unless using it in register notation for a particular
parameter, or using it as a base register.

Output Register Information
When control returns to the caller, the GPRs contain:

Register
Contents

0 Reason code if GR15 return code is non-zero
1 Used as work register by the system
2-13 Unchanged
14 Used as work register by the system
15 Return code

When control returns to the caller, the ARs contain:

Register
Contents

0-1 Used as work registers by the system
2-13 Unchanged
14-15 Used as work registers by the system

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the
caller depends, the caller must save them before issuing the service, and restore
them after the system returns control.

Performance Implications
None.

IWMECQRY Macro

208 z/OS V1R4.0 MVS Workload Management Services

Syntax

main diagram

��
name

� IWMECQRY � ETOKEN=etoken ,ANSAREA=ansarea ,ANSLEN=anslen �

� ,QUERYLEN=querylen
,RETCODE=retcode

,PLISTVER=IMPLIED_VERSION

,PLISTVER=MAX
,PLISTVER=0

�

�
,MF=S

,0D
,MF=(L ,list addr)

,attr
,COMPLETE

,MF=(E ,list addr)

�"

Parameters
The parameters are explained as follows:

name
An optional symbol, starting in column 1, that is the name on the IWMECQRY
macro invocation. The name must conform to the rules for an ordinary
assembler language symbol.

,ANSAREA=ansarea
A required output parameter, which specifies an area to contain the data being
returned. The answer area is defined by the IWMECD macro.

To code: Specify the RS-type address, or address in register (2)-(12), of a
character field.

,ANSLEN=anslen
A required input parameter, variable which contains the length of the area
provided to contain the data being returned by IWMECQRY.

To code: Specify the RS-type address, or address in register (2)-(12), of a
fullword field.

ETOKEN=etoken
A required input parameter, which contains the Enclave token representing the
Enclave of interest.

To code: Specify the RS-type address, or address in register (2)-(12), of an
8-character field.

,MF=S
,MF=(L,list addr)
,MF=(L,list addr,attr)
,MF=(L,list addr,0D)
,MF=(E,list addr)
,MF=(E,list addr,COMPLETE)

An optional input parameter that specifies the macro form.

IWMECQRY Macro

Chapter 19. IWMECQRY – Query Enclave Classification Attributes 209

Use MF=S to specify the standard form of the macro, which builds an inline
parameter list and generates the macro invocation to transfer control to the
service. MF=S is the default.

Use MF=L to specify the list form of the macro. Use the list form together with
the execute form of the macro for applications that require reentrant code. The
list form defines an area of storage that the execute form uses to store the
parameters. Only the PLISTVER parameter may be coded with the list form of
the macro.

Use MF=E to specify the execute form of the macro. Use the execute form
together with the list form of the macro for applications that require reentrant
code. The execute form of the macro stores the parameters into the storage
area defined by the list form, and generates the macro invocation to transfer
control to the service.

,list addr
The name of a storage area to contain the parameters. For MF=S and
MF=E, this can be an RS-type address or an address in register (1)-(12).

,attr
An optional 1- to 60-character input string that you use to force boundary
alignment of the parameter list. Use a value of 0F to force the parameter
list to a word boundary, or 0D to force the parameter list to a doubleword
boundary. If you do not code attr, the system provides a value of 0D.

,COMPLETE
Specifies that the system is to check for required parameters and supply
defaults for omitted optional parameters.

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX
,PLISTVER=0

An optional input parameter that specifies the version of the macro. PLISTVER
determines which parameter list the system generates. PLISTVER is an
optional input parameter on all forms of the macro, including the list form. When
using PLISTVER, specify it on all macro forms used for a request and with the
same value on all of the macro forms. The values are:

v IMPLIED_VERSION, which is the lowest version that allows all parameters
specified on the request to be processed. If you omit the PLISTVER
parameter, IMPLIED_VERSION is the default.

v MAX, if you want the parameter list to be the largest size currently possible.
This size might grow from release to release and affect the amount of
storage that your program needs.

If you can tolerate the size change, IBM recommends that you always specify
PLISTVER=MAX on the list form of the macro. Specifying MAX ensures that
the list-form parameter list is always long enough to hold all the parameters
you might specify on the execute form; in this way, MAX ensures that the
parameter list does not overwrite nearby storage.

v 0, if you use the currently available parameters.

IWMECQRY Macro

210 z/OS V1R4.0 MVS Workload Management Services

To code: Specify one of the following:
v IMPLIED_VERSION
v MAX
v A decimal value of 0

,QUERYLEN=querylen
A required output parameter, variable which contains the number of bytes
needed to contain the classification attributes being returned by IWMECQRY.
The length of the area needed to contain the data is dependent on the MVS
release. If the ANSLEN is less than the QUERYLEN, then no data is returned in
the output area specified by ANSAREA.

To code: Specify the RS-type address, or address in register (2)-(12), of a
fullword field.

,RETCODE=retcode
An optional output parameter into which the return code is to be copied from
GPR 15.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

ABEND Codes
None.

Return and Reason Codes
When the IWMECQRY macro returns control to your program, GPR 15 (and
retcode, if you coded RETCODE) contains a return code.

The following table identifies the hexadecimal return and reason codes and the
equate symbol associated with each reason code. IBM support personnel may
request the entire reason code, including the xxxx value.

Table 25. Return and Reason Codes for the IWMECQRY Macro

Return Code Reason Code Equate Symbol Meaning and Action

0 — Equate Symbol: IwmRetCodeOk

Meaning: Successful completion.

Action: None required.

4 — Equate Symbol: IwmRetCodeWarning

Meaning: Successful completion, unusual conditions noted.

4 xxxx040A Equate Symbol: IwmRsnCodeOutputAreaTooSmall

Meaning: The output area supplied is too small to receive
all the available information.

Action: None required.

4 xxxx043C Equate Symbol: IwmRsnCodeIsReset

Meaning: Classification information returned may not reflect
how the independent enclave is being managed. The
independent enclave was reset to another service class or
is reset quiesced.

Action: None required.

8 — Equate Symbol: IwmRetCodeInvocError

Meaning: Invalid invocation environment or parameters

IWMECQRY Macro

Chapter 19. IWMECQRY – Query Enclave Classification Attributes 211

Table 25. Return and Reason Codes for the IWMECQRY Macro (continued)

Return Code Reason Code Equate Symbol Meaning and Action

8 xxxx0803 Equate Symbol: IwmRsnCodeDisabled

Meaning: Caller is disabled.

Action: Avoid requesting this function while disabled.

8 xxxx0804 Equate Symbol: IwmRsnCodeLocked

Meaning: Caller is locked.

Action: Avoid requesting this function while locked.

8 xxxx080B Equate Symbol: IwmRsnCodeBadPl

Meaning: Error accessing parameter list.

Action: Check for possible storage overlay.

8 xxxx0824 Equate Symbol: IwmRsnCodeAmode24

Meaning: Caller invoked service but was in 24 bit
addressing mode.

Action: Request this function only when you are in 31 bit
addressing mode.

8 xxxx0830 Equate Symbol: IwmRsnCodeBadAlet

Meaning: Caller has passed an invalid ALET.

Action: Check for possible storage overlay of the parameter
list or variable.

8 xxxx083A Equate Symbol: IwmRsnCodeBadEnclave

Meaning: Enclave token is invalid.

Action: Check the specification of the ETOKEN parameter.

10 — Equate Symbol: IwmRetCodeCompError:

Meaning: Component error

Action: No action required. The function may be successful
if invoked again.

IWMECQRY Macro

212 z/OS V1R4.0 MVS Workload Management Services

Chapter 20. IWMECREA – Create an Enclave

The purpose of this service is to create an Enclave where possibly multiple SRBs
and/or TCBsmay be simultaneously executing or scheduled. For the duration of
each Enclave, all SRBs and TCBs associated with the Enclave are treated as part
of a single work request. All SRBs and/or TCBs associated with the Enclave
accumulate service as a single entity and are managed as a single entity. The
address spaces where Enclave SRBs are dispatched, as defined by the ENV=
parameter of IEAMSCHD, should be non-swappable.

For more information about managing address spaces with enclaves, see
“Performance Management of Address Spaces with Enclaves” on page 43.

Note: An address space must be non-swappable if it has enclave SRBs dispatched
and SYSEVENT ENCASSOC has not been issued.

For TYPE=INDEPENDENT Enclaves, a new work business unit of work is created
and classified according to the input Connect token’s subsystem type and
subsystem name, along with whatever other attributes are passed via the Classify
parameter list. The current home address space is considered the owner.

For TYPE=DEPENDENT enclaves, SRM considers the enclave to be part of the
current home address space’s transaction, which then becomes the owning space.
This space need not be connected to WLM via IWMCONN.

For TYPE=MONENV enclaves, SRM considers the enclave to be part of the
address space’s transaction which is delayed according to the input monitoring
environment, as set when IWMMINIT or IWMMRELA was used. This space
becomes the owning space. This space need not be connected to WLM via
IWMCONN.

For both TYPE=MONENV and TYPE=DEPENDENT enclaves, SRM will change the
enclave to TYPE=INDEPENDENT if the owning address space’s transaction ends.

For both TYPE=MONENV and TYPE=DEPENDENT enclaves, SRM will check the
enclave for period switch when the owning address space is swapped in. If the
owning address space is swapped out SRM will continue to accumulate service for
any enclaves owned by the space, but will not check the address space and any
owned enclave for period switch until the address space is swapped in again. The
presence of enclaves does not make the address space appear to be ready from
an SRM point of view.

Enclaves are deleted if the owning address space terminates.
TYPE=INDEPENDENT enclaves are deleted if the owning address space
disconnects or the TCB which connected terminates.

Enclaves should only be created when this environment is ready for execution, and
should not be used when prolonged queueing effects are possible prior to the
scheduling of the first SRB (IEAMSCHD) or the first task join (IWMEJOIN).
″Prolonged″ would certainly include times measured in seconds. The service allows
the caller to pass the queueing time prior to creation of the Enclave so that this may
be separately reported.

© Copyright IBM Corp. 1988, 2002 213

Environment
The requirements for the caller are:

Minimum authorization: Supervisor state or program key mask (PKM) allowing keys
0-7.

Dispatchable unit mode: Task or SRB

Cross memory mode: Any PASN, any HASN, any SASN

AMODE: 31-bit

ASC mode: Primary or access register (AR)

Interrupt status: Enabled for I/O and external interrupts

Locks: No locks may be held.

Control parameters: Control parameters must be in the primary address space.

Programming Requirements
1. The macro IWMYCON must be included to use this macro.
2. The macro CVT must be included to use this macro.
3. The macro IWMPB must be in the library concatenation, since it is included by

IWMYCON.
4. Note that the high order halfword of register 0, and the reason code variable

when specified, may be non-zero and represents diagnostic data which is NOT
part of the external interface. The high order halfword should thus be excluded
from comparison with the reason code values described above. The constant,
IWMRSNCODE_MASK_CONST defined in IWMYCON, may be used for this
purpose.

5. All character data, unless otherwise specified, is assumed to be left justified and
padded with blanks on the right, as needed, to occupy the specified number of
bytes.

Restrictions
1. The Connect token from the input classify parameter list must be owned by the

current home address space and must be associated with a system key (0-7),
as specified on IWMCONN. The Classify parameter list and hence the Connect
token is only relevant for TYPE=INDEPENDENT Enclaves.

2. Since this service may only be used by system-like code, some validity
checking on the parameter list is not performed. These checks would only be
needed if the macro were not used to invoke the service routine.

3. The variable length fields associated with the classify parameter list (the classify
parameter list is only relevant for certain options) given by the CLSFY keyword
have the following limitations in addition to those documented in IWMCLSFY:
v SUBSYSPM is limited to 255 bytes
v COLLECTION is limited to 18 bytes
v CORRELATION is limited to 12 bytes

4. When TYPE(MONENV) is specified the following apply:
v If the key specified on IWMMCREA was a user key (8-F), then primary or

home addressability must exist to the performance block IWMMCREA
obtained. This condition is satisfied by ensuring that the current primary or
home address space matches primary (=home) at the time that IWMMCREA
was invoked.

v The caller must serialize to prevent any delay monitoring services from being
invoked concurrently for the environment represented by the monitoring
token.

IWMECREA Macro

214 z/OS V1R4.0 MVS Workload Management Services

|

v Only limited checking is done against the input monitoring token.
v TYPE=MONENV enclaves cannot be created for report-only monitoring

environments.
5. This macro may only be used on z/OS R2 or higher levels for EXSTARTDEFER

keyword.
6. This macro supports multiple versions. Some keywords are unique to certain

versions. See the PLISTVER parameter description.

Input Register Information
Before issuing the IWMECREA macro, the caller does not have to place any
information into any register unless using it in register notation for a particular
parameter, or using it as a base register.

Output Register Information
When control returns to the caller, the GPRs contain:

Register
Contents

0 Reason code if GR15 return code is non-zero
1 Used as work registers by the system
2-13 Unchanged
14 Used as work registers by the system
15 Return code

When control returns to the caller, the ARs contain:

Register
Contents

0-1 Used as work registers by the system
2-13 Unchanged
14-15 Used as work registers by the system

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the
caller depends, the caller must save them before issuing the service, and restore
them after the system returns control.

Performance Implications
None.

IWMECREA Macro

Chapter 20. IWMECREA – Create an Enclave 215

Syntax

main diagram

��
name

� IWMECREA � �

�
TYPE=INDEPENDENT

parameters-1
TYPE=DEPENDENT
TYPE=MONENV ,MONTKN=montkn ,ACCESS=PRIMARY

,ACCESS=HOME

,ETOKEN=etoken �

�
,RETCODE=retcode ,RSNCODE=rsncode

,PLISTVER=IMPLIED_VERSION

,PLISTVER=MAX
,PLISTVER=0
,PLISTVER=1
,PLISTVER=2

�

�
,MF=S

,0D
,MF=(L ,list addr)

,attr
,COMPLETE

,MF=(E ,list addr)

�"

parameters-1

�� ,CLSFY=clsfy ,ARRIVALTIME=arrivaltime ,FUNCTION_NAME=function_name �

�
,EXSTARTDEFER=NO

,EXSTARTDEFER=YES
�"

Parameters
The parameters are explained as follows:

name
An optional symbol, starting in column 1, that is the name on the IWMECREA
macro invocation. The name must conform to the rules for an ordinary
assembler language symbol.

,ACCESS=PRIMARY
,ACCESS=HOME

When TYPE=MONENV is specified, a required parameter, which describes how
to access the monitoring environment.

,ACCESS=PRIMARY
indicates that the monitoring environment can be accessed in the caller’s
primary address space. This would be appropriate if the monitoring

IWMECREA Macro

216 z/OS V1R4.0 MVS Workload Management Services

environment was established (by IWMMCREA) to be used by routines in a
specific system key or if it was established to be used in a specific user key
in the current primary.

,ACCESS=HOME
indicates that the monitoring environment must be accessed in the home
address space, which is not the caller’s primary address space. This would
be appropriate if the monitoring environment was established (by
IWMMCREA) for use by a specific user key.

,ARRIVALTIME=arrivaltime
When TYPE=INDEPENDENT is specified, a required input parameter, which
contains the work arrival time in STCK format. This is the time at which the
business work request is considered to have arrived and from which point the
system evaluates elapsed time for the work request.

To code: Specify the RS-type address, or address in register (2)-(12), of a 64
bit field.

,CLSFY=clsfy
When TYPE=INDEPENDENT is specified, a required input parameter, which
contains the classification information in the format of the parameter list for
IWMCLSFY. NOTE that this name is the data area name, not its pointer.
IWMCLSFY MF(M) should be used to initialize the area prior to invocation of
IWMECREA. The Classify parameter list must be from MVS/ESA SP5.2.0 or
later.

Note that the variable length fields associated with the classify parameter list
given by the CLSFY keyword have the following limitations in addition to those
documented in IWMCLSFY:
v SUBSYSPM is limited to 255 bytes
v COLLECTION is limited to 18 bytes
v CORRELATION is limited to 12 bytes

To code: Specify the RS-type address, or address in register (2)-(12), of a
character field.

,ETOKEN=etoken
A required output parameter, which will receive the Enclave token.

To code: Specify the RS-type address, or address in register (2)-(12), of an
8-character field.

,EXSTARTDEFER=NO
,EXSTARTDEFER=YES

When TYPE=INDEPENDENT is specified, an optional parameter, which
indicates whether the Enclave execution start time should begin when the first
IWMSTBGN or IWMEJOIN is executed. The time between enclave create and
the first IWMSTBGN or IWMEJOIN is assumed to be the queue time. The
default is EXSTARTDEFER=NO.

,EXSTARTDEFER=NO
indicates that the Enclave execution start time should not begin when the
first IWMSTBGN or IWMEJOIN is executed.

,EXSTARTDEFER=YES
indicates that the Enclave execution start time should begin when the first
IWMSTBGN or IWMEJOIN is executed.

IWMECREA Macro

Chapter 20. IWMECREA – Create an Enclave 217

,FUNCTION_NAME=function_name
When TYPE=INDEPENDENT is specified, a required input parameter, which
contains the descriptive name for the function for which the Enclave was
created.

To code: Specify the RS-type address, or address in register (2)-(12), of an
8-character field.

,MF=S
,MF=(L,list addr)
,MF=(L,list addr,attr)
,MF=(L,list addr,0D)
,MF=(E,list addr)
,MF=(E,list addr,COMPLETE)

An optional input parameter that specifies the macro form.

Use MF=S to specify the standard form of the macro, which builds an inline
parameter list and generates the macro invocation to transfer control to the
service. MF=S is the default.

Use MF=L to specify the list form of the macro. Use the list form together with
the execute form of the macro for applications that require reentrant code. The
list form defines an area of storage that the execute form uses to store the
parameters. Only the PLISTVER parameter may be coded with the list form of
the macro.

Use MF=E to specify the execute form of the macro. Use the execute form
together with the list form of the macro for applications that require reentrant
code. The execute form of the macro stores the parameters into the storage
area defined by the list form, and generates the macro invocation to transfer
control to the service.

,list addr
The name of a storage area to contain the parameters. For MF=S and
MF=E, this can be an RS-type address or an address in register (1)-(12).

,attr
An optional 1- to 60-character input string that you use to force boundary
alignment of the parameter list. Use a value of 0F to force the parameter
list to a word boundary, or 0D to force the parameter list to a doubleword
boundary. If you do not code attr, the system provides a value of 0D.

,COMPLETE
Specifies that the system is to check for required parameters and supply
defaults for omitted optional parameters.

,MONTKN=montkn
When TYPE=MONENV is specified, a required input parameter, which contains
the delay monitoring token which describes the current business unit of work. If
the monitoring environment is related to an address space, then it must be the
current home address space.

To code: Specify the RS-type address, or address in register (2)-(12), of a 32
bit field.

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX
,PLISTVER=0
,PLISTVER=1
,PLISTVER=2

An optional input parameter that specifies the version of the macro. PLISTVER

IWMECREA Macro

218 z/OS V1R4.0 MVS Workload Management Services

determines which parameter list the system generates. PLISTVER is an
optional input parameter on all forms of the macro, including the list form. When
using PLISTVER, specify it on all macro forms used for a request and with the
same value on all of the macro forms. The values are:

v IMPLIED_VERSION, which is the lowest version that allows all parameters
specified on the request to be processed. If you omit the PLISTVER
parameter, IMPLIED_VERSION is the default.

v MAX, if you want the parameter list to be the largest size currently possible.
This size might grow from release to release and affect the amount of
storage that your program needs.

If you can tolerate the size change, IBM recommends that you always specify
PLISTVER=MAX on the list form of the macro. Specifying MAX ensures that
the list-form parameter list is always long enough to hold all the parameters
you might specify on the execute form; in this way, MAX ensures that the
parameter list does not overwrite nearby storage.

v 0, which supports all parameters except those specifically referenced in
higher versions.

v 1, which supports both the following parameters and those from version 0 :

ACCESS MONTKN TYPE

v 2, which supports both the following parameters and those from version 0
and 1:

EXSTARTDEFER

To code: Specify one of the following:
v IMPLIED_VERSION
v MAX
v A decimal value of 0 or 1

,RETCODE=retcode
An optional output parameter into which the return code is to be copied from
GPR 15.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

,RSNCODE=rsncode
An optional output parameter into which the reason code is to be copied from
GPR 0.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

TYPE=INDEPENDENT
TYPE=DEPENDENT
TYPE=MONENV

An optional parameter, which indicates the type of Enclave being created. The
default is TYPE=INDEPENDENT.

TYPE=INDEPENDENT
indicates that the Enclave represents a new business unit of work with its
own business objectives.

TYPE=DEPENDENT
indicates that the Enclave represents a continuation of the business unit of
work represented by the current home address space.

IWMECREA Macro

Chapter 20. IWMECREA – Create an Enclave 219

TYPE=MONENV
indicates that the Enclave represents a continuation of the business unit of
work represented by the input monitoring environment.

ABEND Codes
None.

Return and Reason Codes
When the IWMECREA macro returns control to your program:
v GPR 15 (and retcode, if you coded RETCODE) contains a return code.
v When the value in GPR 15 is not zero, GPR 0 (and rsncode, if you coded

RSNCODE) contains reason code.

The following table identifies the hexadecimal return and reason codes and the
equate symbol associated with each reason code. IBM support personnel may
request the entire reason code, including the xxxx value.

Table 26. Return and Reason Codes for the IWMECREA Macro

Return Code Reason Code Equate Symbol Meaning and Action

0 — Equate Symbol: IwmRetCodeOk

Meaning: Successful completion.

Action: None required.

8 — Equate Symbol: IwmRetCodeInvocError

Meaning: Invalid invocation environment or parameters.

8 xxxx0803 Equate Symbol: IwmRsnCodeDisabled

Meaning: Caller is disabled.

Action: Avoid requesting this function while disabled.

8 xxxx0804 Equate Symbol: IwmRsnCodeLocked

Meaning: Caller is locked.

Action: Avoid requesting this function while locked.

8 xxxx080B Equate Symbol: IwmRsnCodeBadPl

Meaning: Error accessing parameter list.

Action: Check for possible storage overlay.

8 xxxx0820 Equate Symbol: IwmRsnCodeBadMonEnv

Meaning: Monitoring environment does not pass short form
verification.

Action: Check for possible storage overlay.

8 xxxx0821 Equate Symbol: IwmRsnCodeBadConn

Meaning: Connect token from the input classify parameter
list does not pass validity checking.

Action: Check for possible storage overlay.

IWMECREA Macro

220 z/OS V1R4.0 MVS Workload Management Services

Table 26. Return and Reason Codes for the IWMECREA Macro (continued)

Return Code Reason Code Equate Symbol Meaning and Action

8 xxxx0824 Equate Symbol: IwmRsnCodeAmode24

Meaning: Caller invoked service but was in 24 bit
addressing mode.

Action: Request this function only when you are in 31 bit
addressing mode.

8 xxxx0828 Equate Symbol: IwmRsnCodeBadVersion

Meaning: Version number in parameter list is not valid.

Action: Check for possible storage overlay of the parameter
list.

8 xxxx0836 Equate Symbol: IwmRsnCodeMaxEnclave

Meaning: Enclave could not be created because the
Enclave limit has been reached.

Action : Check for possible problems wherein Enclaves are
not being deleted as expected or excessive numbers of
Enclaves are being created in a loop.

8 xxxx0837 Equate Symbol: IwmRsnCodeUserKeyConntkn

Meaning: Connect token from the input classify parameter
list is associated with a user key.

Action: Invoke the function with a token associated with a
system key.

8 xxxx0838 Equate Symbol: IwmRsnCodeClsfyAreaTooBig

Meaning: Input area associated with classification
information is larger than supported.

Action: Invoke the function with an area of the proper size.
Check for possible storage overlay.

8 xxxx0839 Equate Symbol: IwmRsnCodeClsfyPlTooSmall

Meaning: Input Classify parameter list is too small.

Action: Invoke the function with an area of the proper size.
Check for possible storage overlay.

8 xxxx083B Equate Symbol: IwmRsnCodeHomeNotOwnConn

Meaning: Home address space does not own the connect
token from the input classify parameter list.

Action: Invoke the function with the correct home address
space.

8 xxxx0840 Equate Symbol: IwmRsnCodeServiceNotEnabled

Meaning: Caller’s space connection is not enabled for this
service.

Action: Avoid requesting this function under the input
connection. IWMCONN options must be specified previously
to enable this service.

8 xxxx085D Equate Symbol: IwmRsnCodeMonenvNotHome

Meaning: The input monitoring environment is related to an
address space other than home.

Action: None required.

IWMECREA Macro

Chapter 20. IWMECREA – Create an Enclave 221

Table 26. Return and Reason Codes for the IWMECREA Macro (continued)

Return Code Reason Code Equate Symbol Meaning and Action

C — Equate Symbol: IwmRetCodeEnvError

Meaning: Environmental error.

C xxxx0C01 Equate Symbol: IwmRsnCodeNoStg

Meaning: Storage is not available for the request.

Action: There is a storage shortage. The function may work
successfully at a later time.

C xxxx0C0C Equate Symbol: IwmRsnCodeClassifyFail

Meaning: Received a non-zero return code from the
classification service, IWMCLSFY.

Action: No action required. Reinvoking the function later
may succeed.

C xxxx0C0D Equate Symbol: IwmRsnCodeBadClsfy

Meaning: Classification apparently can not access the
current policy, possibly due to a policy switch in progress.

Action: Invoke the function when the conditions are
alleviated.

C xxxx0C20 Equate Symbol: IwmRsnCodeDepClassifyFail

Meaning: Unable to obtain classification attributes for a
dependent enclave.

Action: None required.

C xxxx0C21 Equate Symbol: IwmRsnCodeNoMonEnvErr

Meaning: Input monitoring token indicates no monitoring
environment was established.

Action: None required.

10 — Equate Symbol: IwmRetCodeCompError

Meaning: Component error.

Action: No action required. The function may be successful
if invoked again.

IWMECREA Macro

222 z/OS V1R4.0 MVS Workload Management Services

Chapter 21. IWMEDELE – Delete an Enclave

The purpose of this service is to delete an enclave, so that no SRBs or TCBs exist
within the enclave and no new SRBs may be scheduled into the enclave, nor may
any TCBs join the enclave. Some residual enclave related CPU time will not be
accounted back to the work request whenever active enclave SRBs/TCBs were
present at the time IWMEDELE is invoked. SRBs scheduled to the enclave which
have not completed will be converted to ordinary preemptable SRBs. TCBs joined
to the enclave which have not completed will be converted to ordinary TCBs.

If IWMEDELE is invoked for an enclave which is registered, the enclave is
considered only logically deleted while all its functionality stays in place. Physical
deletion is deferred until all interested parties have deregistered the enclave. The
caller does not receive any notice when the physical deletion of the enclave is
done.

When an enclave is deleted, the work request is considered to have finished and all
related resource accounting will be finalized.

IWMEDELE cannot be used to delete a foreign enclave. The IWMUIMPT macro
must be used instead.

Environment
The requirements for the caller are:

Minimum authorization: Supervisor state or program key mask (PKM) allowing keys
0-7.

Dispatchable unit mode: Task or SRB

Cross memory mode: Any PASN, any HASN, any SASN

AMODE: 31-bit

ASC mode: Primary or access register (AR)

Interrupt status: Enabled for I/O and external interrupts

Locks: No locks may be held. FRR environments may be
established.

Control parameters: Control parameters must be in the primary address space.

Programming Requirements
1. The macro CVT must be included to use this macro.
2. The macro IWMYCON must be included to use this macro.
3. The macro IWMPB must be in the library concatenation, since it is included by

IWMYCON.
4. Note that the high order halfword of register 0, and the reason code variable

when specified, may be non-zero and represents diagnostic data which is NOT
part of the external interface. The high order halfword should thus be excluded
from comparison with the reason code values described above. The constant,
IWMRSNCODE_MASK_CONST defined in IWMYCON, may be used for this
purpose.

5. All character data, unless otherwise specified, is assumed to be left justified and
padded with blanks on the right, as needed, to occupy the specified number of
bytes.

© Copyright IBM Corp. 1988, 2002 223

6. Since this service may only be used by system-like code, some validity
checking on the parameter list is not performed. These checks would only be
needed if the macro were not used to invoke the service routine.

Restrictions
None.

Input Register Information
Before issuing the IWMEDELE macro, the caller does not have to place any
information into any register unless using it in register notation for a particular
parameter, or using it as a base register.

Output Register Information
When control returns to the caller, the GPRs contain:

Register
Contents

0 Reason code if GR15 return code is non-zero
1 Used as work register by the system
2-13 Unchanged
14 Used as work registers by the system
15 Return code

When control returns to the caller, the ARs contain:

Register
Contents

0-1 Used as work registers by the system
2-13 Unchanged
14-15 Used as work registers by the system

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the
caller depends, the caller must save them before issuing the service, and restore
them after the system returns control.

Performance Implications
None.

Syntax

main diagram

��
name

� IWMEDELE � ETOKEN=etoken
,CPUSERVICE=cpuservice

�

�
,SYSPLEXCPUSRV=sysplexcpusrv ,CPUTIME=cputime ,RETCODE=retcode

�

IWMEDELE Macro

224 z/OS V1R4.0 MVS Workload Management Services

�
,RSNCODE=rsncode

,PLISTVER=IMPLIED_VERSION

,PLISTVER=MAX
,PLISTVER=0
,PLISTVER=1
,PLISTVER=2

�

�
,MF=S

,0D
,MF=(L ,list addr)

,attr
,COMPLETE

,MF=(E ,list addr)

�"

Parameters
The parameters are explained as follows:

name
An optional symbol, starting in column 1, that is the name on the IWMEDELE
macro invocation. The name must conform to the rules for an ordinary
assembler language symbol.

,CPUSERVICE=cpuservice
An optional output parameter, which will contain the CPU service accumulated
by the enclave on the local system.

To code: Specify the RS-type address, or address in register (2)-(12), of a 64
bit field.

,CPUTIME=cputime
An optional output parameter, which will contain the total CPU time
accumulated by the enclave on the local system.

To code: Specify the RS-type address, or address in register (2)-(12), of a 64
bit field.

ETOKEN=etoken
A required input parameter, which contains the Enclave token to be returned.

To code: Specify the RS-type address, or address in register (2)-(12), of an
8-character field.

,MF=S
,MF=(L,list addr)
,MF=(L,list addr,attr)
,MF=(L,list addr,0D)
,MF=(E,list addr)
,MF=(E,list addr,COMPLETE)

An optional input parameter that specifies the macro form.

Use MF=S to specify the standard form of the macro, which builds an inline
parameter list and generates the macro invocation to transfer control to the
service. MF=S is the default.

Use MF=L to specify the list form of the macro. Use the list form together with
the execute form of the macro for applications that require reentrant code. The
list form defines an area of storage that the execute form uses to store the
parameters. Only the PLISTVER parameter may be coded with the list form of
the macro.

IWMEDELE Macro

Chapter 21. IWMEDELE – Delete an Enclave 225

Use MF=E to specify the execute form of the macro. Use the execute form
together with the list form of the macro for applications that require reentrant
code. The execute form of the macro stores the parameters into the storage
area defined by the list form, and generates the macro invocation to transfer
control to the service.

,list addr
The name of a storage area to contain the parameters. For MF=S and
MF=E, this can be an RS-type address or an address in register (1)-(12).

,attr
An optional 1- to 60-character input string that you use to force boundary
alignment of the parameter list. Use a value of 0F to force the parameter
list to a word boundary, or 0D to force the parameter list to a doubleword
boundary. If you do not code attr, the system provides a value of 0D.

,COMPLETE
Specifies that the system is to check for required parameters and supply
defaults for omitted optional parameters.

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX
,PLISTVER=0
,PLISTVER=1
,PLISTVER=2

An optional input parameter that specifies the version of the macro. PLISTVER
determines which parameter list the system generates. PLISTVER is an
optional input parameter on all forms of the macro, including the list form. When
using PLISTVER, specify it on all macro forms used for a request and with the
same value on all of the macro forms. The values are:

v IMPLIED_VERSION, which is the lowest version that allows all parameters
specified on the request to be processed. If you omit the PLISTVER
parameter, IMPLIED_VERSION is the default.

v MAX, if you want the parameter list to be the largest size currently possible.
This size might grow from release to release and affect the amount of
storage that your program needs.

If you can tolerate the size change, IBM recommends that you always specify
PLISTVER=MAX on the list form of the macro. Specifying MAX ensures that
the list-form parameter list is always long enough to hold all the parameters
you might specify on the execute form; in this way, MAX ensures that the
parameter list does not overwrite nearby storage.

v 0, which supports all parameters except those specifically referenced in
higher versions.

v 1, which supports both the following parameters and those from version 0:

CPUSERVICE CPUTIME

v 2, which supports both the following parameters and those from version 0
and 1:

SYSPLEXCPUSRV

To code: Specify one of the following:
v IMPLIED_VERSION
v MAX
v A decimal value of 0, 1, or 2

IWMEDELE Macro

226 z/OS V1R4.0 MVS Workload Management Services

,RETCODE=retcode
An optional output parameter into which the return code is to be copied from
GPR 15.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

,RSNCODE=rsncode
An optional output parameter into which the reason code is to be copied from
GPR 0.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

,SYSPLEXCPUSRV=sysplexcpusrv
An optional output parameter, which will contain the CPU service accumulated
by the enclave on the local system and on other systems through the use of the
IWMEXPT and IWMIMPT services. If the IWMEXPT and IWMIMPT services
were not used, SYSPLEXCPUSRV returns the same value as CPUSERVICE.

To code: Specify the RS-type address, or address in register (2)-(12), of a 64
bit field.

ABEND Codes
None.

Return and Reason Codes
When the IWMEDELE macro returns control to your program:
v GPR 15 (and retcode, if you coded RETCODE) contains a return code.
v When the value in GPR 15 is not zero, GPR 0 (and rsncode, if you coded

RSNCODE) contains reason code.

The following table identifies the hexadecimal return and reason codes and the
equate symbol associated with each reason code. IBM support personnel may
request the entire reason code, including the xxxx value.

Table 27. Return and Reason Codes for the IWMEDELE Macro

Return Code Reason Code Equate Symbol Meaning and Action

0 — Equate Symbol: IwmRetCodeOk

Meaning: Successful completion.

Action: None required.

4 — Equate Symbol: IwmRetCodeWarning

Meaning: Successful completion, unusual conditions noted.

4 xxxx0411 Equate Symbol: IwmRsnCodeEnclActive

Meaning: Input Enclave had 1 or more SRBs scheduled or
running, or 1 or more tasks joined to the Enclave.

Action: None required.

8 — Equate Symbol: IwmRetCodeInvocError

Meaning: Invalid invocation environment or parameters.

8 xxxx0803 Equate Symbol: IwmRsnCodeDisabled

Meaning: Caller is disabled.

Action: Avoid requesting this function while disabled.

IWMEDELE Macro

Chapter 21. IWMEDELE – Delete an Enclave 227

Table 27. Return and Reason Codes for the IWMEDELE Macro (continued)

Return Code Reason Code Equate Symbol Meaning and Action

8 xxxx0804 Equate Symbol: IwmRsnCodeLocked

Meaning: Caller is locked.

Action: Avoid requesting this function while locked.

8 xxxx080B Equate Symbol: IwmRsnCodeBadPl

Meaning: Error accessing parameter list.

Action: Check for possible storage overlay.

8 xxxx0824 Equate Symbol: IwmRsnCodeAmode24

Meaning: Caller invoked service but was in 24 bit
addressing mode.

Action: Request this function only when you are in 31 bit
addressing mode.

8 xxxx083A Equate Symbol: IwmRsnCodeBadEnclave

Meaning: Enclave token does not pass verification.

Action: Check for possible storage overlay of the Enclave
token, or asynchronous events which may have deleted the
Enclave.

8 xxxx0881 Equate Symbol: IwmRsnCodeEnclavePreviouslyDeleted

Meaning: Deletion of enclave in progress, application error.

Action: Do not attempt to delete enclaves more than once..

10 — Equate Symbol: IwmRetCodeCompError

Meaning: Component error.

Action: No action required. The function may be successful
if invoked again.

Example
To allow the current task to join an Enclave:

IWMEDELE ETOKEN=ENCTOKEN,RETCODE=RC,RSNCODE=RSN
*
* Storage areas
*
ENCTOKEN DS CL8 Contains the Enclave token
*
RC DS F Return code
RSN DS F Reason code

IWMEDELE Macro

228 z/OS V1R4.0 MVS Workload Management Services

Chapter 22. IWMEDREG — WLM Enclave Deregister Service

The IWMEDREG service allows the caller to deregister an enclave which it
previously registered using the IWMEREG service. Deregistration is required as
soon as the caller has finished using the enclave so that the enclave can eventually
be deleted. If enclave deletion was requested while the enclave was registered,
deletion occurs when the last deregistration takes place.

The caller can run in task or SRB mode.

Environment
The requirements for the caller are:

Minimum authorization: Supervisor state or program key mask (PKM) allowing keys
0-7.

Dispatchable unit mode: Task or SRB

Cross memory mode: Any PASN, any HASN, any SASN

AMODE: 31-bit

ASC mode: Primary or access register (AR)

Interrupt status: Enabled for I/O and external interrupts

Locks: No locks may be held.

Control parameters: Control parameters must be in the primary address space.

Programming Requirements
1. The macro CVT must be included to use this macro.
2. The macro IWMYCON must be included to use this macro.
3. The macro IWMPB must be in the library concatenation, since it is included by

IWMYCON.
4. Note that the high order halfword of register 0, and the reason code variable

when specified, may be non-zero and represents diagnostic data which is NOT
part of the external interface. The high order halfword should thus be excluded
from comparison with the reason code values described above. The constant,
IWMRSNCODE_MASK_CONST defined in IWMYCON, may be used for this
purpose.

5. All character data, unless otherwise specified, is assumed to be left justified and
padded with blanks on the right, as needed, to occupy the specified number of
bytes.

6. Since this service may only be used by system-like code, some validity
checking on the parameter list is not performed. These checks would only be
needed if the macro were not used to invoke the service routine.

Restrictions
None

Input Register Information
Before issuing the IWMEDREG macro, the caller does not have to place any
information into any register unless using it in register notation for a particular
parameter, or using it as a base register.

© Copyright IBM Corp. 1988, 2002 229

Output Register Information
When control returns to the caller, the GPRs contain:

Register
Contents

0 Reason code if GR15 return code is non-zero
1 Used as work registers by the system
2-13 Unchanged
14 Used as work registers by the system
15 Return code

When control returns to the caller, the ARs contain:

Register
Contents

0-1 Used as work registers by the system
2-13 Unchanged
14-15 Used as work registers by the system

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the
caller depends, the caller must save them before issuing the service, and restore
them after the system returns control.

Performance Implications
None

Syntax

main diagram

��
name

� IWMEDREG � REGTOKEN=regtoken ,ETOKEN=etoken �

�
,RETCODE=retcode ,RSNCODE=rsncode

,PLISTVER=IMPLIED_VERSION

,PLISTVER=MAX
,PLISTVER=0

�

�
,MF=S

,0D
,MF=(L ,list addr)

,attr
,COMPLETE

,MF=(E ,list addr)

�"

Parameters
The parameters are explained as follows:

IWMEDREG Macro

230 z/OS V1R4.0 MVS Workload Management Services

name
An optional symbol, starting in column 1, that is the name on the IWMEDREG
macro invocation. The name must conform to the rules for an ordinary
assembler language symbol.

,ETOKEN=etoken
A required input parameter that contains the enclave token.

To code: Specify the RS-type address, or address in register (2)-(12), of an
8-character field.

,MF=S
,MF=(L,list addr)
,MF=(L,list addr,attr)
,MF=(L,list addr,0D)
,MF=(E,list addr)
,MF=(E,list addr,COMPLETE)

An optional input parameter that specifies the macro form.

Use MF=S to specify the standard form of the macro, which builds an inline
parameter list and generates the macro invocation to transfer control to the
service. MF=S is the default.

Use MF=L to specify the list form of the macro. Use the list form together with
the execute form of the macro for applications that require reentrant code. The
list form defines an area of storage that the execute form uses to store the
parameters. Only the PLISTVER parameter may be coded with the list form of
the macro.

Use MF=E to specify the execute form of the macro. Use the execute form
together with the list form of the macro for applications that require reentrant
code. The execute form of the macro stores the parameters into the storage
area defined by the list form, and generates the macro invocation to transfer
control to the service.

,list addr
The name of a storage area to contain the parameters. For MF=S and
MF=E, this can be an RS-type address or an address in register (1)-(12).

,attr
An optional 1- to 60-character input string that you use to force boundary
alignment of the parameter list. Use a value of 0F to force the parameter
list to a word boundary, or 0D to force the parameter list to a doubleword
boundary. If you do not code attr, the system provides a value of 0D.

,COMPLETE
Specifies that the system is to check for required parameters and supply
defaults for omitted optional parameters.

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX
,PLISTVER=0

An optional input parameter that specifies the version of the macro. PLISTVER
determines which parameter list the system generates. PLISTVER is an
optional input parameter on all forms of the macro, including the list form. When
using PLISTVER, specify it on all macro forms used for a request and with the
same value on all of the macro forms. The values are:

v IMPLIED_VERSION, which is the lowest version that allows all parameters
specified on the request to be processed. If you omit the PLISTVER
parameter, IMPLIED_VERSION is the default.

IWMEDREG Macro

Chapter 22. IWMEDREG — WLM Enclave Deregister Service 231

v MAX, if you want the parameter list to be the largest size currently possible.
This size might grow from release to release and affect the amount of
storage that your program needs.

If you can tolerate the size change, IBM recommends that you always specify
PLISTVER=MAX on the list form of the macro. Specifying MAX ensures that
the list-form parameter list is always long enough to hold all the parameters
you might specify on the execute form, when both are assembled with the
same level of the system. In this way, MAX ensures that the parameter list
does not overwrite nearby storage.

v 0, if you use the currently available parameters.

To code: Specify one of the following:
v IMPLIED_VERSION
v MAX
v A decimal value of 0

REGTOKEN=regtoken
A required input parameter, which passes the registration token obtained in a
previous call to service IWMEREG.

To code: Specify the RS-type address, or address in register (2)-(12), of an
8-character field.

,RETCODE=retcode
An optional output parameter into which the return code is to be copied from
GPR 15.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

,RSNCODE=rsncode
An optional output parameter into which the reason code is to be copied from
GPR 0.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

ABEND Codes
None.

Return and Reason Codes
When the IWMEDREG macro returns control to your program:
v GPR 15 (and retcode, when you code RETCODE) contains a return code.
v When the value in GPR 15 is not zero, GPR 0 (and rsncode, when you code

RSNCODE) contains reason code.

The following table identifies the hexadecimal return and reason codes and the
equate symbol associated with each reason code. IBM support personnel may
request the entire reason code, including the xxxx value.

Table 28. Return and Reason Codes for the IWMEDREG Macro

Return Code Reason Code Equate Symbol Meaning and Action

0 — Equate Symbol: IwmRetCodeOk

Meaning: Successful completion.

Action: None required.

IWMEDREG Macro

232 z/OS V1R4.0 MVS Workload Management Services

Table 28. Return and Reason Codes for the IWMEDREG Macro (continued)

Return Code Reason Code Equate Symbol Meaning and Action

8 — Equate Symbol: IwmRetCodeInvocError

Meaning: Invalid invocation environment or parameters.

8 xxxx0803 Equate Symbol: IwmRsnCodeDisabled

Meaning: Caller is disabled.

Action: Avoid requesting this function while disabled.

8 xxxx0804 Equate Symbol: IwmRsnCodeLocked

Meaning: Caller is locked.

Action: Avoid requesting this function while locked.

8 xxxx080B Equate Symbol: IwmRsnCodeBadPl

Meaning: Error accessing parameter list.

Action: Check for possible storage overlay.

8 xxxx0824 Equate Symbol: IwmRsnCodeAmode24

Meaning: Caller invoked service but was in 24 bit
addressing mode.

Action: Request this function only when you are in 31 bit
addressing mode.

8 xxxx0828 Equate Symbol: IwmRsnCodeBadVersion

Meaning: Version number in parameter list is not valid.

Action: Check for possible storage overlay of the parameter
list.

8 xxxx083A Equate Symbol: IwmRsnCodeBadEnclave

Meaning: Enclave token does not pass verification.

Action: Check for possible storage overlay of the enclave
token, or asynchronous events which may have deleted the
enclave.

8 xxxx0880 Equate Symbol: IwmRsnCodeBadRegToken

Meaning: The register token does not pass verification.

Action: Check for possible storage overlay of the register
token, or asynchronous events which may have deregisted
the enclave already.

10 — Equate Symbol: IwmRetCodeCompError

Meaning: Component error.

Action: No action required. The function may be successful
if invoked again.

Example
IWMEDREG REGTOKEN=REGTKN,ETOKEN=ENCTKN

*
* Storage areas
*
ENCTKN DS CL8 Enclave token
REGTKN DS CL8 Register token

IWMEDREG Macro

Chapter 22. IWMEDREG — WLM Enclave Deregister Service 233

IWMEDREG Macro

234 z/OS V1R4.0 MVS Workload Management Services

Chapter 23. IWMEJOIN – Join an Enclave

The purpose of this service is to allow the task invoking this service to join an
Enclave for the purpose of performance management. The scope of this service
affects only a single task at the time the service is invoked. However any tasks
which are attached by the current task subsequently will also become part of the
Enclave environment. This inheritance of the Enclave attribute will apply to any
further level of newly attached subtasks as well. However subtasks which exist at
the time this service is invoked will not become part of the Enclave environment nor
will any subtasks which are created subsequently by these non-Enclave tasks
become part of the Enclave environment, unless they explicitly join.

Note that a task may only join an Enclave if it is not already part of an Enclave. In
particular, a subtask which inherited the Enclave attribute from its mother task
(which may happen either as a result of the mother task issuing IWMEJOIN or
IWMSTBGN) is not allowed to use IWMEJOIN to explicitly join an Enclave. This
restriction is independent of whether the Enclave specified is the same Enclave as
it is in, or a different Enclave from the one it is in. Such a subtask which inherited
the Enclave attribute is also not allowed to use IWMELEAV to explicitly leave the
Enclave. The subtask would only leave the Enclave upon its own (task) termination
or when the Enclave is deleted (IWMEDELE). Also, a task which successfully
establishes a Begin environment (IWMSTBGN) may not invoke Enclave Join, nor is
the task allowed to use Enclave Leave while this Begin environment exists.

Upon successful completion of this service, the CPU time for the task (and any
subsequently attached subtasks) will be attributed to the Enclave for the purpose of
service unit calculations and performance period switches, rather than being
attributed to the address space owning the task. Management and reporting for the
Enclave will include activity for the task until the task either leaves the Enclave or
the Enclave is deleted.

Environment
The requirements for the caller are:

Minimum authorization: Supervisor state or program key mask (PKM) allowing keys
0-7.

Dispatchable unit mode: Task

Cross memory mode: Any PASN, any HASN, any SASN

AMODE: 31-bit

ASC mode: Primary

Interrupt status: Enabled for I/O and external interrupts

Locks: No locks may be held.

Control parameters: Control parameters must be in the primary address space.

Programming Requirements
1. The macro CVT must be included to use this macro.
2. The macro IWMYCON must be included to use this macro.
3. The macro IWMPB must be in the library concatenation, since it is included by

IWMYCON.

© Copyright IBM Corp. 1988, 2002 235

4. Note that the high order halfword of register 0, and the reason code variable
when specified, may be non-zero and represents diagnostic data which is NOT
part of the external interface. The high order halfword should thus be excluded
from comparison with the reason code values described above. The constant,
IWMRSNCODE_MASK_CONST defined in IWMYCON, may be used for this
purpose.

5. All character data, unless otherwise specified, is assumed to be left justified and
padded with blanks on the right, as needed, to occupy the specified number of
bytes.

Restrictions
1. The caller cannot have an EUT FRR established.

Input Register Information
Before issuing the IWMEJOIN macro, the caller does not have to place any
information into any register unless using it in register notation for a particular
parameter, or using it as a base register.

Output Register Information
When control returns to the caller, the GPRs contain:

Register
Contents

0 Reason code if GR15 return code is non-zero
1 Used as work registers by the system
2-13 Unchanged
14 Used as work registers by the system
15 Return code

When control returns to the caller, the ARs contain:

Register
Contents

0-1 Used as work registers by the system
2-13 Unchanged
14-15 Used as work registers by the system

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the
caller depends, the caller must save them before issuing the service, and restore
them after the system returns control.

Performance Implications
None.

Syntax

main diagram

��
name

� IWMEJOIN � ETOKEN=etoken
,RETCODE=retcode

�

IWMEJOIN Macro

236 z/OS V1R4.0 MVS Workload Management Services

�
,RSNCODE=rsncode

,PLISTVER=IMPLIED_VERSION

,PLISTVER=MAX
,PLISTVER=0

�

�
,MF=S

,0D
,MF=(L ,list addr)

,attr
,COMPLETE

,MF=(E ,list addr)

�"

Parameters
The parameters are explained as follows:

name
An optional symbol, starting in column 1, that is the name on the IWMEJOIN
macro invocation. The name must conform to the rules for an ordinary
assembler language symbol.

ETOKEN=etoken
A required input parameter, which contains the Enclave token to be associated
with the task as returned by IWMECREA.

To code: Specify the RS-type address, or address in register (2)-(12), of an
8-character field.

,MF=S
,MF=(L,list addr)
,MF=(L,list addr,attr)
,MF=(L,list addr,0D)
,MF=(E,list addr)
,MF=(E,list addr,COMPLETE)

An optional input parameter that specifies the macro form.

Use MF=S to specify the standard form of the macro, which builds an inline
parameter list and generates the macro invocation to transfer control to the
service. MF=S is the default.

Use MF=L to specify the list form of the macro. Use the list form together with
the execute form of the macro for applications that require reentrant code. The
list form defines an area of storage that the execute form uses to store the
parameters. Only the PLISTVER parameter may be coded with the list form of
the macro.

Use MF=E to specify the execute form of the macro. Use the execute form
together with the list form of the macro for applications that require reentrant
code. The execute form of the macro stores the parameters into the storage
area defined by the list form, and generates the macro invocation to transfer
control to the service.

,list addr
The name of a storage area to contain the parameters. For MF=S and
MF=E, this can be an RS-type address or an address in register (1)-(12).

,attr
An optional 1- to 60-character input string that you use to force boundary
alignment of the parameter list. Use a value of 0F to force the parameter

IWMEJOIN Macro

Chapter 23. IWMEJOIN – Join an Enclave 237

list to a word boundary, or 0D to force the parameter list to a doubleword
boundary. If you do not code attr, the system provides a value of 0D.

,COMPLETE
Specifies that the system is to check for required parameters and supply
defaults for omitted optional parameters.

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX
,PLISTVER=0

An optional input parameter that specifies the version of the macro. PLISTVER
determines which parameter list the system generates. PLISTVER is an
optional input parameter on all forms of the macro, including the list form. When
using PLISTVER, specify it on all macro forms used for a request and with the
same value on all of the macro forms. The values are:

v IMPLIED_VERSION, which is the lowest version that allows all parameters
specified on the request to be processed. If you omit the PLISTVER
parameter, IMPLIED_VERSION is the default.

v MAX, if you want the parameter list to be the largest size currently possible.
This size might grow from release to release and affect the amount of
storage that your program needs.

If you can tolerate the size change, IBM recommends that you always specify
PLISTVER=MAX on the list form of the macro. Specifying MAX ensures that
the list-form parameter list is always long enough to hold all the parameters
you might specify on the execute form; in this way, MAX ensures that the
parameter list does not overwrite nearby storage.

v 0, if you use the currently available parameters.

To code: Specify one of the following:
v IMPLIED_VERSION
v MAX
v A decimal value of 0

,RETCODE=retcode
An optional output parameter into which the return code is to be copied from
GPR 15.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

,RSNCODE=rsncode
An optional output parameter into which the reason code is to be copied from
GPR 0.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

ABEND Codes
None.

Return and Reason Codes
When the IWMEJOIN macro returns control to your program:
v GPR 15 (and retcode, if you coded RETCODE) contains a return code.
v When the value in GPR 15 is not zero, GPR 0 (and rsncode, if you coded

RSNCODE) contains reason code.

The following table identifies the hexadecimal return and reason codes and the
equate symbol associated with each reason code. IBM support personnel may

IWMEJOIN Macro

238 z/OS V1R4.0 MVS Workload Management Services

request the entire reason code, including the xxxx value.

Table 29. Return and Reason Codes for the IWMEJOIN Macro

Return Code Reason Code Equate Symbol Meaning and Action

0 — Equate Symbol: IwmRetCodeOk

Meaning: Successful completion.

Action: None required.

4 — Equate Symbol: IwmRetCodeWarning

Meaning: Successful completion, unusual conditions noted.

4 xxxx041F Equate Symbol: IwmRsnCodeExecEnvChanged

Meaning: The execution environment has changed while
the requested function is in progress.

Action: None required.

8 — Equate Symbol: IwmRetCodeInvocError

Meaning: Invalid invocation environment or parameters.

8 xxxx0801 Equate Symbol: IwmRsnCodeSrbMode

Meaning: Caller is in SRB mode.

Action: Avoid requesting this function while in SRB mode.

8 xxxx0803 Equate Symbol: IwmRsnCodeDisabled

Meaning: Caller is disabled.

Action: Avoid requesting this function while disabled.

8 xxxx0804 Equate Symbol: IwmRsnCodeLocked

Meaning: Caller is locked.

Action: Avoid requesting this function while locked.

8 xxxx080B Equate Symbol: IwmRsnCodeBadPl

Meaning: Error accessing parameter list.

Action: Check for possible storage overlay.

8 xxxx0810 Equate Symbol: IwmRsnCodeEutFrr

Meaning: Caller has EUT FRR established.

Action: Avoid requesting this function with an EUT FRR set.

8 xxxx0823 Equate Symbol: IwmRsnCodeDatoff

Meaning: Caller invoked service while DATOFF

Action: Avoid requesting this function in this environment.

8 xxxx0824 Equate Symbol: IwmRsnCodeAmode24

Meaning: Caller invoked service but was in 24 bit
addressing mode.

Action: Request this function only when you are in 31 bit
addressing mode.

8 xxxx0825 Equate Symbol: IwmRsnCodeAscModeNotPrimary

Meaning: Caller invoked service but was not DAT on
Primary ASC mode.

Action: Avoid requesting this function in this environment.

IWMEJOIN Macro

Chapter 23. IWMEJOIN – Join an Enclave 239

Table 29. Return and Reason Codes for the IWMEJOIN Macro (continued)

Return Code Reason Code Equate Symbol Meaning and Action

8 xxxx0826 Equate Symbol: IwmRsnCodeTaskTerm

Meaning: Caller invoked service while task termination is in
progress for the current task.

Action: Avoid requesting this function while task termination
is in progress.

8 xxxx0828 Equate Symbol: IwmRsnCodeBadVersion

Meaning: Version number in parameter list is not valid or
version length field is not valid.

Action: Check for possible storage overlay of the parameter
list.

8 xxxx083A Equate Symbol: IwmRsnCodeBadEnclave

Meaning: Enclave token does not pass verification.

Action: Check for possible storage overlay of the Enclave
token, or asynchronous events which may have deleted the
Enclave.

8 xxxx0850 Equate Symbol: IwmRsnCodeBeginEnvOutstanding

Meaning: Caller is already operating under an outstanding
Begin environment which has implicitly joined an Enclave.

Action: Avoid requesting this function in this environment.

8 xxxx0857 Equate Symbol: IwmRsnCodeAlreadyInEnclave

Meaning: Current dispatchable workunit is already in an
Enclave.

Action: Avoid requesting this function while the caller is
already in an Enclave.

10 — Equate Symbol: IwmRetCodeCompError

Meaning: Component error.

Action: Contact your system programmer.

IWMEJOIN Macro

240 z/OS V1R4.0 MVS Workload Management Services

Example
To allow the current task to join an Enclave:

IWMEJOIN ETOKEN=ENCTOKEN,RETCODE=RC,RSNCODE=RSN
*
* Storage areas
*
ENCTOKEN DS CL8 Contains the Enclave token
* associated with the work
* request as returned by IWMECREA
RC DS F Return code
RSN DS F Reason code

IWMEJOIN Macro

Chapter 23. IWMEJOIN – Join an Enclave 241

IWMEJOIN Macro

242 z/OS V1R4.0 MVS Workload Management Services

Chapter 24. IWMELEAV – Leave an Enclave

The purpose of this service is to allow the task invoking this service to leave an
Enclave. For the purpose of performance management, the task will become
associated with its home address space. The scope of this service affects the
current task at the time the service is invoked.

Note that a task may only leave an Enclave if it explicitly joined the Enclave. A
subtask which inherited the Enclave attribute from its mother task is not allowed to
use IWMELEAV to explicitly leave the Enclave. The subtask would only leave the
Enclave upon its own (task) termination or when the Enclave is deleted
(IWMEDELE). Also, a task which successfully establishes a Begin environment
(IWMSTBGN) may not invoke Enclave Join, nor is the task allowed to use Enclave
Leave while this Begin environment exists.

Upon successful completion of this service, the CPU time for the task (and any
subsequently attached subtasks) will be attributed to the home address space for
the purpose of service unit calculations and performance period switches, rather
than being attributed to the Enclave.

Environment
The requirements for the caller are:

Minimum authorization: Supervisor state or program key mask (PKM) allowing keys
0-7.

Dispatchable unit mode: Task

Cross memory mode: Any PASN, any HASN, any SASN

AMODE: 31-bit

ASC mode: Primary

Interrupt status: Enabled for I/O and external interrupts

Locks: No locks may be held.

Control parameters: Control parameters must be in the primary address space.

Programming Requirements
1. The macro CVT must be included to use this macro.
2. The macro IWMYCON must be included to use this macro.
3. The macro IWMPB must be in the library concatenation, since it is included by

IWMYCON.
4. Note that the high order halfword of register 0, and the reason code variable

when specified, may be non-zero and represents diagnostic data which is NOT
part of the external interface. The high order halfword should thus be excluded
from comparison with the reason code values described above. The constant,
IWMRSNCODE_MASK_CONST defined in IWMYCON, may be used for this
purpose.

5. All character data, unless otherwise specified, is assumed to be left justified and
padded with blanks on the right, as needed, to occupy the specified number of
bytes.

© Copyright IBM Corp. 1988, 2002 243

Restrictions
The caller cannot have an EUT FRR established.

Input Register Information
Before issuing the IWMELEAV macro, the caller does not have to place any
information into any register unless using it in register notation for a particular
parameter, or using it as a base register.

Output Register Information
When control returns to the caller, the GPRs contain:

Register
Contents

0 Reason code if GR15 return code is non-zero
1 Used as work registers by the system
2-13 Unchanged
14 Used as work registers by the system
15 Return code

When control returns to the caller, the ARs contain:

Register
Contents

0-1 Used as work registers by the system
2-13 Unchanged
14-15 Used as work registers by the system

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the
caller depends, the caller must save them before issuing the service, and restore
them after the system returns control.

Performance Implications
None.

Syntax

main diagram

��
name

� IWMELEAV � ETOKEN=etoken
,RETCODE=retcode

�

�
,RSNCODE=rsncode

,PLISTVER=IMPLIED_VERSION

,PLISTVER=MAX
,PLISTVER=0

�

IWMELEAV Macro

244 z/OS V1R4.0 MVS Workload Management Services

�
,MF=S

,0D
,MF=(L ,list addr)

,attr
,COMPLETE

,MF=(E ,list addr)

�"

Parameters
The parameters are explained as follows:

name
An optional symbol, starting in column 1, that is the name on the IWMELEAV
macro invocation. The name must conform to the rules for an ordinary
assembler language symbol.

ETOKEN=etoken
A required input parameter, which contains the Enclave token associated with
the work request as returned by IWMECREA.

To code: Specify the RS-type address, or address in register (2)-(12), of an
8-character field.

,MF=S
,MF=(L,list addr)
,MF=(L,list addr,attr)
,MF=(L,list addr,0D)
,MF=(E,list addr)
,MF=(E,list addr,COMPLETE)

An optional input parameter that specifies the macro form.

Use MF=S to specify the standard form of the macro, which builds an inline
parameter list and generates the macro invocation to transfer control to the
service. MF=S is the default.

Use MF=L to specify the list form of the macro. Use the list form together with
the execute form of the macro for applications that require reentrant code. The
list form defines an area of storage that the execute form uses to store the
parameters. Only the PLISTVER parameter may be coded with the list form of
the macro.

Use MF=E to specify the execute form of the macro. Use the execute form
together with the list form of the macro for applications that require reentrant
code. The execute form of the macro stores the parameters into the storage
area defined by the list form, and generates the macro invocation to transfer
control to the service.

,list addr
The name of a storage area to contain the parameters. For MF=S and
MF=E, this can be an RS-type address or an address in register (1)-(12).

,attr
An optional 1- to 60-character input string that you use to force boundary
alignment of the parameter list. Use a value of 0F to force the parameter
list to a word boundary, or 0D to force the parameter list to a doubleword
boundary. If you do not code attr, the system provides a value of 0D.

IWMELEAV Macro

Chapter 24. IWMELEAV – Leave an Enclave 245

,COMPLETE
Specifies that the system is to check for required parameters and supply
defaults for omitted optional parameters.

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX
,PLISTVER=0

An optional input parameter that specifies the version of the macro. PLISTVER
determines which parameter list the system generates. PLISTVER is an
optional input parameter on all forms of the macro, including the list form. When
using PLISTVER, specify it on all macro forms used for a request and with the
same value on all of the macro forms. The values are:

v IMPLIED_VERSION, which is the lowest version that allows all parameters
specified on the request to be processed. If you omit the PLISTVER
parameter, IMPLIED_VERSION is the default.

v MAX, if you want the parameter list to be the largest size currently possible.
This size might grow from release to release and affect the amount of
storage that your program needs.

If you can tolerate the size change, IBM recommends that you always specify
PLISTVER=MAX on the list form of the macro. Specifying MAX ensures that
the list-form parameter list is always long enough to hold all the parameters
you might specify on the execute form; in this way, MAX ensures that the
parameter list does not overwrite nearby storage.

v 0, if you use the currently available parameters.

To code: Specify one of the following:
v IMPLIED_VERSION
v MAX
v A decimal value of 0

,RETCODE=retcode
An optional output parameter into which the return code is to be copied from
GPR 15.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

,RSNCODE=rsncode
An optional output parameter into which the reason code is to be copied from
GPR 0.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

ABEND Codes
None.

Return and Reason Codes
When the IWMELEAV macro returns control to your program:
v GPR 15 (and retcode, if you coded RETCODE) contains a return code.
v When the value in GPR 15 is not zero, GPR 0 (and rsncode, if you coded

RSNCODE) contains reason code.

The following table identifies the hexadecimal return and reason codes and the
equate symbol associated with each reason code. IBM support personnel may
request the entire reason code, including the xxxx value.

IWMELEAV Macro

246 z/OS V1R4.0 MVS Workload Management Services

Table 30. Return and Reason Codes for the IWMELEAV Macro

Return Code Reason Code Equate Symbol Meaning and Action

0 — Equate Symbol: IwmRetCodeOk

Meaning: Successful completion.

Action: None required.

4 — Equate Symbol: IwmRetCodeWarning

Meaning: Successful completion, unusual conditions noted.

4 xxxx041C Equate Symbol: IwmRsnCodeNotEnclave

Meaning: The current dispatchable workunit is not
associated with an Enclave.

Action: Check for possible asynchronous events which may
have deleted the Enclave.

8 — Equate Symbol: IwmRetCodeInvocError

Meaning: Invalid invocation environment or parameters.

8 xxxx0801 Equate Symbol: IwmRsnCodeSrbMode

Meaning: Caller is in SRB mode.

Action: Avoid requesting this function while in SRB mode.

8 xxxx0803 Equate Symbol: IwmRsnCodeDisabled

Meaning: Caller is disabled.

Action: Avoid requesting this function while disabled.

8 xxxx0804 Equate Symbol: IwmRsnCodeLocked

Meaning: Caller is locked.

Action: Avoid requesting this function while locked.

8 xxxx080B Equate Symbol: IwmRsnCodeBadPl

Meaning: Error accessing parameter list.

Action: Check for possible storage overlay.

8 xxxx0810 Equate Symbol: IwmRsnCodeEutFrr

Meaning: Caller has EUT FRR established.

Action: Avoid requesting this function with an EUT FRR set.

8 xxxx0823 Equate Symbol: IwmRsnCodeDatoff

Meaning: Caller invoked service while DATOFF

Action: Avoid requesting this function in this environment.

8 xxxx0824 Equate Symbol: IwmRsnCodeAmode24

Meaning: Caller invoked service but was in 24 bit
addressing mode.

Action: Request this function only when you are in 31 bit
addressing mode.

8 xxxx0825 Equate Symbol: IwmRsnCodeAscModeNotPrimary

Meaning: Caller invoked service but was not DAT on
Primary ASC mode.

Action: Avoid requesting this function in this environment.

IWMELEAV Macro

Chapter 24. IWMELEAV – Leave an Enclave 247

Table 30. Return and Reason Codes for the IWMELEAV Macro (continued)

Return Code Reason Code Equate Symbol Meaning and Action

8 xxxx0826 Equate Symbol: IwmRsnCodeTaskTerm

Meaning: Caller invoked service while task termination is in
progress for the current task.

Action: Avoid requesting this function while task termination
is in progress.

8 xxxx0828 Equate Symbol: IwmRsnCodeBadVersion

Meaning: Version number in parameter list is not valid or
version length field is not valid.

Action: Check for possible storage overlay of the parameter
list.

8 xxxx083A Equate Symbol: IwmRsnCodeBadEnclave

Meaning: Enclave token does not pass verification.

Action: Check for possible storage overlay of the Enclave
token.

8 xxxx0845 Equate Symbol: IwmRsnCodeWrongEnclave

Meaning: The current dispatchable workunit is not
associated with the input Enclave.

Action: Check for possible storage overlay of the Enclave
token.

8 xxxx0850 Equate Symbol: IwmRsnCodeBeginEnvOutstanding

Meaning: Current dispatchable workunit is operating under
an outstanding Begin environment, Enclave leave is not
allowed. IWMSTEND is the required operation.

Action: Avoid requesting this function in this environment.

8 xxxx0858 Equate Symbol: IwmRsnCodeNotEjoinedTcb

Meaning: The current dispatchable workunit did not issue
Enclave Join, but only inherited Enclave attribute from
mother task.

Action: Avoid requesting this function in this environment.

8 xxxx0859 Equate Symbol: IwmRsnCodeEnclaveSubTaskExists

Meaning: The current dispatchable workunit has residual
subtasks propagated to the Enclave which are still
associated with the Enclave.

Action: Avoid requesting this function in this environment.

10 — Equate Symbol: IwmRetCodeCompError

Meaning: Component error.

Action: Contact your system programmer.

Example
To cause the current task to leave its Enclave environment:

IWMELEAV ETOKEN=ENCTOKEN,RETCODE=RC,RSNCODE=RSN
*
* Storage areas
*

IWMELEAV Macro

248 z/OS V1R4.0 MVS Workload Management Services

ENCTOKEN DS CL8 Contains the Enclave token
* associated with the work
* request as returned by IWMECREA
RC DS F Return code
RSN DS F Reason code

IWMELEAV Macro

Chapter 24. IWMELEAV – Leave an Enclave 249

IWMELEAV Macro

250 z/OS V1R4.0 MVS Workload Management Services

Chapter 25. IWMEQTME – Enclave CPU Time Query

The purpose of this service is to return the Enclave CPU time if the current
dispatchable workunit is associated with an Enclave.

Environment
The requirements for the caller are:

Minimum authorization: Supervisor state. Any PSW key.

Dispatchable unit mode: Task or SRB

Cross memory mode: Non-XMEM or XMEM. Any PASN, HASN, SASN.

AMODE: 31-bit

ASC mode: Primary

Interrupt status: Enabled or disabled for I/O and external interrupts

Locks: No locks are required.

Control parameters: Control parameters must be in the primary address space.

Programming Requirements
1. The macro IWMYCON must be included to use this macro.
2. The macro IWMPB must be in the library concatenation, since it is included by

IWMYCON.
3. Note that the high order halfword of register 0, and the reason code variable

when specified, may be non-zero and represents diagnostic data which is NOT
part of the external interface. The high order halfword should thus be excluded
from comparison with the reason code values described above. The constant,
IWMRSNCODE_MASK_CONST defined in IWMYCON, may be used for this
purpose.

4. Caller is responsible for error recovery.

Restrictions
None.

Input Register Information
Before issuing the IWMEQTME macro, the caller does not have to place any
information into any register unless using it in register notation for a particular
parameter, or using it as a base register.

Output Register Information
When control returns to the caller, the GPRs contain:

Register
Contents

0 Reason code if GR15 return code is non-zero
1 Used as work registers by the system
2-13 Unchanged
14 Used as work registers by the system
15 Return code

© Copyright IBM Corp. 1988, 2002 251

When control returns to the caller, the ARs contain:

Register
Contents

0-1 Used as work registers by the system
2-13 Unchanged
14-15 Used as work registers by the system

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the
caller depends, the caller must save them before issuing the service, and restore
them after the system returns control.

Performance Implications
None.

Syntax

main diagram

��
name

� IWMEQTME � CPUTIME=cputime
,RETCODE=retcode

�

�
,RSNCODE=rsncode

,PLISTVER=IMPLIED_VERSION

,PLISTVER=MAX
,PLISTVER=0

�

�
,MF=S

,0D
,MF=(L ,list addr)

,attr
,COMPLETE

,MF=(E ,list addr)

�"

Parameters
The parameters are explained as follows:

name
An optional symbol, starting in column 1, that is the name on the IWMEQTME
macro invocation. The name must conform to the rules for an ordinary
assembler language symbol.

CPUTIME=cputime
A required output parameter, which will contain the total accumulated CPU time
for an Enclave, if the current dispatchable workunit is associated with an
Enclave. The CPU time will be in TOD clock format.

To code: Specify the RS-type address, or address in register (2)-(12), of an
8-character field.

IWMEQTME Macro

252 z/OS V1R4.0 MVS Workload Management Services

,MF=S
,MF=(L,list addr)
,MF=(L,list addr,attr)
,MF=(L,list addr,0D)
,MF=(E,list addr)
,MF=(E,list addr,COMPLETE)

An optional input parameter that specifies the macro form.

Use MF=S to specify the standard form of the macro, which builds an inline
parameter list and generates the macro invocation to transfer control to the
service. MF=S is the default.

Use MF=L to specify the list form of the macro. Use the list form together with
the execute form of the macro for applications that require reentrant code. The
list form defines an area of storage that the execute form uses to store the
parameters. Only the PLISTVER parameter may be coded with the list form of
the macro.

Use MF=E to specify the execute form of the macro. Use the execute form
together with the list form of the macro for applications that require reentrant
code. The execute form of the macro stores the parameters into the storage
area defined by the list form, and generates the macro invocation to transfer
control to the service.

,list addr
The name of a storage area to contain the parameters. For MF=S and
MF=E, this can be an RS-type address or an address in register (1)-(12).

,attr
An optional 1- to 60-character input string that you use to force boundary
alignment of the parameter list. Use a value of 0F to force the parameter
list to a word boundary, or 0D to force the parameter list to a doubleword
boundary. If you do not code attr, the system provides a value of 0D.

,COMPLETE
Specifies that the system is to check for required parameters and supply
defaults for omitted optional parameters.

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX
,PLISTVER=0

An optional input parameter that specifies the version of the macro. PLISTVER
determines which parameter list the system generates. PLISTVER is an
optional input parameter on all forms of the macro, including the list form. When
using PLISTVER, specify it on all macro forms used for a request and with the
same value on all of the macro forms. The values are:

v IMPLIED_VERSION, which is the lowest version that allows all parameters
specified on the request to be processed. If you omit the PLISTVER
parameter, IMPLIED_VERSION is the default.

v MAX, if you want the parameter list to be the largest size currently possible.
This size might grow from release to release and affect the amount of
storage that your program needs.

If you can tolerate the size change, IBM recommends that you always specify
PLISTVER=MAX on the list form of the macro. Specifying MAX ensures that
the list-form parameter list is always long enough to hold all the parameters
you might specify on the execute form, when both are assembled with the
same level of the system. In this way, MAX ensures that the parameter list
does not overwrite nearby storage.

IWMEQTME Macro

Chapter 25. IWMEQTME – Enclave CPU Time Query 253

v 0, if you use the currently available parameters.

To code: Specify one of the following:
v IMPLIED_VERSION
v MAX
v A decimal value of 0

,RETCODE=retcode
An optional output parameter into which the return code is to be copied from
GPR 15.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

,RSNCODE=rsncode
An optional output parameter into which the reason code is to be copied from
GPR 0.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

ABEND Codes
None.

Return and Reason Codes
When the IWMEQTME macro returns control to your program:
v GPR 15 (and retcode, when you code RETCODE) contains a return code.
v When the value in GPR 15 is not zero, GPR 0 (and rsncode, when you code

RSNCODE) contains reason code.

The following table identifies the hexadecimal return and reason codes and the
equate symbol associated with each reason code. IBM support personnel may
request the entire reason code, including the xxxx value.

Table 31. Return and Reason Codes for the IWMEQTME Macro

Return Code Reason Code Equate Symbol Meaning and Action

0 — Equate Symbol: IwmRetCodeOk

Meaning: Successful completion.

Action: None required.

4 — Equate Symbol: IwmRetCodeWarning

Meaning: Successful completion, unusual conditions noted.

4 xxxx041C Equate Symbol: IwmRsnCodeNotEnclave

Meaning: The current dispatchable workunit is not
associated with an Enclave.

Action: None required.

IWMEQTME Macro

254 z/OS V1R4.0 MVS Workload Management Services

Chapter 26. IWMEREG — WLM Enclave Register Service

The IWMEREG service allows the caller to register an enclave in order to prevent it
from being deleted. This is useful if the caller wants to schedule SRBs or join tasks
to an enclave that is owned by another subsystem. Registration guarantees that the
enclave will continue to exist until the corresponding deregistration is done, even if
the other subsystem deletes the enclave. The system defers the enclave’s deletion
until after the last deregistration.

The address space identified as the home address space at the time of registration
is held responsible for deregistration in case of abnormal termination of the job
step, the job, or the address space itself.

The caller can run in task or SRB mode.

Environment
The requirements for the caller are:

Minimum authorization: Supervisor state or program key mask (PKM) allowing keys
0-7.

Dispatchable unit mode: Task or SRB

Cross memory mode: Any PASN, any HASN, any SASN

AMODE: 31-bit

ASC mode: Primary or access register (AR)

Interrupt status: Enabled for I/O and external interrupts

Locks: No locks may be held.

Control parameters: Control parameters must be in the primary address space.

Programming Requirements
1. The macro CVT must be included to use this macro.
2. The macro IWMYCON must be included to use this macro.
3. The macro IWMPB must be in the library concatenation, since it is included by

IWMYCON.
4. Note that the high order halfword of register 0, and the reason code variable

when specified, may be non-zero and represents diagnostic data which is NOT
part of the external interface. The high order halfword should thus be excluded
from comparison with the reason code values described above. The constant,
IWMRSNCODE_MASK_CONST defined in IWMYCON, may be used for this
purpose.

5. All character data, unless otherwise specified, is assumed to be left justified and
padded with blanks on the right, as needed, to occupy the specified number of
bytes.

6. Since this service may only be used by system-like code, some validity
checking on the parameter list is not performed. These checks would only be
needed if the macro were not used to invoke the service routine.

Restrictions
None

© Copyright IBM Corp. 1988, 2002 255

Input Register Information
Before issuing the IWMEREG macro, the caller does not have to place any
information into any register unless using it in register notation for a particular
parameter, or using it as a base register.

Output Register Information
When control returns to the caller, the GPRs contain:

Register
Contents

0 Reason code if GR15 return code is non-zero
1 Used as work registers by the system
2-13 Unchanged
14 Used as work registers by the system
15 Return code

When control returns to the caller, the ARs contain:

Register
Contents

0-1 Used as work registers by the system
2-13 Unchanged
14-15 Used as work registers by the system

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the
caller depends, the caller must save them before issuing the service, and restore
them after the system returns control.

Performance Implications
None

Syntax

main diagram

��
name

� IWMEREG � REGTOKEN=regtoken ,SUBSYS=subsys �

� ,SUBSYSNM=subsysnm
,SUBSYSREQUEST=subsysrequest

,ETOKEN=etoken �

�
,RETCODE=retcode ,RSNCODE=rsncode

,PLISTVER=IMPLIED_VERSION

,PLISTVER=MAX
,PLISTVER=0

�

IWMEREG Macro

256 z/OS V1R4.0 MVS Workload Management Services

�
,MF=S

,0D
,MF=(L ,list addr)

,attr
,COMPLETE

,MF=(E ,list addr)

�"

Parameters
The parameters are explained as follows:

name
An optional symbol, starting in column 1, that is the name on the IWMEREG
macro invocation. The name must conform to the rules for an ordinary
assembler language symbol.

,ETOKEN=etoken
A required input parameter that contains the enclave token.

To code: Specify the RS-type address, or address in register (2)-(12), of an
8-character field.

,MF=S
,MF=(L,list addr)
,MF=(L,list addr,attr)
,MF=(L,list addr,0D)
,MF=(E,list addr)
,MF=(E,list addr,COMPLETE)

An optional input parameter that specifies the macro form.

Use MF=S to specify the standard form of the macro, which builds an inline
parameter list and generates the macro invocation to transfer control to the
service. MF=S is the default.

Use MF=L to specify the list form of the macro. Use the list form together with
the execute form of the macro for applications that require reentrant code. The
list form defines an area of storage that the execute form uses to store the
parameters. Only the PLISTVER parameter may be coded with the list form of
the macro.

Use MF=E to specify the execute form of the macro. Use the execute form
together with the list form of the macro for applications that require reentrant
code. The execute form of the macro stores the parameters into the storage
area defined by the list form, and generates the macro invocation to transfer
control to the service.

,list addr
The name of a storage area to contain the parameters. For MF=S and
MF=E, this can be an RS-type address or an address in register (1)-(12).

,attr
An optional 1- to 60-character input string that you use to force boundary
alignment of the parameter list. Use a value of 0F to force the parameter
list to a word boundary, or 0D to force the parameter list to a doubleword
boundary. If you do not code attr, the system provides a value of 0D.

,COMPLETE
Specifies that the system is to check for required parameters and supply
defaults for omitted optional parameters.

IWMEREG Macro

Chapter 26. IWMEREG — WLM Enclave Register Service 257

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX
,PLISTVER=0

An optional input parameter that specifies the version of the macro. PLISTVER
determines which parameter list the system generates. PLISTVER is an
optional input parameter on all forms of the macro, including the list form. When
using PLISTVER, specify it on all macro forms used for a request and with the
same value on all of the macro forms. The values are:

v IMPLIED_VERSION, which is the lowest version that allows all parameters
specified on the request to be processed. If you omit the PLISTVER
parameter, IMPLIED_VERSION is the default.

v MAX, if you want the parameter list to be the largest size currently possible.
This size might grow from release to release and affect the amount of
storage that your program needs.

If you can tolerate the size change, IBM recommends that you always specify
PLISTVER=MAX on the list form of the macro. Specifying MAX ensures that
the list-form parameter list is always long enough to hold all the parameters
you might specify on the execute form, when both are assembled with the
same level of the system. In this way, MAX ensures that the parameter list
does not overwrite nearby storage.

v 0, if you use the currently available parameters.

To code: Specify one of the following:
v IMPLIED_VERSION
v MAX
v A decimal value of 0

REGTOKEN=regtoken
A required output parameter that will receive the registration token

To code: Specify the RS-type address, or address in register (2)-(12), of an
8-character field.

,RETCODE=retcode
An optional output parameter into which the return code is to be copied from
GPR 15.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

,RSNCODE=rsncode
An optional output parameter into which the reason code is to be copied from
GPR 0.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

,SUBSYS=subsys
A required input parameter, which contains the generic subsystem type (e.g.
IMS, CICS, etc.).

To code: Specify the RS-type address, or address in register (2)-(12), of a
4-character field.

,SUBSYSNM=subsysnm
A required input parameter, which identifies the subsystem instance.

To code: Specify the RS-type address, or address in register (2)-(12), of an
8-character field.

IWMEREG Macro

258 z/OS V1R4.0 MVS Workload Management Services

,SUBSYSREQUEST=subsysrequest
An optional input parameter that allows the caller to pass additional information
in order to distinguish between different invocations by the same subsystem.

To code: Specify the RS-type address, or address in register (2)-(12), of a
32-character field.

ABEND Codes
None.

Return and Reason Codes
When the IWMEREG macro returns control to your program:
v GPR 15 (and retcode, when you code RETCODE) contains a return code.
v When the value in GPR 15 is not zero, GPR 0 (and rsncode, when you code

RSNCODE) contains reason code.

The following table identifies the hexadecimal return and reason codes and the
equate symbol associated with each reason code. IBM support personnel may
request the entire reason code, including the xxxx value.

Table 32. Return and Reason Codes for the IWMEREG Macro

Return Code Reason Code Equate Symbol Meaning and Action

0 — Equate Symbol: IwmRetCodeOk

Meaning: Successful completion.

Action: None required.

8 — Equate Symbol: IwmRetCodeInvocError

Meaning: Invalid invocation environment or parameters.

8 xxxx0803 Equate Symbol: IwmRsnCodeDisabled

Meaning: Caller is disabled.

Action: Avoid requesting this function while disabled.

8 xxxx0804 Equate Symbol: IwmRsnCodeLocked

Meaning: Caller is locked.

Action: Avoid requesting this function while locked.

8 xxxx080B Equate Symbol: IwmRsnCodeBadPl

Meaning: Error accessing parameter list.

Action: Check for possible storage overlay.

8 xxxx0824 Equate Symbol: IwmRsnCodeAmode24

Meaning: Caller invoked service but was in 24 bit
addressing mode.

Action: Request this function only when you are in 31 bit
addressing mode.

8 xxxx0828 Equate Symbol: IwmRsnCodeBadVersion

Meaning: Version number in parameter list is not valid.

Action: Check for possible storage overlay of the parameter
list.

IWMEREG Macro

Chapter 26. IWMEREG — WLM Enclave Register Service 259

Table 32. Return and Reason Codes for the IWMEREG Macro (continued)

Return Code Reason Code Equate Symbol Meaning and Action

8 xxxx083A Equate Symbol: IwmRsnCodeBadEnclave

Meaning: Enclave token does not pass verification.

Action: Check for possible storage overlay of the enclave
token, or asynchronous events which may have deleted the
enclave.

8 xxxx0882 Equate Symbol: IwmRsnCodeTooManyRegistrations

Meaning: There are too many concurrent registrations
requested.

Action: There is a resource shortage. The function may
work successfully at a later time.

10 — Equate Symbol: IwmRetCodeCompError

Meaning: Component error.

Action: No action required. The function may be successful
if invoked again.

Example
IWMEREG ETOKEN=ENCTKN,REGTOKEN=REGTKN,

SUBSYS=SUBSTYPE,SUBSYSNM=SUBSNAME
*
* Storage areas
*
ENCTKN DS CL8 Enclave token
SUBSNAME DS CL8 Subsystem name
SUBSTYPE DS CL4 Subsystem type
REGTKN DS CL8 Register token

IWMEREG Macro

260 z/OS V1R4.0 MVS Workload Management Services

Chapter 27. IWMERES macro — Change an Enclave

The IWMERES macro allows the caller to change the performance controls for work
associated with an independent enclave. The caller can:

v Change the service class of work currently in execution, with the SRVCLASS
keyword. Resetting to a new service class also resumes quiesced work.

v Quiesce work currently in execution, with the QUIESCE keyword.

v Reclassify work currently in execution according to the service policy in effect,
with the RESUME keyword. The RESUME keyword also resumes quiesced work.

The system does not allow foreign enclaves or dependent enclaves to be reset.
Refer to section Restrictions for further details.

Environment
The requirements for the caller are:

Minimum authorization: Supervisor state or program key mask (PKM) allowing keys
0-7.

Dispatchable unit mode: Task or SRB
Cross memory mode: PASN=HASN=SASN
AMODE: 31-bit
ASC mode: Primary
Interrupt status: Enabled for I/O and external interrupts
Locks: No locks may be held.
Control parameters: Control parameters must be in the primary address space.

Programming Requirements
1. The macro CVT must be included to use this macro.
2. The macro IWMYCON must be included to use this macro.
3. The macro IWMPB must be in the library concatenation, since it is included by

IWMYCON.
4. Note that the high order halfword of register 0, and the reason code variable

when specified, may be non-zero and represents diagnostic data which is NOT
part of the external interface. The high order halfword should thus be excluded
from comparison with the reason code values described above. The constant,
IWMRSNCODE_MASK_CONST defined in IWMYCON, may be used for this
purpose.

Restrictions
1. This macro may not be used prior to the completion of WLM address space

initialization.
2. This macro may only be used on z/OS V1R3 or higher.
3. The caller cannot reset a dependent enclave. A dependent enclave can only be

reset by resetting the address space that owns the enclave.
4. The caller cannot reset a foreign enclave. A foreign enclave can only be reset

by resetting the original enclave on the originating system (foreign independent
enclave) or by resetting the remote owner address space (foreign dependent
enclave).

5. The caller cannot reset an enclave that is implicitly quiesced because one or
more address space currently serving the enclave is quiesced. An address
space is serving an enclave when any of its tasks is joined to the enclave or

© Copyright IBM Corp. 1988, 2002 261

when an SRB is scheduled to the enclave and the SRB used the
ENCASSOC-sysevent to establish an association with the address space.

Input Register Information
Before issuing the IWMERES macro, the caller does not have to place any
information into any register unless using it in register notation for a particular
parameter, or using it as a base register.

Output Register Information
When control returns to the caller, the GPRs contain:

Register
Contents

0 Reason code if GR15 return code is non-zero
1 Used as work registers by the system
2-13 Unchanged
14 Used as work registers by the system
15 Return code

When control returns to the caller, the ARs contain:

Register
Contents

0-1 Used as work registers by the system
2-13 Unchanged
14-15 Used as work registers by the system

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the
caller depends, the caller must save them before issuing the service, and restore
them after the system returns control.

Performance Implications
None

Syntax

main diagram

��
name

IWMERES ETOKEN=etoken �

�
,FUNCTION=RESET

,SRVCLASS=srvclass
,FUNCTION=QUIESCE
,FUNCTION=RESUME

,USERID=userid ,PRODUCT=product �

�
,RETCODE=retcode ,RSNCODE=rsncode

,PLISTVER=IMPLIED_VERSION

,PLISTVER=MAX
,PLISTVER=0

�

IWMERES Macro

262 z/OS V1R4.0 MVS Workload Management Services

�
,MF=S

,0D
,MF=(L ,list addr)

,attr
,COMPLETE

,MF=(E ,list addr)
,NOCHECK
,COMPLETE

,MF=(M ,list addr)
,NOCHECK

�"

Parameters
The parameters are explained as follows:

name
An optional symbol, starting in column 1, that is the name on the IWMERES
macro invocation. The name must conform to the rules for an ordinary
assembler language symbol.

ETOKEN=etoken
A required input parameter that contains the enclave token. The enclave token
must represent an original independent enclave.

To code: Specify the RS-type address, or address in register (2)-(12), of an
8-character field.

,FUNCTION=RESET
,FUNCTION=QUIESCE
,FUNCTION=RESUME

An optional parameter, which indicates the function to perform against the
enclave. The default is FUNCTION=RESET.

,FUNCTION=RESET

Requests that the enclave’s service class be changed.

,FUNCTION=QUIESCE

Requests that the enclave be quiesced.

,FUNCTION=RESUME

Requests that the enclave be reclassified according to the service policy in
effect. This undoes a prior request to reset the enclave to a particular
service class, or to quiesce the enclave.

,MF=S
,MF=(L,list addr)
,MF=(L,list addr,attr)
,MF=(L,list addr,0D)
,MF=(E,list addr)
,MF=(E,list addr,COMPLETE)
,MF=(E,list addr,NOCHECK)
,MF=(M,list addr)
,MF=(M,list addr,COMPLETE)
,MF=(M,list addr,NOCHECK)

An optional input parameter that specifies the macro form.

IWMERES Macro

Chapter 27. IWMERES macro — Change an Enclave 263

Use MF=S to specify the standard form of the macro, which builds an inline
parameter list and generates the macro invocation to transfer control to the
service. MF=S is the default.

Use MF=L to specify the list form of the macro. Use the list form together with
the execute form of the macro for applications that require reentrant code. The
list form defines an area of storage that the execute form uses to store the
parameters. Only the PLISTVER parameter may be coded with the list form of
the macro.

Use MF=E to specify the execute form of the macro. Use the execute form
together with the list form of the macro for applications that require reentrant
code. The execute form of the macro stores the parameters into the storage
area defined by the list form, and generates the macro invocation to transfer
control to the service.

Use MF=M together with the list and execute forms of the macro for service
routines that need to provide different options according to user-provided input.
Use the list form to define a storage area; use the modify form to set the
appropriate options; then use the execute form to call the service.

IBM recommends that you use the modify and execute forms of IWMERES in
the following order:

v Use IWMERES ...MF=(M,list-addr,COMPLETE) specifying appropriate
parameters, including all required ones.

v Use IWMERES ...MF=(M,list-addr,NOCHECK), specifying the parameters that
you want to change.

v Use IWMERES ...MF=(E,list-addr,NOCHECK), to execute the macro.

,list addr
The name of a storage area to contain the parameters. For MF=S, MF=E,
and MF=M, this can be an RS-type address or an address in register
(1)-(12).

,attr
An optional 1- to 60-character input string that you use to force boundary
alignment of the parameter list. Use a value of 0F to force the parameter
list to a word boundary, or 0D to force the parameter list to a doubleword
boundary. If you do not code attr, the system provides a value of 0D.

,COMPLETE
Specifies that the system is to check for required parameters and supply
defaults for omitted optional parameters.

,NOCHECK
Specifies that the system is not to check for required parameters and is not
to supply defaults for omitted optional parameters.

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX
,PLISTVER=0

An optional input parameter that specifies the version of the macro. PLISTVER
determines which parameter list the system generates. PLISTVER is an
optional input parameter on all forms of the macro, including the list form. When
using PLISTVER, specify it on all macro forms used for a request and with the
same value on all of the macro forms. The values are:

v IMPLIED_VERSION, which is the lowest version that allows all parameters
specified on the request to be processed. If you omit the PLISTVER
parameter, IMPLIED_VERSION is the default.

IWMERES Macro

264 z/OS V1R4.0 MVS Workload Management Services

v MAX, if you want the parameter list to be the largest size currently possible.
This size might grow from release to release and affect the amount of
storage that your program needs.

If you can tolerate the size change, IBM recommends that you always specify
PLISTVER=MAX on the list form of the macro. Specifying MAX ensures that
the list-form parameter list is always long enough to hold all the parameters
you might specify on the execute form, when both are assembled with the
same level of the system. In this way, MAX ensures that the parameter list
does not overwrite nearby storage.

v 0, if you use the currently available parameters.

To code: Specify one of the following:
v IMPLIED_VERSION
v MAX
v A decimal value of 0

,PRODUCT=product
A required input parameter, which contains the product name that is requesting
the enclave be changed. The product name is included in the SMF 90 subtype
30 record created by IWMERES.

To code: Specify the RS-type address, or address in register (2)-(12), of an
8-character field.

,RETCODE=retcode
An optional output parameter into which the return code is to be copied from
GPR 15.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

,RSNCODE=rsncode
An optional output parameter into which the reason code is to be copied from
GPR 0.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

,SRVCLASS=srvclass
When FUNCTION=RESET is specified, a required input parameter, which is the
service class to be assigned to the enclave. Resetting to a new service class
also resumes quiesced work.

To code: Specify the RS-type address of an 8-character field.

,USERID=userid
A required input parameter, which contains the id of the user who is requesting
the enclave be changed. The userid is included in the SMF 90 subtype 30
record created by IWMERES. If there is no userid available, the caller should
pass blanks.

To code: Specify the RS-type address, or address in register (2)-(12), of an
8-character field.

ABEND Codes
None.

Return and Reason Codes
When the IWMERES macro returns control to your program:
v GPR 15 (and retcode, when you code RETCODE) contains a return code.

IWMERES Macro

Chapter 27. IWMERES macro — Change an Enclave 265

v When the value in GPR 15 is not zero, GPR 0 (and rsncode, when you code
RSNCODE) contains reason code.

The following table identifies the hexadecimal return and reason codes and the
equate symbol associated with each reason code. IBM support personnel may
request the entire reason code, including the xxxx value

Table 33. Return and Reason Codes for the IWMERES Macro

Return Code Reason Code Equate Symbol Meaning and Action

0 — Equate Symbol: IwmRetCodeOk

Meaning: Successful completion.

Action: None required.

4 — Equate Symbol: IwmRetCodeWarning

Meaning: Successful completion, unusual conditions
noted.

4 xxxx043B Equate Symbol: IwmRsnCodeIsQuiesced

Meaning: The enclave cannot be reset because an
address space currently serving this enclave is
quiesced. An address space is known to serve an
enclave if any of its tasks is joined to the enclave or
if an SRB is scheduled to the enclave and the SRB
established an association with the address space by
using the ENCASSOC-sysevent.

Action: Retry the request when no address spaces
serving the enclave is quiesced.

8 — Equate Symbol: IwmRetCodeInvocError

Meaning: Invalid invocation environment or
parameters.

8 xxxx0803 Equate Symbol: IwmRsnCodeDisabled

Meaning: Caller is disabled.

Action: Avoid requesting this function while disabled.

8 xxxx0804 Equate Symbol: IwmRsnCodeLocked

Meaning: Caller is locked.

Action: Avoid requesting this function while locked.

8 xxxx080B Equate Symbol: IwmRsnCodeBadPl

Meaning: Error accessing parameter list.

Action: Check for possible storage overlay.

8 xxxx0824 Equate Symbol: IwmRsnCodeAmode24

Meaning: Caller invoked service but was in 24 bit
addressing mode.

Action: Request this function only when you are in
31 bit addressing mode.

IWMERES Macro

266 z/OS V1R4.0 MVS Workload Management Services

Table 33. Return and Reason Codes for the IWMERES Macro (continued)

Return Code Reason Code Equate Symbol Meaning and Action

8 xxxx0825 Equate Symbol: IwmRsnCodeAscModeNotPrimary

Meaning: Caller invoked service but was not in
primary ASC mode.

Action: Avoid requesting this function in this
environment.

8 xxxx0827 Equate Symbol: IwmRsnCodeRsvdNot0

Meaning: Reserved field in parameter list was
non-zero.

Action: Check for use of keywords that are not
supported by the MVS release on which the program
is running.

8 xxxx0828 Equate Symbol: IwmRsnCodeBadVersion

Meaning: Version number in parameter list is not
valid.

Action: Check for possible storage overlay of the
parameter list.

8 xxxx0829 Equate Symbol: IwmRsnCodeBadOptions

Meaning: Parameter list omits required parameters.

Action: Check for possible storage overlay of the
parameter list.

8 xxxx083A Equate Symbol: IwmRsnCodeBadEnclave

Meaning: Enclave token does not pass verification.

Action: Check for possible storage overlay of the
enclave token, or asynchronous events which may
have deleted the enclave.

8 xxxx0841 Equate Symbol: IwmRsnCodeXMemMode

Meaning: Caller is in cross memory mode.

Action: Invoke the function in non-cross memory
mode.

8 xxxx0872 Equate Symbol: IwmRsnCodeForeignEnclave

Meaning: The requested service is not supported for
a foreign enclave. This reason code is returned for
independent foreign enclaves only.

Action: All participants of a multisystem enclave can
only be reset together by resetting the original
enclave on the originating system.

IWMERES Macro

Chapter 27. IWMERES macro — Change an Enclave 267

Table 33. Return and Reason Codes for the IWMERES Macro (continued)

Return Code Reason Code Equate Symbol Meaning and Action

8 xxxx0885 Equate Symbol: IwmRsnCodeDependentEnclave

Meaning: The requested service is not supported for
a dependent enclave. This reason code is returned
for both, an original and a foreign dependent
enclave.

Action: A dependent enclave cannot be reset
directly. It can only be reset by resetting its owning
address space.

C — Equate Symbol: IwmRetCodeEnvError

Meaning: Environmental error.

C xxxx0C28 Equate Symbol: IwmRsnCodeBadServiceClass

Meaning: The input service class name is not
defined in the active workload manager policy.

Action: Record or report the error if appropriate.

C xxxx0C2E Equate Symbol: IwmRsnCodeWrongMode

Meaning: Reserved

C xxxx0C32 Equate Symbol:
IwmRsnCodeNotEligibleForSrvClass

Meaning: The active job in the specified address
space or the specified enclave is not eligible for reset
into the specified system service class. Only address
spaces created with the ASCRE HIPRI attribute are
eligible for reset into the SYSTEM service class.

Action: Record or report the error if appropriate.

10 — Equate Symbol: IwmRetCodeCompError

Meaning: Component error.

Action: Contact your system programmer.

Example
To change the service class of the enclave identified by the token TOKEN:

IWMERES ETOKEN=TOKEN,SRVCLASS=SCNAME,USERID=USR,
PRODUCT=PROD

*
* Storage areas
*
TOKEN DS CL8 Contains the enclave token
SCNAME DS CL8 Contains the service class name
* to assign to the job
USR DS CL8 Contains the id of the user who
* is requesting the change
PROD DS CL8 Contains the product name of
* the code invoking IWMERES

IWMERES Macro

268 z/OS V1R4.0 MVS Workload Management Services

|||

|

Chapter 28. IWMESQRY – Query Enclave State

The purpose of this service is to query whether or not the current dispatchable
workunit is associated with an Enclave. The output either is the Enclave token or
the STOKEN of the address space associated with the caller’s workunit.

Environment
The requirements for the caller are:

Minimum authorization: Supervisor state. Any PSW key.

Dispatchable unit mode: Task or SRB

Cross memory mode: Non-XMEM or XMEM. Any PASN, HASN, SASN.

AMODE: 31-bit

ASC mode: Primary

Interrupt status: Enabled or disabled for I/O and external interrupts

Locks: No locks are required.

Control parameters: Control parameters must be in the primary address space.

Programming Requirements
1. The macro IWMYCON must be included to use this macro.
2. The macro IWMPB must be in the library concatenation, since it is included by

IWMYCON.
3. Note that the high order halfword of register 0, and the reason code variable

when specified, may be non-zero and represents diagnostic data which is NOT
part of the external interface. The high order halfword should thus be excluded
from comparison with the reason code values described above. The constant,
IWMRSNCODE_MASK_CONST defined in IWMYCON, may be used for this
purpose.

4. Caller is responsible for error recovery.

Restrictions
None.

Input Register Information
Before issuing the IWMESQRY macro, the caller does not have to place any
information into any register unless using it in register notation for a particular
parameter, or using it as a base register.

Output Register Information
When control returns to the caller, the GPRs contain:

Register
Contents

0 Reason code if GR15 return code is non-zero
1 Used as work registers by the system
2-13 Unchanged
14 Used as work registers by the system

© Copyright IBM Corp. 1988, 2002 269

|
|
|

15 Return code

When control returns to the caller, the ARs contain:

Register
Contents

0-1 Used as work registers by the system
2-13 Unchanged
14-15 Used as work registers by the system

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the
caller depends, the caller must save them before issuing the service, and restore
them after the system returns control.

Performance Implications
None.

Syntax

main diagram

��
name

� IWMESQRY � ETOKEN=etoken
,TOKEN=token ,RETCODE=retcode

�

�
,RSNCODE=rsncode

,PLISTVER=IMPLIED_VERSION

,PLISTVER=MAX
,PLISTVER=0

�

�
,MF=S

,0D
,MF=(L ,list addr)

,attr
,COMPLETE

,MF=(E ,list addr)

�"

Parameters
The parameters are explained as follows:

name
An optional symbol, starting in column 1, that is the name on the IWMESQRY
macro invocation. The name must conform to the rules for an ordinary
assembler language symbol.

ETOKEN=etoken
A required output parameter, which will receive the Enclave token if the current
dispatchable workunit is associated with an Enclave. If it is not associated with
an Enclave, the field is set to 0. This parameter is deprecated and supported for
compatibility reasons only. The TOKEN parameter should be used instead.

To code: Specify the RS-type address, or address in register (2)-(12), of an
8-character field.

IWMESQRY Macro

270 z/OS V1R4.0 MVS Workload Management Services

|
|
|
|

|
|

,MF=S
,MF=(L,list addr)
,MF=(L,list addr,attr)
,MF=(L,list addr,0D)
,MF=(E,list addr)
,MF=(E,list addr,COMPLETE)

An optional input parameter that specifies the macro form.

Use MF=S to specify the standard form of the macro, which builds an inline
parameter list and generates the macro invocation to transfer control to the
service. MF=S is the default.

Use MF=L to specify the list form of the macro. Use the list form together with
the execute form of the macro for applications that require reentrant code. The
list form defines an area of storage that the execute form uses to store the
parameters. Only the PLISTVER parameter may be coded with the list form of
the macro.

Use MF=E to specify the execute form of the macro. Use the execute form
together with the list form of the macro for applications that require reentrant
code. The execute form of the macro stores the parameters into the storage
area defined by the list form, and generates the macro invocation to transfer
control to the service.

,list addr
The name of a storage area to contain the parameters. For MF=S and
MF=E, this can be an RS-type address or an address in register (1)-(12).

,attr
An optional 1- to 60-character input string that you use to force boundary
alignment of the parameter list. Use a value of 0F to force the parameter
list to a word boundary, or 0D to force the parameter list to a doubleword
boundary. If you do not code attr, the system provides a value of 0D.

,COMPLETE
Specifies that the system is to check for required parameters and supply
defaults for omitted optional parameters.

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX
,PLISTVER=0

An optional input parameter that specifies the version of the macro. PLISTVER
determines which parameter list the system generates. PLISTVER is an
optional input parameter on all forms of the macro, including the list form. When
using PLISTVER, specify it on all macro forms used for a request and with the
same value on all of the macro forms. The values are:

v IMPLIED_VERSION, which is the lowest version that allows all parameters
specified on the request to be processed. If you omit the PLISTVER
parameter, IMPLIED_VERSION is the default.

v MAX, if you want the parameter list to be the largest size currently possible.
This size might grow from release to release and affect the amount of
storage that your program needs.

If you can tolerate the size change, IBM recommends that you always specify
PLISTVER=MAX on the list form of the macro. Specifying MAX ensures that
the list-form parameter list is always long enough to hold all the parameters
you might specify on the execute form; in this way, MAX ensures that the
parameter list does not overwrite nearby storage.

v 0, if you use the currently available parameters.

IWMESQRY Macro

Chapter 28. IWMESQRY – Query Enclave State 271

To code: Specify one of the following:
v IMPLIED_VERSION
v MAX
v A decimal value of 0

,RETCODE=retcode
An optional output parameter into which the return code is to be copied from
GPR 15.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

,RSNCODE=rsncode
An optional output parameter into which the reason code is to be copied from
GPR 0.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

,TOKEN=token
A required output parameter which will receive either the Enclave token if the
current dispatchable workunit is associated with an Enclave (as indicated by
return code 0), or the STOKEN of the address space the workunit is associated
with (return code 4).

To code: Specify the RS-type address, or address in register (2)-(12), of an
8-character field.

ABEND Codes
None.

Return and Reason Codes
When the IWMESQRY macro returns control to your program:
v GPR 15 (and retcode, if you coded RETCODE) contains a return code.
v When the value in GPR 15 is not zero, GPR 0 (and rsncode, if you coded

RSNCODE) contains reason code.

The following table identifies the hexadecimal return and reason codes and the
equate symbol associated with each reason code. IBM support personnel may
request the entire reason code, including the xxxx value.

Table 34. Return and Reason Codes for the IWMESQRY Macro

Return Code Reason Code Equate Symbol Meaning and Action

0 — Equate Symbol: IwmRetCodeOk

Meaning: Successful completion.

Action: None required.

4 — Equate Symbol: IwmRetCodeWarning

Meaning: Successful completion, unusual conditions noted.

4 xxxx041C Equate Symbol: IwmRsnCodeNotEnclave

Meaning: The current dispatchable workunit is not
associated with an Enclave.

Action: None required.

IWMESQRY Macro

272 z/OS V1R4.0 MVS Workload Management Services

|
|
|
|
|

|
|

Example
To query whether the current dispatchable workunit is associated with an Enclave or
an address space:

IWMESQRY TOKEN=MYTOKEN,RETCODE=RC,RSNCODE=RSN
*
* Storage areas
*
MYTOKEN DS CL8 Enclave token or STOKEN
RC DS F Return code
RSN DS F Reason code

IWMESQRY Macro

Chapter 28. IWMESQRY – Query Enclave State 273

|
|

|
|
|
|
|
|
|

IWMESQRY Macro

274 z/OS V1R4.0 MVS Workload Management Services

Chapter 29. IWMEXPT – WLM Export Service

The IWMEXPT macro exports an enclave to all systems in a parallel sysplex. This
enables dispatchable units on other systems to import and join the enclave. The
macro returns an export token which the caller must pass to other systems where it
wants to import and join the enclave.

The caller must invoke the IWMUEXPT macro when other systems no longer need
access to the exported enclave.

The primary address space must have connected to WLM using the IWMCONN
macro.

Environment
The requirements for the caller are:

Minimum authorization: Supervisor state or program key mask (PKM) allowing keys
0-7.

Dispatchable unit mode: Task or SRB

Cross memory mode: Any HASN, any SASN. PASN must be the address space
which connected to WLM.

AMODE: 31-bit

ASC mode: Primary

Interrupt status: Enabled for I/O and external interrupts

Locks: No locks may be held.

Control parameters: Control parameters must be in the primary address space.

Programming Requirements
1. The macro CVT must be included to use this macro.
2. The macro IWMYCON must be included to use this macro.
3. The macro IWMPB must be in the library concatenation, since it is included by

IWMYCON.
4. Note that the high order halfword of register 0, and the reason code variable

when specified, may be non-zero and represents diagnostic data which is NOT
part of the external interface. The high order halfword should thus be excluded
from comparison with the reason code values described above. The constant,
IWMRSNCODE_MASK_CONST defined in IWMYCON, may be used for this
purpose.

Restrictions
None

Input Register Information
Before issuing the IWMEXPT macro, the caller does not have to place any
information into any register unless using it in register notation for a particular
parameter, or using it as a base register.

© Copyright IBM Corp. 1988, 2002 275

|

Output Register Information
When control returns to the caller, the GPRs contain:

Register
Contents

0 Reason code if GR15 return code is non-zero
1 Used as work registers by the system
2-13 Unchanged
14 Used as work registers by the system
15 Return code

When control returns to the caller, the ARs contain:

Register
Contents

0-1 Used as work registers by the system
2-13 Unchanged
14-15 Used as work registers by the system

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the
caller depends, the caller must save them before issuing the service, and restore
them after the system returns control.

Performance Implications
None

Syntax

main diagram

��
name

�IWMEXPT� ETOKEN=etoken ,XTOKEN=xtoken ,CONNTKN=conntkn �

�
,RETCODE=retcode ,RSNCODE=rsncode

,PLISTVER=IMPLIED_VERSION

,PLISTVER=MAX
,PLISTVER=0

�

�
,MF=S

,0D
,MF=(L ,list addr)

,attr
,COMPLETE

,MF=(E ,list addr)

�"

Parameters
The parameters are explained as follows:

IWMEXPT Macro

276 z/OS V1R4.0 MVS Workload Management Services

name
An optional symbol, starting in column 1, that is the name on the IWMEXPT
macro invocation. The name must conform to the rules for an ordinary
assembler language symbol.

,CONNTKN=conntkn
A required input parameter that contains the connect token for the primary
address space’s connection to WLM.

To code: Specify the RS-type address, or address in register (2)-(12), of a 32
bit field.

ETOKEN=etoken
A required input parameter that contains the enclave token of the enclave to be
exported.

To code: Specify the RS-type address, or address in register (2)-(12), of an
8-character field.

,MF=S
,MF=(L,list addr)
,MF=(L,list addr,attr)
,MF=(L,list addr,0D)
,MF=(E,list addr)
,MF=(E,list addr,COMPLETE)

An optional input parameter that specifies the macro form.

Use MF=S to specify the standard form of the macro, which builds an inline
parameter list and generates the macro invocation to transfer control to the
service. MF=S is the default.

Use MF=L to specify the list form of the macro. Use the list form together with
the execute form of the macro for applications that require reentrant code. The
list form defines an area of storage that the execute form uses to store the
parameters. Only the PLISTVER parameter may be coded with the list form of
the macro.

Use MF=E to specify the execute form of the macro. Use the execute form
together with the list form of the macro for applications that require reentrant
code. The execute form of the macro stores the parameters into the storage
area defined by the list form, and generates the macro invocation to transfer
control to the service.

,list addr
The name of a storage area to contain the parameters. For MF=S and
MF=E, this can be an RS-type address or an address in register (1)-(12).

,attr
An optional 1- to 60-character input string that you use to force boundary
alignment of the parameter list. Use a value of 0F to force the parameter
list to a word boundary, or 0D to force the parameter list to a doubleword
boundary. If you do not code attr, the system provides a value of 0D.

,COMPLETE
Specifies that the system is to check for required parameters and supply
defaults for omitted optional parameters.

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX
,PLISTVER=0

An optional input parameter that specifies the version of the macro. PLISTVER
determines which parameter list the system generates. PLISTVER is an

IWMEXPT Macro

Chapter 29. IWMEXPT – WLM Export Service 277

optional input parameter on all forms of the macro, including the list form. When
using PLISTVER, specify it on all macro forms used for a request and with the
same value on all of the macro forms. The values are:

v IMPLIED_VERSION, which is the lowest version that allows all parameters
specified on the request to be processed. If you omit the PLISTVER
parameter, IMPLIED_VERSION is the default.

v MAX, if you want the parameter list to be the largest size currently possible.
This size might grow from release to release and affect the amount of
storage that your program needs.

If you can tolerate the size change, IBM recommends that you always specify
PLISTVER=MAX on the list form of the macro. Specifying MAX ensures that
the list-form parameter list is always long enough to hold all the parameters
you might specify on the execute form, when both are assembled with the
same level of the system. In this way, MAX ensures that the parameter list
does not overwrite nearby storage.

v 0, if you use the currently available parameters.

To code: Specify one of the following:
v IMPLIED_VERSION
v MAX
v A decimal value of 0

,RETCODE=retcode
An optional output parameter into which the return code is to be copied from
GPR 15.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

,RSNCODE=rsncode
An optional output parameter into which the reason code is to be copied from
GPR 0.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

,XTOKEN=xtoken
A required output parameter that contains an export token which uniquely
identifies the exported enclave throughout the parallel sysplex.

To code: Specify the RS-type address, or address in register (2)-(12), of a
32-character field.

ABEND Codes
None.

Return and Reason Codes
When the IWMEXPT macro returns control to your program:
v GPR 15 (and retcode, when you code RETCODE) contains a return code.
v When the value in GPR 15 is not zero, GPR 0 (and rsncode, when you code

RSNCODE) contains reason code.

The following table identifies the hexadecimal return and reason codes and the
equate symbol associated with each reason code. IBM support personnel may
request the entire reason code, including the xxxx value.

IWMEXPT Macro

278 z/OS V1R4.0 MVS Workload Management Services

Table 35. Return and Reason Codes for the IWMEXPT Macro

Return Code Reason Code Equate Symbol Meaning and Action

0 — Equate Symbol: IwmRetCodeOk

Meaning: Successful completion.

Action: None required.

4 — Equate Symbol: IwmRetCodeWarning

Meaning: Successful completion, unusual conditions noted.

4 xxxx0433 Equate Symbol: IwmRsnCodeEncAlreadyExported

Meaning: The input enclave was imported from another
system. It cannot be exported by this system.

Action: The existing export token associated with the input
enclave is returned. It can be used as long as it remains
valid, which is under the control of the work manager that
exported the enclave. Do not invoke IWMUEXPT to undo
the export since this invocation did not establish the export.

8 — Equate Symbol: IwmRetCodeInvocError

Meaning: Invalid invocation environment or parameters.

8 xxxx0803 Equate Symbol: IwmRsnCodeDisabled

Meaning: Caller is disabled.

Action: Avoid requesting this function while disabled.

8 xxxx0804 Equate Symbol: IwmRsnCodeLocked

Meaning: Caller is locked.

Action: Avoid requesting this function while locked.

8 xxxx080B Equate Symbol: IwmRsnCodeBadPl

Meaning: Error accessing parameter list.

Action: Check for possible storage overlay.

8 xxxx0821 Equate Symbol: IwmRsnCodeBadConn

Meaning: Input connect token does not pass validity
checking.

Action: Make sure the primary address space connected to
WLM using the IWMCONN service. Make sure the connect
token returned by IWMCONN is passed correctly.

8 xxxx0824 Equate Symbol: IwmRsnCodeAmode24

Meaning: Caller invoked service but was in 24 bit
addressing mode.

Action: Request this function only when you are in 31 bit
addressing mode.

8 xxxx0825 Equate Symbol: IwmRsnCodeAscModeNotPrimary

Meaning: Caller invoked service but was not in primary
ASC mode.

Action: Avoid requesting this function in this environment.

IWMEXPT Macro

Chapter 29. IWMEXPT – WLM Export Service 279

Table 35. Return and Reason Codes for the IWMEXPT Macro (continued)

Return Code Reason Code Equate Symbol Meaning and Action

8 xxxx0827 Equate Symbol: IwmRsnCodeRsvdNot0

Meaning: Reserved field in parameter list was non-zero.

Action: Check for use of keywords that are not supported
by the OS/390 release on which the program is running.

8 xxxx0828 Equate Symbol: IwmRsnCodeBadVersion

Meaning: Version number in parameter list is not valid.

Action: Check for possible storage overlay of the parameter
list.

8 xxxx083A Equate Symbol: IwmRsnCodeBadEnclave

Meaning: Enclave token does not pass verification.

Action: Check for possible storage overlay of the enclave
token, or asynchronous events which may have deleted the
enclave.

8 xxxx0840 Equate Symbol: IwmRsnCodeServiceNotEnabled

Meaning: Caller’s connection is not enabled for this service.

Action: Make sure that EXPTIMPT=YES is specified on the
IWMCONN macro invocation.

8 xxxx0842 Equate Symbol: IwmRsnCodeNoWLMConnect

Meaning: Caller’s primary address space is not connected
to WLM.

Action: Invoke the IWMCONN macro before invoking this
macro.

8 xxxx0884 Equate SymbolIwmRsnCodeEnclaveDefEx

Meaning: Enclave is marked Execution Start Time to be
deferred.

Action: Such an Enclave can not be exported.

C — Equate Symbol: IwmRetCodeEnvError

Meaning: Environmental error.

C xxxx0C01 Equate Symbol: IwmRsnCodeNoStg

Meaning: Virtual storage is not available for the request.

Action: Process the unit-of-work on the local system or fail
the unit-of-work, whichever is appropriate.

C xxxx0C2F Equate Symbol: IwmRsnCodeSystemSpace

Meaning: The enclave is owned by a system (i.e.
limited-function) address space. Exporting such an enclave
is not supported.

Action: Process the unit-of-work on the local system or fail
the unit-of-work, whichever is appropriate.

C xxxx0C37 Equate Symbol: IwmRsnCodeStructureFull

Meaning: The coupling facility structure is full.

Action: Process the unit-of-work on the local system or fail
the unit-of-work, whichever is appropriate.

IWMEXPT Macro

280 z/OS V1R4.0 MVS Workload Management Services

Table 35. Return and Reason Codes for the IWMEXPT Macro (continued)

Return Code Reason Code Equate Symbol Meaning and Action

C xxxx0C36 Equate Symbol: IwmRsnCodeStructureUnavailable

Meaning: WLM does not have access to its coupling facility
structure.

Action: Process the unit-of-work on the local system or fail
the unit-of-work, whichever is appropriate. Check for WLM
or XES messages which describe the problem.

10 — Equate Symbol: IwmRetCodeCompError

Meaning: Component error.

Action: Contact your system programmer.

Example
IWMEXPT ETOKEN=ENCLAVET,XTOKEN=EXPORTT,CONNTKN=CONNECTT

*
* Storage areas
*
ENCLAVET DS CL8 Enclave token
EXPORTT DS CL32 Export token
CONNECTT DS CL4 Connect token

IWMEXPT Macro

Chapter 29. IWMEXPT – WLM Export Service 281

IWMEXPT Macro

282 z/OS V1R4.0 MVS Workload Management Services

Chapter 30. IWMIMPT – WLM Import Service

The IWMIMPT macro imports an enclave that has been previously exported using
the IWMEXPT macro.

The caller must invoke the IWMUIMPT macro when it no longer needs access to
the enclave.

The primary address space must have connected to WLM using the IWMCONN
macro.

Environment
The requirements for the caller are:

Minimum authorization: Supervisor state or program key mask (PKM) allowing keys
0-7.

Dispatchable unit mode: Task or SRB

Cross memory mode: Any HASN, any SASN. PASN must be the address space
which connected to WLM.

AMODE: 31-bit

ASC mode: Primary

Interrupt status: Enabled for I/O and external interrupts

Locks: No locks may be held.

Control parameters: Control parameters must be in the primary address space.

Programming Requirements
1. The macro CVT must be included to use this macro.
2. The macro IWMYCON must be included to use this macro.
3. The macro IWMPB must be in the library concatenation, since it is included by

IWMYCON.
4. Note that the high order halfword of register 0, and the reason code variable

when specified, may be non-zero and represents diagnostic data which is NOT
part of the external interface. The high order halfword should thus be excluded
from comparison with the reason code values described above. The constant,
IWMRSNCODE_MASK_CONST defined in IWMYCON, may be used for this
purpose.

Restrictions
None

Input Register Information
Before issuing the IWMIMPT macro, the caller does not have to place any
information into any register unless using it in register notation for a particular
parameter, or using it as a base register.

Output Register Information
When control returns to the caller, the GPRs contain:

© Copyright IBM Corp. 1988, 2002 283

Register
Contents

0 Reason code if GR15 return code is non-zero
1 Used as work registers by the system
2-13 Unchanged
14 Used as work registers by the system
15 Return code

When control returns to the caller, the ARs contain:

Register
Contents

0-1 Used as work registers by the system
2-13 Unchanged
14-15 Used as work registers by the system

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the
caller depends, the caller must save them before issuing the service, and restore
them after the system returns control.

Performance Implications
None

Syntax

main diagram

��
name

�IWMIMPT� XTOKEN=xtoken ,ETOKEN=etoken ,CONNTKN=conntkn �

�
,RETCODE=retcode ,RSNCODE=rsncode

,PLISTVER=IMPLIED_VERSION

,PLISTVER=MAX
,PLISTVER=0

�

�
,MF=S

,0D
,MF=(L ,list addr)

,attr
,COMPLETE

,MF=(E ,list addr)

�"

Parameters
The parameters are explained as follows:

name
An optional symbol, starting in column 1, that is the name on the IWMIMPT
macro invocation. The name must conform to the rules for an ordinary
assembler language symbol.

IWMIMPT Macro

284 z/OS V1R4.0 MVS Workload Management Services

,CONNTKN=conntkn
A required input parameter that contains the connect token for the primary
address space’s connection to WLM.

To code: Specify the RS-type address, or address in register (2)-(12), of a 32
bit field.

,ETOKEN=etoken
A required output parameter that contains the enclave token for the imported
enclave. The caller can pass this token as input to all enclave services except
IWMEDELE. The enclave token is valid on the local system only.

To code: Specify the RS-type address, or address in register (2)-(12), of an
8-character field.

,MF=S
,MF=(L,list addr)
,MF=(L,list addr,attr)
,MF=(L,list addr,0D)
,MF=(E,list addr)
,MF=(E,list addr,COMPLETE)

An optional input parameter that specifies the macro form.

Use MF=S to specify the standard form of the macro, which builds an inline
parameter list and generates the macro invocation to transfer control to the
service. MF=S is the default.

Use MF=L to specify the list form of the macro. Use the list form together with
the execute form of the macro for applications that require reentrant code. The
list form defines an area of storage that the execute form uses to store the
parameters. Only the PLISTVER parameter may be coded with the list form of
the macro.

Use MF=E to specify the execute form of the macro. Use the execute form
together with the list form of the macro for applications that require reentrant
code. The execute form of the macro stores the parameters into the storage
area defined by the list form, and generates the macro invocation to transfer
control to the service.

,list addr
The name of a storage area to contain the parameters. For MF=S and
MF=E, this can be an RS-type address or an address in register (1)-(12).

,attr
An optional 1- to 60-character input string that you use to force boundary
alignment of the parameter list. Use a value of 0F to force the parameter
list to a word boundary, or 0D to force the parameter list to a doubleword
boundary. If you do not code attr, the system provides a value of 0D.

,COMPLETE
Specifies that the system is to check for required parameters and supply
defaults for omitted optional parameters.

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX
,PLISTVER=0

An optional input parameter that specifies the version of the macro. PLISTVER
determines which parameter list the system generates. PLISTVER is an
optional input parameter on all forms of the macro, including the list form. When
using PLISTVER, specify it on all macro forms used for a request and with the
same value on all of the macro forms. The values are:

IWMIMPT Macro

Chapter 30. IWMIMPT – WLM Import Service 285

v IMPLIED_VERSION, which is the lowest version that allows all parameters
specified on the request to be processed. If you omit the PLISTVER
parameter, IMPLIED_VERSION is the default.

v MAX, if you want the parameter list to be the largest size currently possible.
This size might grow from release to release and affect the amount of
storage that your program needs.

If you can tolerate the size change, IBM recommends that you always specify
PLISTVER=MAX on the list form of the macro. Specifying MAX ensures that
the list-form parameter list is always long enough to hold all the parameters
you might specify on the execute form, when both are assembled with the
same level of the system. In this way, MAX ensures that the parameter list
does not overwrite nearby storage.

v 0, if you use the currently available parameters.

To code: Specify one of the following:
v IMPLIED_VERSION
v MAX
v A decimal value of 0

,RETCODE=retcode
An optional output parameter into which the return code is to be copied from
GPR 15.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

,RSNCODE=rsncode
An optional output parameter into which the reason code is to be copied from
GPR 0.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

XTOKEN=xtoken
A required input parameter that contains the export token which identifies the
exported enclave.

To code: Specify the RS-type address, or address in register (2)-(12), of a
32-character field.

ABEND Codes
None.

IWMIMPT Macro

286 z/OS V1R4.0 MVS Workload Management Services

Return and Reason Codes
When the IWMIMPT macro returns control to your program:
v GPR 15 (and retcode, when you code RETCODE) contains a return code.
v When the value in GPR 15 is not zero, GPR 0 (and rsncode, when you code

RSNCODE) contains reason code.

The following table identifies the hexadecimal return and reason codes and the
equate symbol associated with each reason code. IBM support personnel may
request the entire reason code, including the xxxx value.

Table 36. Return and Reason Codes for the IWMIMPT Macro

Return Code Reason Code Equate Symbol Meaning and Action

0 — Equate Symbol: IwmRetCodeOk

Meaning: Successful completion.

Action: None required.

4 — Equate Symbol: IwmRetCodeWarning

Meaning: Successful completion, unusual conditions noted.

4 xxxx0432 Equate Symbol: IwmRsnCodeUnknownExportToken

Meaning: No enclave matching the export token was found.
The enclave may have been unexported or deleted, or the
WLM coupling facility structure may have been lost.

Action: Discontinue processing the unit of work.

8 — Equate Symbol: IwmRetCodeInvocError

Meaning: Invalid invocation environment or parameters.

8 xxxx0803 Equate Symbol: IwmRsnCodeDisabled

Meaning: Caller is disabled.

Action: Avoid requesting this function while disabled.

8 xxxx0804 Equate Symbol: IwmRsnCodeLocked

Meaning: Caller is locked.

Action: Avoid requesting this function while locked.

8 xxxx080B Equate Symbol: IwmRsnCodeBadPl

Meaning: Error accessing parameter list.

Action: Check for possible storage overlay.

8 xxxx0821 Equate Symbol: IwmRsnCodeBadConn

Meaning: Input connect token does not pass validity
checking.

Action: Make sure the primary address space connected to
WLM using the IWMCONN service. Make sure the connect
token returned by IWMCONN is passed correctly.

8 xxxx0824 Equate Symbol: IwmRsnCodeAmode24

Meaning: Caller invoked service but was in 24 bit
addressing mode.

Action: Request this function only when you are in 31 bit
addressing mode.

IWMIMPT Macro

Chapter 30. IWMIMPT – WLM Import Service 287

Table 36. Return and Reason Codes for the IWMIMPT Macro (continued)

Return Code Reason Code Equate Symbol Meaning and Action

8 xxxx0825 Equate Symbol: IwmRsnCodeAscModeNotPrimary

Meaning: Caller invoked service but was not in primary
ASC mode.

Action: Avoid requesting this function in this environment.

8 xxxx0827 Equate Symbol: IwmRsnCodeRsvdNot0

Meaning: Reserved field in parameter list was non-zero.

Action: Check for use of keywords that are not supported
by the OS/390 release on which the program is running.

8 xxxx0828 Equate Symbol: IwmRsnCodeBadVersion

Meaning: Version number in parameter list is not valid.

Action: Check for possible storage overlay of the parameter
list.

8 xxxx0836 Equate Symbol: IwmRsnCodeMaxEnclave

Meaning: Enclave could not be created because the
enclave limit ha been reached.

Action: Check for possible problems wherein enclaves are
not being deleted as expected or excessive numbers of
enclaves are being created in a loop.

8 xxxx0840 Equate Symbol: IwmRsnCodeServiceNotEnabled

Meaning: Caller’s connection is not enabled for this service.

Action: Make sure that EXPTIMPT=YES is specified on the
IWMCONN macro invocation.

8 xxxx0842 Equate Symbol: IwmRsnCodeNoWLMConnect

Meaning: Caller’s primary address space is not connected
to WLM.

Action: Invoke the IWMCONN macro before invoking this
macro.

8 xxxx0870 Equate Symbol: IwmRsnCodeBadExportToken

Meaning: The export token is not validly formatted.

Action: Check for possible storage overlay of the export
token.

C — Equate Symbol: IwmRetCodeEnvError

Meaning: Environmental error.

C xxxx0C01 Equate Symbol: IwmRsnCodeNoStg

Meaning: Virtual storage is not available for the request.

Action: Contact your system programmer.

C xxxx0C36 Equate Symbol: IwmRsnCodeStructureUnavailable

Meaning: WLM does not have access to its coupling facility
structure.

Action: Check for WLM or XES messages which describe
the problem.

IWMIMPT Macro

288 z/OS V1R4.0 MVS Workload Management Services

Table 36. Return and Reason Codes for the IWMIMPT Macro (continued)

Return Code Reason Code Equate Symbol Meaning and Action

C xxxx0C38 Equate Symbol: IwmRsnCodeUplevelObject

Meaning: The multisystem enclave requires functions that
are not available on this level of the operating system.

Action: Do not process the work request on this system.

C xxxx0C39 Equate Symbol: IwmRsnCodeTooManySystems

Meaning: The sysplex has exceeded 32 systems with
unique names. This can occur when a system is reIPLed
into the sysplex with a different SYSNAME or CPU
Adjustment factor.

Action: Do not process the work request on this system.

10 — Equate Symbol: IwmRetCodeCompError

Meaning: Component error.

Action: Contact your system programmer.

Example
IWMIMPT XTOKEN=EXPORTT,ETOKEN=ENCLAVET,CONNTKN=CONNECTT

*
* Storage areas
*
ENCLAVET DS CL8 Enclave token
EXPORTT DS CL32 Export token
CONNECTT DS CL4 Connect token

IWMIMPT Macro

Chapter 30. IWMIMPT – WLM Import Service 289

IWMIMPT Macro

290 z/OS V1R4.0 MVS Workload Management Services

Chapter 31. IWMMABNL – Record Abnormal Event

You can use IWMMABNL to record an abnormal event that has occurred for work
requests. The information is kept in the input monitoring environment. The abnormal
condition supplements any existing abnormal conditions recorded in the input
monitoring environment.

The abnormal events are transferred (with all other information) to any parent
monitoring environment with the IWMMXFER FUNCTION=RETURN parameter.
These abnormal events are recorded in the monitoring environment so that the
caller can get an indication that further requests might fail due to some abnormal
situation. This supplements any information a caller receives from the return code.

Environment
The requirements for the caller are:

Minimum authorization: Supervisor state, or problem state. PSW key must either be
0 or match the value supplied on IWMMCREA for the input
monitoring token when MONENVKEYP=PSWKEY is
specified.

Dispatchable unit mode: Task or SRB

Cross memory mode: Any PASN, any HASN, any SASN

AMODE: 31-bit

ASC mode: Primary mode

Interrupt status: Enabled

Locks: Unlocked

Control parameters: Control parameters must be in the primary address space.

Programming Requirements
v You must include the IWMYCON mapping macro in the calling program.

v If the key specified on IWMMCREA was a user key, then either primary or
secondary addressability must exist to the performance block IWMMCREA
obtained.

v If you specify MONENVKEYP=VALUE, then the caller must be in supervisor state
or have PKM authority to the key specified by MONENVKEY.

v If you specify MONENVKEYP=UNKNOWN, then the caller must be in supervisor
state or have PKM authority to key 0.

v The caller must serialize to prevent any delay monitoring services from being
invoked concurrently for the environment represented by the monitoring token.

v Only limited validity checking is done on the input monitoring token.

v The caller is responsible for error recovery.

Restrictions
None.

© Copyright IBM Corp. 1988, 2002 291

Input Register Information
Before issuing the IWMMABNL macro, the caller does not have to place any
information into any register unless using it in register notation for a particular
parameter, or using it as a base register.

Output Register Information
When control returns to the caller, the GPRs contain:

Register
Contents

0 Reason code if the return code in GPR 15 is not 0, otherwise, used as a
work register by the system.

1 Used as a work register by the system.
2 - 13 Unchanged
14 Used as a work register by the system.
15 Return code

When control returns to the caller, the ARs contain:

Register
Contents

0 - 1 Used as a work register by the system.
2 - 13 Unchanged
14 - 15

Used as a work register by the system.

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the
caller depends, the caller must save them before issuing the service, and restore
them after the system returns control.

Performance Implications
None.

Syntax
The syntax of the IWMMABNL macro is as follows:

main diagram

��
name

� IWMMABNL � ABNORMAL=abnormal ,MONTKN=montkn �

� ,MONENVKEYP= VALUE ,MONENVKEY=monenvkey
PSWKEY
UNKNOWN

,MONENV= NOSWITCH
SECONDARY

�

�
,RETCODE=retcode ,RSNCODE=rsncode

�"

Parameters
The parameters are explained as follows:

IWMMABNL Macro

292 z/OS V1R4.0 MVS Workload Management Services

ABNORMAL=abnormal
Required input parameter specifying the abnormal mask reflecting the
abnormality. Macro IWMYCON contains the defined abnormal masks. The mask
variable names begin with IWMMABNL, for example -
IWMMABNL_SCOPE_LOCALMVS.

To code: Specify the name (RS-type), or address in register (2)-(12) of a 32 bit
field containing the abnormal mask.

,MONTKN=montkn
Required input parameter specifying the monitoring token for the environment
affected by the abnormality.

To code: Specify the name (RS-type), or address in register (2)-(12) of a 32 bit
field containing the monitoring token.

,MONENVKEYP=VALUE
,MONENVKEYP=PSWKEY
,MONENVKEYP=UNKNOWN

Required input parameter that specifies whether a key switch is needed to
access the input monitoring environment.

Use MONENVKEYP=VALUE to indicate that the key is being passed explicitly
in MONENVKEY.

Use MONENVKEYP=PSWKEY to indicate that the current PSW key should be
used. If you use this parameter, the input monitoring environment must have
been created with the same key as the current PSW key.

Use MONENVKEYP=UNKNOWN to indicate that the key associated with the
input monitoring environment is unknown. If you use this parameter, the caller
must be in supervisor state or have PKM authority to key 0.

,MONENVKEY=monenvkey
Required input parameter for MONENVKEYP=VALUE that specifies the key in
which the input monitoring environment must be accessed. If you use this
parameter, the caller must be in supervisor state or have PKM authority to the
key specified.

To code: Specify an 8 bit name (RS-type), or address in register (2)-(12), of the
monitoring environment key. The leftmost (high order) 4 bits contain the key
value. Note that this uses the machine orientation for keeping the storage key in
the high order bits.

,MONENV=NOSWITCH
,MONENV=SECONDARY

Required keyword input which describes whether an address space switch is
needed to access the input monitoring environment.

Use MONENV=NOSWITCH to indicate that no space switch is needed to
access the input monitoring environment. This is appropriate if the input
monitoring environment was established (by IWMMCREA) to be used by
routines in a specific system key or if it was established to be used in a specific
user key in the current primary.

Use MONENV=SECONDARY to indicate that the input monitoring environment
was established in current secondary (for use by a specific user key).

,RETCODE=retcode addr
Optional output parameter that specifies where the system is to store the return
code. The return code is also in GPR 15.

IWMMABNL Macro

Chapter 31. IWMMABNL – Record Abnormal Event 293

To code: Specify the name (RS-type) or address (using a register from 2 to 12)
of a fullword to contain the return code.

,RSNCODE=rsncode addr
Optional output parameter that specifies where the system is to store the
reason code. The reason code is also in GPR 0.

To code: Specify the name (RS-type) or address (using a register from 2 to 12)
of a fullword to contain the reason code (if any).

ABEND Codes
None.

Return and Reason Codes
When IWMMABNL macro returns control to your program, GPR 15 contains a
return code. When the return code is non-zero, then GPR 0 contains a reason
code.

Hexadecimal
Return Code

Hexadecimal
Reason Code

Meaning

00 Meaning: Successful completion.

Action: None.

04 0402 Meaning: Warning. Input monitoring token indicates no
monitoring environment was established.

Action: None.

08 0820 Meaning: Program error. The monitoring environment does
not pass short form verification.

Example
To record an abnormal event that has occurred for a work request associated with a
monitoring token defined in the field MONTKN1, specify:
IWMMABNL ABNORMAL=(R7),

MONTKN=MONTKN1,
MONENVKEYP=PSWKEY,
MONENV=NOSWITCH,
RETCODE=RCODE,RSNCODE=RSN

No address space switch is required, so you can specify MONENV=NOSWITCH.

IWMMABNL Macro

294 z/OS V1R4.0 MVS Workload Management Services

Chapter 32. IWMMCHST – Change State of Work Request
Service

The purpose of this service is to reflect in a monitoring environment what the
current state of a work request is with respect to delays.

Environment
The requirements for the caller are:

Minimum authorization: Problem state. PSW key must either be 0 or match the value
supplied on IWMMCREA.

Dispatchable unit mode: Task or SRB

Cross memory mode: Any PASN, any HASN, any SASN

AMODE: 31-bit

ASC mode: Primary

Interrupt status: Enabled for I/O and external interrupts

Locks: Suspend locks are allowed.

Control parameters: Control parameters must be in the primary address space.

Programming Requirements
1. The macro IWMYCON must be included to use this macro.
2. The macro IWMPB must be in the library concatenation, since it is included by

IWMYCON.
3. Note that the high order halfword of register 0, and the reason code variable

when specified, may be non-zero and represents diagnostic data which is NOT
part of the external interface. The high order halfword should thus be excluded
from comparison with the reason code values described above. The constant,
IWMRSNCODE_MASK_CONST defined in IWMYCON, may be used for this
purpose.

Restrictions
1. Caller is responsible for error recovery
2. Only limited checking is done against the input monitoring token.
3. If the key specified on IWMMCREA was a user key (8-F), then the primary

addressability must exist to the performance block IWMMCREA obtained. This
condition is satisfied by ensuring that current primary matches primary at the
time that IWMMCREA was invoked. If this service is invoked in a subspace, the
condition may be satisfied by ensuring that the performance block is shared with
the base space.

4. The caller must serialize to prevent any delay monitoring services from being
invoked concurrently for the environment represented by the monitoring token.

5. This macro may only be used on z/OS R2 or higher levels for the following
state/resources:

v STATE(ACTIVE_APPL)

v RESOURCE(SSL_THREAD)

v RESOURCE(REG_THREAD)

v RESOURCE(REG_TO_WRKTB)

v RESOURCE(TYPE1)

© Copyright IBM Corp. 1988, 2002 295

|
|

|

|

|

|

|

v RESOURCE(TYPE2)

v RESOURCE(TYPE3)

v RESOURCE(TYPE4)

v RESOURCE(TYPE5)

Input Register Information
Before issuing the IWMMCHST macro, the caller does not have to place any
information into any register unless using it in register notation for a particular
parameter, or using it as a base register.

Output Register Information
When control returns to the caller, the GPRs contain:

Register
Contents

0 Reason code if GR15 return code is non-zero
1 Used as work registers by the system
2-13 Unchanged
14 Used as work registers by the system
15 Return code

When control returns to the caller, the ARs contain:

Register
Contents

0-1 Used as work registers by the system
2-13 Unchanged
14-15 Used as work registers by the system

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the
caller depends, the caller must save them before issuing the service, and restore
them after the system returns control.

Performance Implications
None.

IWMMCHST Macro

296 z/OS V1R4.0 MVS Workload Management Services

|

|

|

|

Syntax

Parameters
The parameters are explained as follows:

name
An optional symbol, starting in column 1, that is the name on the IWMMCHST
macro invocation. The name must conform to the rules for an ordinary
assembler language symbol.

,COMPCODE=YES
,COMPCODE=NO

An optional parameter, which indicates whether completion status for this
service is needed. The default is COMPCODE=YES.

,COMPCODE=YES
indicates that completion status is needed.

,COMPCODE=NO
indicates that completion status is not needed. Registers 0, 15 cannot be
used as reason code and return code registers upon completion of the

main diagram

��
name

� IWMMCHST � STATE=FREE
STATE=ACTIVE
STATE=READY
STATE=IDLE
STATE=WAITING ,RESOURCE=LATCH

,RESOURCE=LOCK
,RESOURCE=IO
,RESOURCE=CONV
,RESOURCE=DISTRIB
,RESOURCE=SESS_LOCALMVS
,RESOURCE=SESS_NETWORK
,RESOURCE=SESS_SYSPLEX
,RESOURCE=TIMER
,RESOURCE=OTHER_PRODUCT
,RESOURCE=MISC
,RESOURCE=SSL_THREAD
,RESOURCE=REG_THREAD
,RESOURCE=REG_TO_WRKTB
,RESOURCE=TYPE1
,RESOURCE=TYPE2
,RESOURCE=TYPE3
,RESOURCE=TYPE4
,RESOURCE=TYPE5

,MONTKN=montkn �

�
,RUNTIME_VER=SHORT_FORM

,RUNTIME_VER=MINIMAL

,COMPCODE=YES

,COMPCODE=NO ,RETCODE=retcode ,RSNCODE=rsncode
�

�
,PLISTVER=IMPLIED_VERSION

,PLISTVER=MAX
,PLISTVER=0

,COMPLETE
,MF=(M ,list addr)

,NOCHECK
�"

IWMMCHST Macro

Chapter 32. IWMMCHST – Change State of Work Request Service 297

|

||
|

|
|||||||||||||||||||||||||||||||||||||
|

|
|||||||||||||||||||||||||||||||||

|
|

macro expansion. For this reason neither RETCODE NOR RSNCODE may
be specified when COMPCODE(NO) is specified.

,MONTKN=montkn
A required input parameter, which contains the delay monitoring token

To code: Specify the RS-type address, or address in register (2)-(12), of a 32
bit field.

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX
,PLISTVER=0

An optional input parameter that specifies the version of the macro. PLISTVER
determines which parameter list the system generates. PLISTVER is an
optional input parameter on all forms of the macro, including the list form. When
using PLISTVER, specify it on all macro forms used for a request and with the
same value on all of the macro forms. The values are:

v IMPLIED_VERSION, which is the lowest version that allows all parameters
specified on the request to be processed. If you omit the PLISTVER
parameter, IMPLIED_VERSION is the default.

v MAX, if you want the parameter list to be the largest size currently possible.
This size might grow from release to release and affect the amount of
storage that your program needs.

If you can tolerate the size change, IBM recommends that you always specify
PLISTVER=MAX on the list form of the macro. Specifying MAX ensures that
the list-form parameter list is always long enough to hold all the parameters
you might specify on the execute form; in this way, MAX ensures that the
parameter list does not overwrite nearby storage.

v 0, if you use the currently available parameters.

To code: Specify one of the following:
v IMPLIED_VERSION
v MAX
v A decimal value of 0

,RESOURCE=LATCH
,RESOURCE=LOCK
,RESOURCE=IO
,RESOURCE=CONV
,RESOURCE=DISTRIB
,RESOURCE=SESS_LOCALMVS
,RESOURCE=SESS_NETWORK
,RESOURCE=SESS_SYSPLEX
,RESOURCE=TIMER
,RESOURCE=OTHER_PRODUCT
,RESOURCE=MISC
,RESOURCE=SSL_THREAD
,RESOURCE=REG_THREAD
,RESOURCE=REG_TO_WRKTB
,RESOURCE=TYPE1
,RESOURCE=TYPE2
,RESOURCE=TYPE3
,RESOURCE=TYPE4
,RESOURCE=TYPE5

When STATE=WAITING is specified, a required parameter, which indicates the
resource that the work manager is waiting for on behalf of the work request
described by the monitoring environment.

IWMMCHST Macro

298 z/OS V1R4.0 MVS Workload Management Services

|
|
|
|
|
|
|
|

,RESOURCE=LATCH
indicates that the work manager is waiting on a latch.

,RESOURCE=LOCK
indicates that the work manager is waiting on a lock.

,RESOURCE=IO
indicates that the work manager is waiting on an activity related to an I/O
request. This may either be an actual I/O operation or some function
associated with an IO request that cannot be more precisely determined by
the work manager (e.g. locks, buffers, etc.).

,RESOURCE=CONV
indicates that the work manager is waiting on a conversation. This may be
used in conjunction with IWMMSWCH to identify where the target is
located.

,RESOURCE=DISTRIB
indicates that the work manager is waiting on a distributed request. This
says at a high level that some function or data must be routed prior to
resumption of the work request. This is to be contrasted with Waiting on
Conversation, which is a low level view of the precise resource that is
needed. A distributed request could involve waiting on a conversation as
part of its processing.

,RESOURCE=SESS_LOCALMVS
indicates that the work manager is waiting to establish a session
somewhere in the current MVS image.

,RESOURCE=SESS_NETWORK
indicates that the work manager is waiting to establish a session
somewhere in the network.

,RESOURCE=SESS_SYSPLEX
indicates that the work manager is waiting to establish a session
somewhere in the sysplex.

,RESOURCE=TIMER
indicates that the work request is waiting on a timer.

,RESOURCE=OTHER_PRODUCT
indicates that the work manager is waiting on another product to complete
its function.

,RESOURCE=MISC
indicates that the work manager is waiting on some unidentified resource,
possibly among the previous categories.

,RESOURCE=SSL_THREAD
indicates that the work manager is waiting on a SSL thread.

,RESOURCE=REG_THREAD
indicates that the work manager is waiting on a regular processing thread.

,RESOURCE=REG_TO_WRKTB
indicates that the work manager is waiting for the registration to a
worktable.

,RESOURCE=TYPE1
indicates that the work manager is waiting for resource type 1.

,RESOURCE=TYPE2
indicates that the work manager is waiting for resource type 2.

IWMMCHST Macro

Chapter 32. IWMMCHST – Change State of Work Request Service 299

|
|

|
|

|
|
|

|
|

|
|

,RESOURCE=TYPE3
indicates that the work manager is waiting for resource type 3.

,RESOURCE=TYPE4
indicates that the work manager is waiting for resource type 4.

,RESOURCE=TYPE5
indicates that the work manager is waiting for resource type 5.

,RETCODE=retcode
An optional output parameter into which the return code is to be copied from
GPR 15.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

,RSNCODE=rsncode
An optional output parameter into which the reason code is to be copied from
GPR 0.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

,RUNTIME_VER=SHORT_FORM
,RUNTIME_VER=MINIMAL

An optional parameter, which indicates what level of runtime verification will be
performed. The default is RUNTIME_VER=SHORT_FORM.

,RUNTIME_VER=SHORT_FORM
indicates that checking should verify that a monitoring environment is
established and passes a short form of verification prior to being used.

,RUNTIME_VER=MINIMAL
indicates that checking will only be done to verify that a monitoring
environment may be established, assuming that it would be valid and
useable if established.

STATE=FREE
STATE=ACTIVE
STATE=READY
STATE=IDLE
STATE=WAITING

A required parameter, which indicates the current state for the work request.

STATE=FREE
indicates that the work manager has no work request associated with the
monitoring environment.

STATE=ACTIVE
indicates that there is a program executing on behalf of the work request
described by the monitoring environment. This is an indication from the
perspective of the work manager using this service, who should not try to
factor in MVS decisions in preempting work, etc.

STATE=READY
indicates that there is a program ready to execute on behalf of the work
request described by the monitoring environment, but the work manager
has given priority to another work request.

STATE=IDLE
indicates that the work manager has no work requests that it is allowed to
service within the monitoring environment. This represents a delay that is
not under the control of the work manager itself and which it cannot
eliminate. This may be caused by limits imposed by the installation or by
the nature of the work request itself.

IWMMCHST Macro

300 z/OS V1R4.0 MVS Workload Management Services

|
|

|
|

|
|

STATE=WAITING
indicates that the work manager is waiting for a resource on behalf of the
work request described by the the monitoring environment.

ABEND Codes
None.

Return and Reason Codes
When the IWMMCHST macro returns control to your program:
v GPR 15 (and retcode, if you coded RETCODE) contains a return code.
v When the value in GPR 15 is not zero, GPR 0 (and rsncode, if you coded

RSNCODE) contains reason code.

The following table identifies the hexadecimal return and reason codes and the
equate symbol associated with each reason code. IBM support personnel may
request the entire reason code, including the xxxx value.

Table 37. Return and Reason Codes for the IWMMCHST Macro

Return Code Reason Code Equate Symbol Meaning and Action

0 — Equate Symbol: IwmRetCodeOk

Meaning: Successful completion.

Action: None required.

4 — Equate Symbol: IwmRetCodeWarning

Meaning: Successful completion, unusual conditions noted.

4 xxxx0402 Equate Symbol: IwmRsnCodeNoMonEnv

Meaning: Input monitoring token indicates no monitoring
environment was established.

Action: None required.

8 — Equate Symbol: IwmRetCodeInvocError

Meaning: Invalid invocation environment or parameters.

8 xxxx0820 Equate Symbol: IwmRsnCodeBadMonEnv

Meaning: Monitoring environment does not pass short form
verification.

Action: Check for possible storage overlay.

IWMMCHST Macro

Chapter 32. IWMMCHST – Change State of Work Request Service 301

IWMMCHST Macro

302 z/OS V1R4.0 MVS Workload Management Services

Chapter 33. IWMMCREA – Create Monitoring Environment
Service

The purpose of this service is to create a single delay monitoring environment or a
number of delay monitoring environments so that work and resource managers may
utilize other delay monitoring services to reflect to MVS the execution states and
delays associated with work requests.

There are two types of monitoring environments available, management monitoring
environments and report-only monitoring environments. Management monitoring
environments provide both, performance management and performance reporting.
Report-only monitoring environments can be used for performance reporting only.

Optionally with this macro, you can use the REPORTONLY=YES parameter to
specify that the monitoring environment will be used for reporting purposes only.

Environment
The requirements for the caller are:

Minimum authorization: Supervisor state or program key mask (PKM) allowing keys
0-7.

Dispatchable unit mode: Task

Cross memory mode: Non-XMEM or XMEM. Any P.S.H.

AMODE: 31-bit

ASC mode: Primary

Interrupt status: Enabled for I/O and external interrupts No (EUT) FRR
established.

Locks: No locks may be held.

Control parameters: Control parameters must be in the primary address space.

Programming Requirements
1. The macro CVT must be included to use this macro.
2. The macro IWMYCON must be included to use this macro.
3. The macro IWMPB must be in the library concatenation, since it is included by

IWMYCON.
4. Note that the high order halfword of register 0, and the reason code variable

when specified, may be non-zero and represents diagnostic data which is NOT
part of the external interface. The high order halfword should thus be excluded
from comparison with the reason code values described above. The constant,
IWMRSNCODE_MASK_CONST defined in IWMYCON, may be used for this
purpose.

5. All character data, unless otherwise specified, is assumed to be left justified and
padded with blanks on the right, as needed, to occupy the specified number of
bytes.

Restrictions
1. This macro may not be used during task/address space termination.
2. If the key specified on IWMMCREA is a user key (8-F), then the caller must be

in non-cross-memory mode (P=S=H)

© Copyright IBM Corp. 1988, 2002 303

|
|
|
|

|
|

3. While not a restriction for IWMMCREA, it should be noted that when the key
specified is a user key (8-F), the delay monitoring token may only be passed (to
any service whatsoever), when primary addressability exists to the performance
block obtained by IWMMCREA. This condition may be satisfied by ensuring that
the then current primary matches primary at the time that IWMMCREA was
invoked. If these other services are invoked in a subspace, the condition may
be satisfied by ensuring that the performance block is shared with the base
space.

4. This service provides a task and address space resource managers to clean up
any resouces obtained during task and address space terminations. Once the
calling task or address space terminates, the monitoring token returned by
IWMMCREA must not be used for any services.

5. This macro supports multiple versions. Some keywords are unique to certain
versions.See the PLISTVER parameter description.

Input Register Information
Before issuing the IWMMCREA macro, the caller does not have to place any
information into any register unless using it in register notation for a particular
parameter, or using it as a base register.

Output Register Information
When control returns to the caller, the GPRs contain:

Register
Contents

0 Reason code if GR15 return code is non-zero
1 Used as work registers by the system
2-13 Unchanged
14 Used as work registers by the system
15 Return code

When control returns to the caller, the ARs contain:

Register
Contents

0-1 Used as work registers by the system
2-13 Unchanged
14-15 Used as work registers by the system

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the
caller depends, the caller must save them before issuing the service, and restore
them after the system returns control.

Performance Implications
None.

IWMMCREA Macro

304 z/OS V1R4.0 MVS Workload Management Services

|
|

Syntax

Parameters
The parameters are explained as follows:

name
An optional symbol, starting in column 1, that is the name on the IWMMCREA
macro invocation. The name must conform to the rules for an ordinary
assembler language symbol.

,AMOUNT=amount
When REQTYPE=MULTIPLE is specified, a required input parameter, which
specifies the number of delay monitoring environments to be created.

While there is no restriction on the number of delay monitoring environments to
be created, caller should only create the minimum number of delay monitoring
environments that are needed.

If there are too many unused delay monitoring environments existing in the
system, the storage and CPU overheads may be significant.

To code: Specify the RS-type address, or address in register (2)-(12), of a
fullword field.

,CONNTKN=conntkn
When SUBSYSP=CONNECT is specified, a required input parameter, which
contains the connect token associated with the subsystem.

main diagram

��
name

� IWMMCREA �
REQTYPE=SINGLE

,MONTKN=montkn
parameters-1

,REPORTONLY=NO

,REPORTONLY=YES
�

� ,SUBSYSP=CONNECT ,CONNTKN=conntkn
,SUBSYSP=VALUE ,SUBSYS=subsys ,SUBSYSNM=subsysnm

,MONTKNKEYP=VALUE ,MONTKNKEY=montknkey
,MONTKNKEYP=PSWKEY

�

�
,RETCODE=retcode ,RSNCODE=rsncode

,PLISTVER=IMPLIED_VERSION

,PLISTVER=MAX
,PLISTVER=0
,PLISTVER=1
,PLISTVER=2

�

�
,MF=S

,0D
,MF=(L ,list addr)

,attr
,COMPLETE

,MF=(E ,list addr)

�"

parameters-1

�� REQTYPE=MULTIPLE ,AMOUNT=amount ,MONTKN_LIST=montkn_list ,MONTKN_LISTLEN=montkn_listlen �"

IWMMCREA Macro

Chapter 33. IWMMCREA – Create Monitoring Environment Service 305

To code: Specify the RS-type address, or address in register (2)-(12), of a 32
bit field.

,MF=S
,MF=(L,list addr)
,MF=(L,list addr,attr)
,MF=(L,list addr,0D)
,MF=(E,list addr)
,MF=(E,list addr,COMPLETE)

An optional input parameter that specifies the macro form.

Use MF=S to specify the standard form of the macro, which builds an inline
parameter list and generates the macro invocation to transfer control to the
service. MF=S is the default.

Use MF=L to specify the list form of the macro. Use the list form together with
the execute form of the macro for applications that require reentrant code. The
list form defines an area of storage that the execute form uses to store the
parameters. Only the PLISTVER parameter may be coded with the list form of
the macro.

Use MF=E to specify the execute form of the macro. Use the execute form
together with the list form of the macro for applications that require reentrant
code. The execute form of the macro stores the parameters into the storage
area defined by the list form, and generates the macro invocation to transfer
control to the service.

,list addr
The name of a storage area to contain the parameters. For MF=S and
MF=E, this can be an RS-type address or an address in register (1)-(12).

,attr
An optional 1- to 60-character input string that you use to force boundary
alignment of the parameter list. Use a value of 0F to force the parameter
list to a word boundary, or 0D to force the parameter list to a doubleword
boundary. If you do not code attr, the system provides a value of 0D.

,COMPLETE
Specifies that the system is to check for required parameters and supply
defaults for omitted optional parameters.

,MONTKN=montkn
When REQTYPE=SINGLE is specified, a required output parameter, which will
receive the delay monitoring token.

To code: Specify the RS-type address, or address in register (2)-(12), of a 32
bit field.

,MONTKN_LIST=montkn_list
When REQTYPE=MULTIPLE is specified, a required input parameter, which
specifies an area into which a list of delay monitoring tokens will be placed.

To code: Specify the RS-type address, or address in register (2)-(12), of a
character field.

,MONTKN_LISTLEN=montkn_listlen
When REQTYPE=MULTIPLE is specified, a required input parameter, which
specifies the length (in bytes) of the area identified by the MONTKN_LIST
keyword.

IWMMCREA Macro

306 z/OS V1R4.0 MVS Workload Management Services

Size of this area must be at least the size of MONTKN (see MONTKN keyword)
times AMOUNT. If the user specified area is not large enough to return the
delay monitoring tokens, a specific return/reason code will be returned and the
request will not be processed.

To code: Specify the RS-type address, or address in register (2)-(12), of a
fullword field.

,MONTKNKEY=montknkey
When MONTKNKEYP=VALUE is specified, a required input parameter, which
contains the key in which the delay monitoring services will be invoked
subsequently when using the output MONTKN. The low order 4 bits (bits 4-7)
contain the key value. The high order 4 bits (bits 0-3) must be 0.

To code: Specify the RS-type address, or address in register (2)-(12), of an 8
bit field.

,MONTKNKEYP=VALUE
,MONTKNKEYP=PSWKEY

A required parameter, which describes how the input key should be obtained.

,MONTKNKEYP=VALUE
indicates that the key is being passed explicitly via MONTKNKEY.

,MONTKNKEYP=PSWKEY
indicates that the current PSW key should be used.

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX
,PLISTVER=0
,PLISTVER=1
,PLISTVER=2

An optional input parameter that specifies the version of the macro. PLISTVER
determines which parameter list the system generates. PLISTVER is an
optional input parameter on all forms of the macro, including the list form. When
using PLISTVER, specify it on all macro forms used for a request and with the
same value on all of the macro forms. The values are:

v IMPLIED_VERSION, which is the lowest version that allows all parameters
specified on the request to be processed. If you omit the PLISTVER
parameter, IMPLIED_VERSION is the default.

v MAX, if you want the parameter list to be the largest size currently possible.
This size might grow from release to release and affect the amount of
storage that your program needs.

If you can tolerate the size change, IBM recommends that you always specify
PLISTVER=MAX on the list form of the macro. Specifying MAX ensures that
the list-form parameter list is always long enough to hold all the parameters
you might specify on the execute form; in this way, MAX ensures that the
parameter list does not overwrite nearby storage.

v 0, if you use only the following parameters:

CONNTKN MONTKNKEYP SUBSYSP
MONTKN SUBSYS
MONTKNKEY SUBSYSNM

v 1, which supports both the following parameters and those from version 0:

AMOUNT MONTKN_LISTLEN
MONTKN_LIST REQTYPE

IWMMCREA Macro

Chapter 33. IWMMCREA – Create Monitoring Environment Service 307

|

v 2, which supports both the following parameter and those from version 0:

REPORTONLY

To code: Specify one of the following:
v IMPLIED_VERSION
v MAX
v A decimal value of 0, 1 or 2

,REPORTONLY=NO
,REPORTONLY=YES

An optional parameter,which indicates whether the monitoring environment is for
reporting purposes only (YES)or (NO).The default is REPORTONLY=NO.

,REPORTONLY=NO
indicates that the monitoring environment is for management and reporting
purposes.

,REPORTONLY=YES
indicates that the monitoring environment is for reporting purposes only.

REQTYPE=SINGLE
REQTYPE=MULTIPLE

An optional parameter that indicates whether the request is to create a single
delay monitoring environment or to create multiple delay monitoring
environments. The default is REQTYPE=SINGLE.

REQTYPE=SINGLE
The request is to create a single delay monitoring environment.

REQTYPE=MULTIPLE
The request is to create a number of delay monitoring environments.

,RETCODE=retcode
An optional output parameter into which the return code is to be copied from
GPR 15.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

,RSNCODE=rsncode
An optional output parameter into which the reason code is to be copied from
GPR 0.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

,SUBSYS=subsys
When SUBSYSP=VALUE is specified, a required input parameter, which
contains the generic subsystem type (e.g. IMS, CICS, etc.).

To code: Specify the RS-type address, or address in register (2)-(12), of a
4-character field.

,SUBSYSNM=subsysnm
When SUBSYSP=VALUE is specified, a required input parameter, which
contains the subsystem name.

To code: Specify the RS-type address, or address in register (2)-(12), of an
8-character field.

,SUBSYSP=CONNECT
,SUBSYSP=VALUE

A required parameter, which describes how the calling subsystem is providing
identification.

IWMMCREA Macro

308 z/OS V1R4.0 MVS Workload Management Services

|

|||||

|
|
|
|

|
|
|

|
|

,SUBSYSP=CONNECT
indicates that the connect token is being passed.

,SUBSYSP=VALUE
indicates that the subsystem name is being passed directly.

ABEND Codes
None.

Return and Reason Codes
When the IWMMCREA macro returns control to your program:
v GPR 15 (and retcode, if you coded RETCODE) contains a return code.
v When the value in GPR 15 is not zero, GPR 0 (and rsncode, if you coded

RSNCODE) contains reason code.

The following table identifies the hexadecimal return and reason codes and the
equate symbol associated with each reason code. IBM support personnel may
request the entire reason code, including the xxxx value.

Table 38. Return and Reason Codes for the IWMMCREA Macro

Return Code Reason Code Equate Symbol Meaning and Action

0 — Equate Symbol: IwmRetCodeOk

Meaning: Successful completion.

Action: None required.

4 — Equate Symbol: IwmRetCodeWarning

Meaning: Successful completion, unusual conditions noted.

4 xxxx0401 Equate Symbol: IwmRsnCodeNoWLM

Meaning: System does not support delay monitoring
services. The delay monitoring token returned is useable in
other services. However use of this token will NOT result in
the action requested of those services. This return code is
only set when the MVS release is prior to MVS/ESA
SP5.1.0.

Action: None required.

4 xxxx0409 Equate Symbol: IwmRsnCodeNoConn

Meaning: Connect token does not reflect a successful
Connect. The delay monitoring token returned is useable in
other services. However use of this token will NOT result in
the action requested of those services.

Action: None required.

8 — Equate Symbol: IwmRetCodeInvocError

Meaning: Invalid invocation environment or parameters.

8 xxxx0801 Equate Symbol: IwmRsnCodeSrbMode

Meaning: Caller is in SRB mode.

Action: Avoid requesting this function while in SRB mode.

IWMMCREA Macro

Chapter 33. IWMMCREA – Create Monitoring Environment Service 309

Table 38. Return and Reason Codes for the IWMMCREA Macro (continued)

Return Code Reason Code Equate Symbol Meaning and Action

8 xxxx0802 Equate Symbol: IwmRsnCodeXmemUserKeyTkn

Meaning: Caller is in cross-memory mode while the token
was requested in user key.

Action: Avoid requesting this function while in
cross-memory mode.

8 xxxx0803 Equate Symbol: IwmRsnCodeDisabled

Meaning: Caller is disabled.

Action: Avoid requesting this function while disabled.

8 xxxx0804 Equate Symbol: IwmRsnCodeLocked

Meaning: Caller is locked.

Action: Avoid requesting this function while locked.

8 xxxx080B Equate Symbol: IwmRsnCodeBadPl

Meaning: Error accessing parameter list.

Action: Check for possible storage overlay.

8 xxxx0810 Equate Symbol: IwmRsnCodeEutFrr

Meaning: Caller has EUT FRR established.

Action: Avoid requesting this function with an EUT FRR set.

8 xxxx0821 Equate Symbol: IwmRsnCodeBadConn

Meaning: Input connect token does not pass validity
checking.

Action: Check for possible storage overlay.

8 xxxx0823 Equate Symbol: IwmRsnCodeDatoff

Meaning: Caller invoked service while DATOFF

Action: Avoid requesting this function in this environment.

8 xxxx0824 Equate Symbol: IwmRsnCodeAmode24

Meaning: Caller invoked service but was in 24 bit
addressing mode.

Action: Request this function only when you are in 31 bit
addressing mode.

8 xxxx0825 Equate Symbol: IwmRsnCodeAscModeNotPrimary

Meaning: Caller invoked service but was not DAT on
Primary ASC mode.

Action: Avoid requesting this function in this environment.

8 xxxx0826 Equate Symbol: IwmRsnCodeTaskTerm

Meaning: Caller invoked service while task termination is in
progress for the task associated with the owner.

Action: Avoid requesting this function in this environment.

IWMMCREA Macro

310 z/OS V1R4.0 MVS Workload Management Services

Table 38. Return and Reason Codes for the IWMMCREA Macro (continued)

Return Code Reason Code Equate Symbol Meaning and Action

8 xxxx0827 Equate Symbol: IwmRsnCodeRsvdNot0

Meaning: Reserved field in parameter list was non-zero.

Action: Check for possible storage overlay of the parameter
list.

8 xxxx0828 Equate Symbol: IwmRsnCodeBadVersion

Meaning: Version number in parameter list is not valid.

Action: Check for possible storage overlay of the parameter
list.

8 xxxx0829 Equate Symbol: IwmRsnCodeBadOptions

Meaning: Parameter list omits required parameters or
supplies mutually exclusive parameters or provides data
associated with options not selected.

Action: Check for possible storage overlay of the parameter
list.

8 xxxx0844 Equate Symbol: IwmRsnCodeBadMonTknListLen

Meaning: The storage area length specified on the
MONTKN_LISTLEN parameter is not large enough to
contain the data being returned. No data is returned.

Action: Invoke the function with an output area sufficient to
receive the data.

C — Equate Symbol: IwmRetCodeEnvError

Meaning: Environmental error.

C xxxx0C01 Equate Symbol: IwmRsnCodeNoStg

Meaning: Storage is not available for the request.

Action: There is a storage shortage. The function may work
successfully at a later time.

C xxxx0C09 Equate Symbol: IwmRsnCodeNoResmgr

Meaning: Resource manager could not be established.

Action: No action required. This condition may be due to a
storage shortage condition.

10 — Equate Symbol: IwmRetCodeCompError

Meaning: Component error.

Action: No action required. The function may be successful
if invoked again.

IWMMCREA Macro

Chapter 33. IWMMCREA – Create Monitoring Environment Service 311

IWMMCREA Macro

312 z/OS V1R4.0 MVS Workload Management Services

Chapter 34. IWMMDELE – Delete Monitoring Environment

Use this macro to delete the monitoring environment. You should invoke
IWMMDELE during address space shutdown processing.

Environment
The requirements for the caller are:

Minimum authorization: Supervisor state, or PKM key 0 - 7.

Dispatchable unit mode: Task or SRB

Cross memory mode: Any PASN, any SASN. HASN must match the HASN when
IWMMC REA was invoked.

AMODE: 31-bit

ASC mode: Primary

Interrupt status: Enabled

Locks: Unlocked, but FRRs may be established.

Control parameters: Control parameters must be in the primary address space.

Programming Requirements
1. You must include the CVT and IWMYCON mapping macros in the calling

program.

2. The caller must serialize to prevent any delay monitoring services from being
invoked concurrently or subsequently for the environment represented by the
monitoring token

3. Do not invoke IWMMDELE while in a RTM termination routine (resource
manager) for the task owning the monitoring environment since MVS will have
its own resource cleanup routine and unpredictable results would occur. It is
legitimate to use this service while in a recovery routine, however, or in mainline
processing.

Restrictions
1. If the key specified on IWMMCREA was a user key (8-F), then all of the

following must be true:
v Caller must be in non-cross-memory mode (PASN=SASN=HASN). This

implies that the current primary must match the primary at the time that
IWMMCREA was invoked.

v Must be in task mode (not SRB)
v Current task must match the task at the time that IWMMCREA was invoked.

Input Register Information
Before issuing the IWMMDELE macro, the caller does not have to place any
information into any register unless using it in register notation for a particular
parameter, or using it as a base register.

Output Register Information
When control returns to the caller, the GPRs contain:

© Copyright IBM Corp. 1988, 2002 313

Register
Contents

0 Reason code if the return code in GPR 15 is not 0, otherwise, used as a
work register by the system.

1 Used as a work register by the system.
2 - 13 Unchanged
14 Used as a work register by the system.
15 Return code

When control returns to the caller, the ARs contain:

Register
Contents

0 - 1 Used as a work register by the system.
2 - 13 Unchanged
14 - 15

Used as a work register by the system.

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the
caller depends, the caller must save them before issuing the service, and restore
them after the system returns control.

Performance Implications
None.

Syntax
The syntax of the IWMMDELE macro is as follows:

main diagram

��
name

� IWMMDELE � MONTKN=montkn
,RETCODE=retcode

�

�
,RSNCODE=rsncode

,MF=S

,0D
,MF=(L, MFCTRL)

,mfattr
,COMPLETE

,MF=(E, MFCTRL)
,complete

�"

Parameters
The parameters are explained as follows:

,MONTKN=montkn
Required input parameter that specifies the monitoring token obtained from
IWMMCREA.

To code: Specify the name (RS-type) or address (using a register from 2 to 12)
of a 32-bit field containing the monitoring token.

IWMMDELE Macro

314 z/OS V1R4.0 MVS Workload Management Services

,RETCODE=retcode addr
Optional output parameter that specifies where the system is to store the return
code. The return code is also in GPR 15.

To code: Specify the name (RS-type) or address (using a register from 2 to 12)
of a fullword to contain the return code.

,RSNCODE=rsncode addr
Optional output parameter that specifies where the system is to store the
reason code. The reason code is also in GPR 0.

To code: Specify the name (RS-type) or address (using a register from 2 to 12)
of a fullword to contain the reason code (if any).

,MF=S
,MF=(L,mfctrl,mfattr)
,MF=(E,mfctrl,COMPLETE)

Use MF=S to specify the standard form, which places parameters into an inline
parameter list and invokes the IWMCONN macro service.

Use MF=L to specify the list form of the macro. Use the list form together with
the execute form of the macro for applications that require re-entrant code. The
list form defines an area of storage that the execute form uses to store the
parameters.

Use MF=E to specify the execute form of the macro. Use the execute form with
the list form of the macro for applications that require re-entrant code. The
execute form stores the parameters into the storage area defined by the list
form and generates the macro invocation to transfer control to the service.

,mfctrl
Use this output parameter to specify the name of the storage area to
contain the parameters.

To code: Specify the name (RS-type) or address (using a register from 2 to
12) of the storage area containing the parameter list.

,mfattr
Use this input parameter to specify the name of a 1 to 60 character storage
area that can contain any value that is valid on an assembler DS
pseudo-op. You can use this parameter to force boundary alignment of the
parameter list. If you do not code ,mfattr the system provides a value of 0D,
which forces the parameter on a doubleword boundary.

,COMPLETE
Use this input parameter to specify that the system check for required
parameters and supply defaults for omitted optional parameter.

ABEND Codes
None.

Return and Reason Codes
When IWMMDELE macro returns control to your program, GPR 15 contains a
return code. When the return code is non-zero, then GPR 0 contains a reason
code.

Hexadecimal
Return Code

Hexadecimal
Reason Code

Meaning

00 Meaning: Successful completion.

IWMMDELE Macro

Chapter 34. IWMMDELE – Delete Monitoring Environment 315

Hexadecimal
Return Code

Hexadecimal
Reason Code

Meaning

04 0401 Meaning: Warning. The system does not support delay
monitoring services. This return code is only set when the
MVS release is prior to MVS/ESA SP 5.2.

04 0402 Meaning: Warning. Input monitoring token indicates no
monitoring environment was established.

04 0403 Meaning: Warning. Input monitoring token does not reflect
an allocated monitoring environment owned by the current
home address space.

08 0802 Meaning: Program error. Caller is in cross-memory mode
while the token was obtained in user key.

08 0803 Meaning: Program error. Caller is disabled.

08 0804 Meaning: Program error. Caller is locked.

08 0805 Meaning: Program error. Input monitoring token reflects a
switch continuation.

08 0806 Meaning: Program error. Input monitoring token reflects a
continuation to a dependent monitoring environment.

08 0808 Meaning: Program error. Input monitoring token reflects a
continuation from a parent monitoring environment.

08 0809 Meaning: Program error. Caller is in SRB mode, while the
token was obtained in a user key (8-F).

08 080A Meaning: Program error. Current task is not the current
owner, while the token was obtained in a user key (8-F).

08 080B Meaning: Program error. Error accessing parameter list.

08 0823 Meaning: Program error. Caller invoked service while
dynamic address translation was disabled.

08 0824 Meaning: Program error. Caller invoked service but was in
24 bit addressing mode.

08 0825 Meaning: Program error. Caller invoked service but was not
in Primary ASC mode.

08 0826 Meaning: Program error. Caller invoked service while task
termination is in progress for the task associated with the
owner.

08 0827 Meaning: Program error. Reserved field in parameter list
was non-zero.

08 0828 Meaning: Program error. Version number in parameter list
is not valid.

08 082A Meaning: Program error. Input monitor token is related to a
parent monitoring environment.

Example
To delete a monitoring environment, where the monitoring token is in register 7,
specify:
IWMMDELE MONTKN=(R7),

RETCODE=RCODE,RSNCODE=RSN

IWMMDELE Macro

316 z/OS V1R4.0 MVS Workload Management Services

Chapter 35. IWMMEXTR – Delay Monitoring Extract Service

The purpose of this service is to extract information about the monitoring
environment which was previously passed through IWMMINIT/IWMMRELA. When
IWMMRELA was invoked for a management monitoring environment, owner token,
owner data and abnormal conditions are always available. Arrival time, userid,and
transaction name are only available when IWMMINIT was previously invoked.
Arrival time, however, is only available for management monitoring environments.

When the service class token is requested for a management monitoring
environment, the value may represent a token from a prior active policy.
Furthermore, when the monitoring environment was established via IWMMRELA,
the token may be zero, which does not represent a valid service class or report
class. IWMWQRY may be used to obtain the service and/or report class name,
along with other information about these classes. The SERVCLS keyword is not
applicable for report-only monitoring environments. The returned token is zero,
which does not represent a valid service class.

The ENCLAVE_TOKEN and ASID keywords are only applicable for report-only
monitoring environments.

When no output keywords are specified, the service merely checks whether a
monitoring environment was established and passes short form checking.

Environment
The requirements for the caller are:

Minimum authorization: Either problem state or supervisor state. Any PSW key.

Dispatchable unit mode: Task or SRB

Cross memory mode: Any PASN, any HASN, any SASN

AMODE: 31-bit

ASC mode: Primary

Interrupt status: Enabled for I/O and external interrupts

Locks: Suspend locks are allowed.

Control parameters: Control parameters must be in the primary address space.

Programming Requirements
1. The macro IWMYCON must be included to use this macro.
2. The macro IWMPB must be in the library concatenation, since it is included by

IWMYCON.
3. Note that the high order halfword of register 0, and the reason code variable

when specified, may be non-zero and represents diagnostic data which is NOT
part of the external interface. The high order halfword should thus be excluded
from comparison with the reason code values described above. The constant,
IWMRSNCODE_MASK_CONST defined in IWMYCON, may be used for this
purpose.

© Copyright IBM Corp. 1988, 2002 317

|
|
|
|
|
|

|
|
|
|
|
|
|
|

|
|

|
|

Restrictions
1. Caller is responsible for error recovery
2. Only limited checking is done against the input monitoring token.
3. If the key specified on IWMMCREA was a user key (8-F), then the primary

addressability must exist to the performance block IWMMCREA obtained. This
condition is satisfied by ensuring that current primary matches primary at the
time that IWMMCREA was invoked. If this service is invoked in a subspace, the
condition may be satisfied by ensuring that the performance block is shared with
the base space.

4. The caller must serialize to prevent any delay monitoring services from being
invoked concurrently for the environment represented by the monitoring token.

5. This macro may only be used on z/OS R2 or higher levels for
ENCLAVE_TOKEN and ASID keywords.

6. This macro supports multiple versions.Some keywords are unique to certain ver-
sions.See the PLISTVER parameter description.

Input Register Information
Before issuing the IWMMEXTR macro, the caller does not have to place any
information into any register unless using it in register notation for a particular
parameter, or using it as a base register.

Output Register Information
When control returns to the caller, the GPRs contain:

Register
Contents

0 Reason code if GR15 return code is non-zero
1 Used as work registers by the system
2-13 Unchanged
14 Used as work registers by the system
15 Return code

When control returns to the caller, the ARs contain:

Register
Contents

0-1 Used as work registers by the system
2-13 Unchanged
14-15 Used as work registers by the system

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the
caller depends, the caller must save them before issuing the service, and restore
them after the system returns control.

Performance Implications
None.

IWMMEXTR Macro

318 z/OS V1R4.0 MVS Workload Management Services

|
|
|
|

Syntax

main diagram

��
name

� IWMMEXTR � MONTKN=montkn
,OWNER_TOKEN=owner_token

�

�
,OWNER_DATA=owner_data ,ARRIVALTIME=arrivaltime

�

�
,TRXNAME=trxname ,USERID=userid ,SERVCLS=servcls

�

�
,ASID=asid ,ENCLAVE_TOKEN=enclave_token

�

�
,TTRACETOKEN=ttracetoken ,ABNORMAL_COND=abnormal_cond

�

�
,RETCODE=retcode ,RSNCODE=rsncode

,PLISTVER=IMPLIED_VERSION

,PLISTVER=MAX
,PLISTVER=0
,PLISTVER=1
,PLISTVER=2

�

�
,COMPLETE

,MF=(M ,list addr)
,NOCHECK

�"

Parameters
The parameters are explained as follows:

name
An optional symbol, starting in column 1, that is the name on the IWMMEXTR
macro invocation. The name must conform to the rules for an ordinary
assembler language symbol.

,ABNORMAL_COND=abnormal_cond
An optional output parameter, which contains the current information about
abnormal conditions which were either recorded in the input monitoring
environment or which were propagated to it via IWMMXFER Function(Return).
Multiple conditions may exist.

The mask, Iwmmabnl_Scope_LocalMVS, may be used to determine whether an
abnormality which only affects work on the current MVS image was recorded.

The mask, Iwmmabnl_Scope_Sysplex, may be used to determine whether an
abnormality which affects work on all MVS images in the sysplex was recorded.

To determine whether a condition was recorded, merely AND the field supplied
for ABNORMAL_COND with the relevant mask. The result will be nonzero when
the condition is true, zero when the condition is false.

IWMMEXTR Macro

Chapter 35. IWMMEXTR – Delay Monitoring Extract Service 319

To code: Specify the RS-type address, or address in register (2)-(12), of a 32
bit field.

,ARRIVALTIME=arrivaltime
An optional output parameter, which contains the work arrival time in STCK
format.

To code: Specify the RS-type address, or address in register (2)-(12), of a 64
bit field.

,ASID=asid
An optional output parameter,which contains the address space ID. When the
monitoring environment is not associated with an address space, the output will
be a halfword of binary zeros. This keyword is available on z/OS R2 and higher.

To code: Specify the RS-type address, or address in register (2)-(12), of a 16
bit field.

,ENCLAVE_TOKEN=enclave_token
An optional output parameter, which contains the enclave token. When the
monitoring environment is not associated with an enclave, the output will be a
doubleword of binary zeros. This keyword is available on z/OS R2 and higher.

To code: Specify the RS-type address, or address in register (2)-(12),of a 64 bit
field.

MONTKN=montkn
A required input parameter, which contains the delay monitoring token

To code: Specify the RS-type address, or address in register (2)-(12), of a 32
bit field.

,OWNER_DATA=owner_data
An optional output parameter, which is to receive the data established by the
user/owner of the monitoring environment. The format is undefined to MVS.
When the monitoring environment is not associated with an OWNER_TOKEN
value, the output will be a word of binary zeros.

To code: Specify the RS-type address, or address in register (2)-(12), of a 32
bit field.

,OWNER_TOKEN=owner_token
An optional output parameter, which is to receive the token established by the
user/owner of the monitoring environment. The format is undefined to MVS.
When the monitoring environment is not associated with an OWNER_TOKEN
value, the output will be a word of binary zeros.

To code: Specify the RS-type address, or address in register (2)-(12), of a 32
bit field.

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX
,PLISTVER=0
,PLISTVER=1

An optional input parameter that specifies the version of the macro. PLISTVER
determines which parameter list the system generates. PLISTVER is an
optional input parameter on all forms of the macro, including the list form. When
using PLISTVER, specify it on all macro forms used for a request and with the
same value on all of the macro forms. The values are:

v IMPLIED_VERSION, which is the lowest version that allows all parameters
specified on the request to be processed. If you omit the PLISTVER
parameter, IMPLIED_VERSION is the default.

IWMMEXTR Macro

320 z/OS V1R4.0 MVS Workload Management Services

|
|
|
|

|
|

|
|
|
|

|
|

v MAX, if you want the parameter list to be the largest size currently possible.
This size might grow from release to release and affect the amount of
storage that your program needs.

If you can tolerate the size change, IBM recommends that you always specify
PLISTVER=MAX on the list form of the macro. Specifying MAX ensures that
the list-form parameter list is always long enough to hold all the parameters
you might specify on the execute form; in this way, MAX ensures that the
parameter list does not overwrite nearby storage.

v 0, which supports all parameters except those specifically referenced in
higher versions.

v 1, which supports both the following parameters and those from version 0:

TTRACETOKEN

To code: Specify one of the following:
v IMPLIED_VERSION
v MAX
v A decimal value of 0 or 1

,RETCODE=retcode
An optional output parameter into which the return code is to be copied from
GPR 15.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

,RSNCODE=rsncode
An optional output parameter into which the reason code is to be copied from
GPR 0.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

,SERVCLS=servcls
An optional output parameter, which contains the service class token. When the
monitoring environment is not associated with a service class token, the output
will be a word of binary zeros.

To code: Specify the RS-type address, or address in register (2)-(12), of a 32
bit field.

,TRXNAME=trxname
An optional output parameter, which contains the transaction name. The field
will be all blanks when NO_TRXNAME was specified on IWMMINIT.

To code: Specify the RS-type address, or address in register (2)-(12), of an
8-character field.

,TTRACETOKEN=ttracetoken
An optional output parameter, which contains the transaction trace token
associated with the work request. The field will be all zero when
NO_TTRACETOKEN was specified on IWMMINIT.

To code: Specify the RS-type address, or address in register (2)-(12), of a
32-character field.

,USERID=userid
An optional output parameter, which contains the local userid associated with
the work request. The field will be all blanks when NO_USERID was specified
on IWMMINIT.

To code: Specify the RS-type address, or address in register (2)-(12), of an
8-character field.

IWMMEXTR Macro

Chapter 35. IWMMEXTR – Delay Monitoring Extract Service 321

ABEND Codes
None.

Return and Reason Codes
When the IWMMEXTR macro returns control to your program:
v GPR 15 (and retcode, if you coded RETCODE) contains a return code.
v When the value in GPR 15 is not zero, GPR 0 (and rsncode, if you coded

RSNCODE) contains reason code.

The following table identifies the hexadecimal return and reason codes and the
equate symbol associated with each reason code. IBM support personnel may
request the entire reason code, including the xxxx value.

Table 39. Return and Reason Codes for the IWMMEXTR Macro

Return Code Reason Code Equate Symbol Meaning and Action

0 — Equate Symbol: IwmRetCodeOk

Meaning: Successful completion.

Action: None required.

4 — Equate Symbol: IwmRetCodeWarning

Meaning: Successful completion, unusual conditions noted.

4 xxxx0402 Equate Symbol: IwmRsnCodeNoMonEnv

Meaning: Monitoring token indicates that no monitoring
environment exists.

Action: None required.

4 xxxx040C Equate Symbol: IwmRsnCodeMonEnvLacksInfo

Meaning: Input monitoring environment does not contain
the necessary information to return the data requested.

Action: None required.

8 — Equate Symbol: IwmRetCodeInvocError

Meaning: Invalid invocation environment or parameters.

8 xxxx0820 Equate Symbol: IwmRsnCodeBadMonEnv

Meaning: Monitoring environment does not pass short form
verification.

Action: Check for possible storage overlay.

IWMMEXTR Macro

322 z/OS V1R4.0 MVS Workload Management Services

Chapter 36. IWMMINIT – Monitor Environment Initialization

IWMMINIT allows the caller to supply MVS with some or all of the work request
attributes needed for the monitoring environment. The attributes include userid,
transaction name, transaction class, source LU, and LU 6.2 token.

Where possible, you should invoke IWMMINIT immediately following IWMCLSFY,
and pass the service class for the work request. Without the associated service
class in the monitoring environment, delay information cannot be accumulated and
reported accurately.

IWMMINIT can be issued multiple times for the same work request. The first time
you invoke IWMMINIT for a work request, you must specify MODE=RESET,
otherwise the previous work request’s attributes are associated with this work
request. Any subsequent time you invoke IWMMINIT from the same address space
for the same monitoring token for the same work request, specify MODE=RETAIN.
If the caller subsystem work manager consists of multiple address spaces (with
multiple monitoring tokens), the first time IWMMINIT is invoked in each address
space for a given work request must specify MODE=RESET. Any subsequent
invocations for the same work request should specify MODE=RETAIN.

If you are invoking IWMMINIT multiple times for the same work request, only one of
the invocations should specify EXSTARTTIME=exstarttime. It is up to you to decide
at which point in the subsystem work manager’s processing you consider the real
execution start time.

Optionally with this macro, you can use the OWNER_TOKEN and OWNER_DATA
parameters to specify a token for the user/owner of the monitoring environment for
your own use.

Environment
The requirements for the caller are:

Minimum authorization: Either problem state or supervisor state. PSW key must
either be 0 or match the value supplied on IWMMCREA.

Dispatchable unit mode: Task or SRB

Cross memory mode: Any PASN, any HASN, any SASN If the key specified on
IWMMCREA was a user key (8-F), then primary
addressability must be the same as when IWMMCREA was
invoked.

AMODE: 31-bit

ASC mode: Primary Any P,S,H.

Interrupt status: Enabled for I/O and external interrupts

Locks: Locked or unlocked

Control parameters: Control parameters must be in the primary address space.

Programming Requirements
1. The macro IWMYCON must be included to use this macro.
2. The macro IWMPB must be in the library concatenation, since it is included by

IWMYCON.

© Copyright IBM Corp. 1988, 2002 323

3. Note that the high order halfword of register 0, and the reason code variable
when specified, may be non-zero and represents diagnostic data which is NOT
part of the external interface. The high order halfword should thus be excluded
from comparison with the reason code values described above. The constant,
IWMRSNCODE_MASK_CONST defined in IWMYCON, may be used for this
purpose.

Restrictions
1. All parameter areas must reside in current primary, except that the TCB (if

specified) must reside in current home.
2. Caller is responsible for error recovery.
3. Only limited checking is done against the input monitoring token.
4. If the key specified on IWMMCREA was a user key (8-F), then the primary

addressability must exist to the performance block IWMMCREA obtained. This
condition is satisfied by ensuring that current primary matches primary at the
time that IWMMCREA was invoked. If this service is invoked in a subspace, the
condition may be satisfied by ensuring that the performance block is shared with
the base space.

5. The caller must serialize to prevent any delay monitoring services from being
invoked concurrently for the environment represented by the monitoring token.

6. This macro may only be used on z/OS R2 or higher levels for REPORTONLY
and ASSOCIATE keywords.

7. This macro supports multiple versions. Some keywords are unique to certain
versions. See the PLISTVER parameter description.

Input Register Information
Before issuing the IWMMINIT macro, the caller does not have to place any
information into any register unless using it in register notation for a particular
parameter, or using it as a base register.

Output Register Information
When control returns to the caller, the GPRs contain:

Register
Contents

0 Reason code if GR15 return code is non-zero
1 Used as work registers by the system
2-13 Unchanged
14 Used as work registers by the system
15 Return code

When control returns to the caller, the ARs contain:

Register
Contents

0-1 Used as work registers by the system
2-13 Unchanged
14-15 Used as work registers by the system

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the
caller depends, the caller must save them before issuing the service, and restore
them after the system returns control.

IWMMINIT Macro

324 z/OS V1R4.0 MVS Workload Management Services

|
|

Performance Implications
None

Syntax

main diagram

��
name

IWMMINIT MONTKN=montkn �

� ,MODE=RESET parameters-1
,DURATION=PREV_VALUE

,MODE=RETAIN ,DISPTYPE=SAVEDTYPE
,DURATION=EXECUTION ,TCB=NO_TCB
,DURATION=BEGIN_TO_END ,DISPTYPE=TCB

,TCB=tcb
,DISPTYPE=SRB

�

� ,CONTINUEP=YES ,FROM=NONE
,FROM=LOCALMVS
,FROM=SYSPLEX
,FROM=NETWORK

,CONTINUEP=NO

,OWNER_TOKEN=NO_OWNER_TOKEN

,OWNER_TOKEN=owner_token

,OWNER_DATA=NO_OWNER_DATA

,OWNER_DATA=owner_data
�

�
,REPORTONLY=NO ,SERVCLS=NO_SERVCLS

,EXSTARTTIMEP=NO
,EXSTARTTIMEP=CURRENT ,SERVCLS=servcls
,EXSTARTTIMEP=YES ,EXSTARTTIME=exstarttime

,REPORTONLY=YES ,ASSOCIATE=ENCLAVE ,ENCLAVETOKEN=enclavetoken
,ASSOCIATE=ADDRESS_SPACE ,ASID=asid

�

� ,SCOPE=SHARED
,SCOPE=SINGLE

,TRXNAME=NO_TRXNAME

,TRXNAME=trxname

,USERID=NO_USERID

,USERID=userid

,TRXCLASS=NO_TRXCLASS

,TRXCLASS=trxclass
�

�
,TTRACETOKEN=NO_TTRACETOKEN

,TTRACETOKEN=ttracetoken

,SOURCELU=NO_SOURCELU

,SOURCELU=sourcelu
�

�
,LU62TKN=NO_LU62TKN ,LU62TKN_FMT=LU_NO_CC_27
,LU62TKN=lu62tkn ,LU62TKN_FMT=FULL_LU_NO_CC_27

,LU62TKN_FMT=FULL_LU_0_CC_28
,LU62TKN_FMT=FULL_LU_CC_36
,LU62TKN_FMT=OTHER ,LU62TKN_LEN=lu62tkn_len

,RETCODE=retcode
�

�
,RSNCODE=rsncode

,PLISTVER=IMPLIED_VERSION

,PLISTVER=MAX
,PLISTVER=0
,PLISTVER=1
,PLISTVER=2

�

�
,COMPLETE

,MF=(M ,list addr)
,NOCHECK

�"

parameters-1

��
,DURATION=EXECUTION

,DURATION=BEGIN_TO_END

,TCB=NO_TCB
,DISPTYPE=TCB

,TCB=tcb
,DISPTYPE=SRB

�

IWMMINIT Macro

Chapter 36. IWMMINIT – Monitor Environment Initialization 325

|

||||||||||||||
|

|
|||
|

|
|||
|

|
||
|

|
||
|

|
|||||||||||||||||||||||
|

|
||
|

|
|||||||||||||||||||||||||||||||

|

|||||||||||||||||||

|

|

� ,ARRIVALTIMEP=CURRENT
,ARRIVALTIMEP=YES ,ARRIVALTIME=arrivaltime

�"

Parameters
The parameters are explained as follows:

name
An optional symbol, starting in column 1, that is the name on the IWMMINIT
macro invocation. The name must conform to the rules for an ordinary
assembler language symbol.

,ARRIVALTIME=arrivaltime
When ARRIVALTIMEP=YES and MODE=RESET are specified, a required input
parameter, which contains the work arrival time in STCK format.

To code: Specify the RS-type address, or address in register (2)-(12), of a 64
bit field.

,ARRIVALTIMEP=CURRENT
,ARRIVALTIMEP=YES

When MODE=RESET is specified, a required parameter, which indicates
whether the work arrival time is passed.

,ARRIVALTIMEP=CURRENT
indicates that the current time should be supplied by the service.

,ARRIVALTIMEP=YES
indicates that the work arrival time is passed.

,ASID=asid
When ASSOCIATE=ADDRESS_SPACE and REPORTONLY=YES are specified,
a required input parameter which contains the address space ID.

To code: Specify the RS-type address, or address in register (2)-(12),of a 16 bit
field.

,ASSOCIATE=ENCLAVE
,ASSOCIATE=ADDRESS_SPACE

When REPORTONLY=YES is specified, a required parameter, which indicates
whether the monitoring environment should be associated to an enclave or an
address space.

,ASSOCIATE=ENCLAVE
indicates that the monitoring environment should be associated to an
enclave.

,ASSOCIATE=ADDRESS_SPACE
indicates that the monitoring environment should be associated to an
address space.

,CONTINUEP=YES
,CONTINUEP=NO

A required parameter, which indicates whether it is known (YES) or not (NO)
that there exists another monitoring environment for this same work request.

,CONTINUEP=YES
indicates that the existence of a prior monitoring environment for the work
request is known.

IWMMINIT Macro

326 z/OS V1R4.0 MVS Workload Management Services

|
|
|

|
|

|
|
|
|
|

|
|
|

|
|
|

,CONTINUEP=NO
indicates that it is not known whether there exists a prior monitoring
environment for the work request. If MODE(RESET) is specified, no status
is saved. If MODE(RETAIN) is specified, the existing status is preserved.

,DISPTYPE=TCB
,DISPTYPE=SRB

When MODE=RESET is specified, a required parameter, which describes the
nature of the MVS dispatchable units which participate in processing work
requests associated with the delay monitoring environment established by this
service.

,DISPTYPE=TCB
indicates that work requests run in TCB mode under a TCB within the
current home address space. Note that in cross-memory mode, this may be
different from the current primary address space.

,DISPTYPE=SRB
indicates that work requests run in SRB mode within the current home
address space.

,DISPTYPE=SAVEDTYPE
,DISPTYPE=TCB
,DISPTYPE=SRB

When MODE=RETAIN is specified, a required parameter, which describes the
nature of the MVS dispatchable units which participate in processing work
requests associated with the delay monitoring environment established by this
service.

,DISPTYPE=SAVEDTYPE
indicates that the information saved when MODE(RESET) was used is still
applicable.

,DISPTYPE=TCB
indicates that work requests run in TCB mode under a TCB within the
current home address space. Note that in cross-memory mode, this may be
different from the current primary address space.

,DISPTYPE=SRB
indicates that work requests run in SRB mode within the current home
address space.

,DURATION=EXECUTION
,DURATION=BEGIN_TO_END

When MODE=RESET is specified, an optional parameter, which indicates the
duration of the work request over which the delays are to be represented. The
default is DURATION=EXECUTION.

,DURATION=EXECUTION
indicates that the monitoring environment will reflect delays from the point
where an application or transaction program is given control, i.e. the
execution phase. Typically a monitoring environment with this scope would
be passed to Iwmmntfy to pass the execution time for the work request.

,DURATION=BEGIN_TO_END
indicates that the monitoring environment will reflect delays from the arrival
of the work request into the MVS sysplex until its completion. Ordinarily use
of this option would be in close proximity to the time when the work request
is classified. Typically a monitoring environment with this duration would be
passed to Iwmrpt to report the total elapsed time for the work request.

IWMMINIT Macro

Chapter 36. IWMMINIT – Monitor Environment Initialization 327

,DURATION=PREV_VALUE
,DURATION=EXECUTION
,DURATION=BEGIN_TO_END

When MODE=RETAIN is specified, an optional parameter, which indicates the
duration of the work request over which the delays are to be represented. The
default is DURATION=PREV_VALUE.

,DURATION=PREV_VALUE
indicates that the duration for delays has been specified on a previous
invocation.

,DURATION=EXECUTION
indicates that the monitoring environment will reflect delays from the point
where an application or transaction program is given control, i.e. the
execution phase. Typically a monitoring environment with this duration
would be passed to Iwmmntfy to pass the execution time for the work
request.

,DURATION=BEGIN_TO_END
indicates that the monitoring environment will reflect delays from the arrival
of the work request into the MVS sysplex until its completion. Ordinarily use
of this option would be in close proximity to the time when the work request
is classified. Typically a monitoring environment with this duration would be
passed to Iwmrpt to report the total elapsed time for the work request.

,ENCLAVETOKEN=enclavetoken
When ASSOCIATE=ENCLAVE and REPORTONLY=YES are specified, a
required input parameter, which contains the enclave token.

To code:Specify the RS-type address,or address in register (2)-(12),of a 64 bit
field.

,EXSTARTTIME=exstarttime
When EXSTARTTIMEP=YES is specified, a required input parameter, which
contains the start execution time in STCK format.

To code: Specify the RS-type address, or address in register (2)-(12), of a 64
bit field.

,EXSTARTTIMEP=NO
,EXSTARTTIMEP=CURRENT
,EXSTARTTIMEP=YES

A required parameter, which indicates whether the execution start time value is
passed.

,EXSTARTTIMEP=NO
indicates that the execution start time value is not passed.

If MODE(RETAIN) is specified, EXSTARTTIMEP(NO) will preserve the
existing execution start time, if any.

,EXSTARTTIMEP=CURRENT
indicates that the current time should be supplied by the service.

,EXSTARTTIMEP=YES
indicates that the start execution time value is passed.

,FROM=NONE
,FROM=LOCALMVS
,FROM=SYSPLEX
,FROM=NETWORK

When CONTINUEP=YES is specified, a required parameter.

IWMMINIT Macro

328 z/OS V1R4.0 MVS Workload Management Services

|
|
|

|
|

,FROM=NONE
indicates that there is no other environment.

,FROM=LOCALMVS
indicates that such an environment should exist on the current MVS.

,FROM=SYSPLEX
indicates that such an environment should exist in the current syplex, but is
not expected to be on the current MVS image.

,FROM=NETWORK
indicates that such an environment may exist, but is not expected to be in
the current sysplex.

,LU62TKN=lu62tkn
,LU62TKN=NO_LU62TKN

An optional input parameter, which contains LU 6.2 token for the work request.
This is not a SNA term, but it is comprised of the following fields which are
defined by SNA for the FMH5.
v Logical Unit of Work Identifier length byte, in binary, which may have the

values 0 or 10-26 decimal (inclusive)
v Logical Unit of Work Identifier

– Length byte for the network qualified LU name, in binary, which may have
the values 1-17 decimal (inclusive)

– Network qualified LU network name (1-17 bytes)
– Logical Unit of Work Instance Number, in binary (6 bytes)
– Logical Unit of Work Sequence Number, in binary (2 bytes)

v Conversation Correlator Field (0 to 9 bytes)
– Length byte for the Conversation Correlator, in binary, which may have the

values 0-8 decimal (inclusive)
– Conversation Correlator of the sending transaction (1-8 bytes)

The Conversation Correlator Field (which includes its length byte) may be
dropped when its length byte is 0. The default is NO_LU62TKN. indicates that
no LU 6.2 token was passed.

If MODE(RETAIN) is specified, NO_LU62TKN will preserve the existing LU6.2
token, if any.

To code: Specify the RS-type address, or address in register (2)-(12), of a
character field.

,LU62TKN_FMT=LU_NO_CC_27
,LU62TKN_FMT=FULL_LU_NO_CC_27
,LU62TKN_FMT=FULL_LU_0_CC_28
,LU62TKN_FMT=FULL_LU_CC_36
,LU62TKN_FMT=OTHER

When LU62TKN=lu62tkn is specified, a required parameter, which indicates the
format/length of the LU 6.2 token.

,LU62TKN_FMT=LU_NO_CC_27
indicates that a fixed length token of 27 bytes is provided, with no
conversation correlator (not even its length byte). The LU name may be
1-17 bytes. Bytes at the end of the token are padded with hexadecimal
zeros, if necessary, to form a full 27 bytes.

IWMMINIT Macro

Chapter 36. IWMMINIT – Monitor Environment Initialization 329

,LU62TKN_FMT=FULL_LU_NO_CC_27
indicates that the fully qualified LU name (17 bytes) is used, but no
conversation correlator (not even its length byte) is provided. This format is
architected to be 27 bytes long.

,LU62TKN_FMT=FULL_LU_0_CC_28
indicates that the fully qualified LU name (17 bytes) is used, and the
conversation correlator length byte is present and has the value 0. This
format is architected to be 28 bytes long.

,LU62TKN_FMT=FULL_LU_CC_36
indicates that the fully qualified LU name (17 bytes) is used, and the
conversation correlator is provided with a length of 8 (maximum allowed).
This format is architected to be 36 bytes long.

,LU62TKN_FMT=OTHER
indicates that the format of the LU 6.2 token is different from those specified
by the remaining keywords.

,LU62TKN_LEN=lu62tkn_len
When LU62TKN_FMT=OTHER and LU62TKN=lu62tkn are specified, a required
input parameter, which contains the length of the LU62 token. Valid values are
in the range 1-36 decimal (inclusive).

To code: Specify the RS-type address, or address in register (2)-(12), of an
one-byte field.

,MODE=RESET
,MODE=RETAIN

A required parameter, which indicates how previous attributes established for a
monitoring environment should be treated. This does not refer to (or include)
attributes established in IWMMCREA.

,MODE=RESET
indicates that previous attributes should be discarded.

,MODE=RETAIN
indicates that previous attributes should be retained unless explicitly
specified.

MONTKN=montkn
A required input parameter, which contains the delay monitoring token

To code: Specify the RS-type address, or address in register (2)-(12), of a 32
bit field.

,OWNER_DATA=owner_data
,OWNER_DATA=NO_OWNER_DATA

An optional input parameter, which contains data maintained by the user/owner
of the monitoring environment. The format is undefined to MVS. The default is
NO_OWNER_DATA which indicates that no owner data is provided.

If MODE(RETAIN) is specified, NO_OWNER_DATA will preserve the existing
owner data, if any.

To code: Specify the RS-type address, or address in register (2)-(12), of a 32
bit field.

,OWNER_TOKEN=owner_token
,OWNER_TOKEN=NO_OWNER_TOKEN

An optional input parameter, which contains a token maintained by the

IWMMINIT Macro

330 z/OS V1R4.0 MVS Workload Management Services

user/owner of the monitoring environment. The format is undefined to MVS. The
default is NO_OWNER_TOKEN which indicates that no owner token is
provided.

If MODE(RETAIN) is specified, NO_OWNER_TOKEN will preserve the existing
owner token, if any.

To code: Specify the RS-type address, or address in register (2)-(12), of a 32
bit field.

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX
,PLISTVER=0
,PLISTVER=1

An optional input parameter that specifies the version of the macro. PLISTVER
determines which parameter list the system generates. PLISTVER is an
optional input parameter on all forms of the macro, including the list form. When
using PLISTVER, specify it on all macro forms used for a request and with the
same value on all of the macro forms. The values are:

v IMPLIED_VERSION, which is the lowest version that allows all parameters
specified on the request to be processed. If you omit the PLISTVER
parameter, IMPLIED_VERSION is the default.

v MAX, if you want the parameter list to be the largest size currently possible.
This size might grow from release to release and affect the amount of
storage that your program needs.

If you can tolerate the size change, IBM recommends that you always specify
PLISTVER=MAX on the list form of the macro. Specifying MAX ensures that
the list-form parameter list is always long enough to hold all the parameters
you might specify on the execute form, when both are assembled with the
same level of the system. In this way, MAX ensures that the parameter list
does not overwrite nearby storage.

v 0, which supports all parameters except those specifically referenced in
higher versions.

v 1, which supports both the following parameters and those from version 0:

TTRACETOKEN

To code: Specify one of the following:
v IMPLIED_VERSION
v MAX
v A decimal value of 0 or 1

REPORTONLY=NO
REPORTONLY=YES

An optional parameter,which indicates whether the monitoring environment is for
reporting purposes only (YES)or not (NO). The default is REPORTONLY=NO.

,REPORTONLY=NO
indicates that the monitoring environment is not for reporting purposes only.

,REPORTONLY=YES
indicates that the monitoring environment is for reporting purposes only.

,RETCODE=retcode
An optional output parameter into which the return code is to be copied from
GPR 15.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

IWMMINIT Macro

Chapter 36. IWMMINIT – Monitor Environment Initialization 331

|
|
|
|

|
|

|
|

,RSNCODE=rsncode
An optional output parameter into which the reason code is to be copied from
GPR 0.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

,SCOPE=SHARED
,SCOPE=SINGLE

A required parameter, which indicates the scope of work passed.

,SCOPE=SHARED
indicates that multiple work requests, possibly from different service
classes, could be described.

,SCOPE=SINGLE
indicates that only a single work request is described.

,SERVCLS=servcls
,SERVCLS=NO_SERVCLS

An optional input parameter, which contains the service class token. The default
is NO_SERVCLS. indicates that no service class token was passed.

If MODE(RETAIN) is specified, NO_SERVCLS will preserve the existing service
class token, if any.

To code: Specify the RS-type address, or address in register (2)-(12), of a 32
bit field.

,SOURCELU=sourcelu
,SOURCELU=NO_SOURCELU

An optional input parameter, which contains the LU name associated with the
requestor. This may be the fully qualified NETID.LUNAME, i.e. network name
(1-8 bytes), followed by a period, followed by the LU name for the requestor
(1-8 bytes). It may also be the 1-8 byte local LU name, with no network
qualifier. The SOURCELU field may be from 1-17 characters. In the assembler
form, the macro will determine the length of the field as follows:
1. if the field is specified by register notation, it will be assumed to be 17

characters (padded with blanks) and a full 17 characters will be copied.
2. if the field is specified using an RS form name, then the length will be

determined using the L’ assembler function. When the length is less than 17
characters, the macro will pad with blanks. When the length is greater than
or equal to 17 characters, the macro will copy the first 17 bytes.

In the PL/AS form, the rules for the PL/AS compiler will determine when to pad
with blanks, i.e. less than 17 characters implies padding, 17 or more implies a
17 character copy.

This is intended to be the same value as used in IWMCLSFY, and may be
distinct from the LU name contained within the LU 6.2 token. For environments
where the LU name may be available on some, but not all flows, provision of a
data area initialized to all blanks is equivalent to specification of
NO_SOURCELU when MODE(RESET) is specified. Providing an area of all
blanks when MODE(RETAIN) is specified will cause that to be used. The
default is NO_SOURCELU. indicates that no source LU name was passed.

If MODE(RETAIN) is specified, NO_SOURCELU will preserve the existing
source LU name, if any.

To code: Specify the RS-type address, or address in register (2)-(12), of a
character field.

IWMMINIT Macro

332 z/OS V1R4.0 MVS Workload Management Services

,TCB=tcb
,TCB=NO_TCB

When DISPTYPE=TCB and MODE=RESET are specified, an optional input
parameter, which defines the TCB within the current home address space which
will serve the work request. Note that this name is not the pointer to the TCB,
but the name of the data area containing the TCB. A typical invocation might
replace xTCB with TCB.

Ordinarily the input TCB specified should be the TCB under which the work
request (e.g. transaction program) runs and under which the delay information
is recorded (in spite of the fact that task switches may occur). The default is
NO_TCB which indicates that no TCB is currently associated with the.
monitoring environment for this work request.

To code: Specify the RS-type address, or address in register (2)-(12), of a
character field.

,TCB=tcb
,TCB=NO_TCB

When DISPTYPE=TCB and MODE=RETAIN are specified, an optional input
parameter, which defines the TCB within the current home address space which
will serve the work request. Note that this name is not the pointer to the TCB,
but the name of the data area containing the TCB. A typical invocation might
replace xTCB with TCB.

Ordinarily the input TCB specified should be the TCB under which the work
request (e.g. transaction program) runs and under which the delay information
is recorded (in spite of the fact that task switches may occur). The default is
NO_TCB which indicates that no TCB is currently associated with the.
monitoring environment for this work request.

To code: Specify the RS-type address, or address in register (2)-(12), of a
character field.

,TRXCLASS=trxclass
,TRXCLASS=NO_TRXCLASS

An optional input parameter, which contains a class name within a subsystem.
For environments where the transaction class is available on some, but not all
flows, provision of a data area initialized to all blanks is equivalent to
specification of NO_TRXCLASS when MODE(RESET) is specified. Providing an
area of all blanks when MODE(RETAIN) is specified will cause that to be used.
The default is NO_TRXCLASS. indicates that no class name was passed.

If MODE(RETAIN) is specified, NO_TRXCLASS will preserve the existing
transaction class, if any.

To code: Specify the RS-type address, or address in register (2)-(12), of an
8-character field.

,TRXNAME=trxname
,TRXNAME=NO_TRXNAME

An optional input parameter, which contains the transaction name. For
environments where the transaction name is available on some, but not all
flows, provision of a data area initialized to all blanks is equivalent to
specification of NO_TRXNAME when MODE(RESET) is specified. Providing an
area of all blanks when MODE(RETAIN) is specified will cause that to be used.
The default is NO_TRXNAME. indicates that no transaction name was passed.

If MODE(RETAIN) is specified, NO_TRXNAME will preserve the existing
transaction name, if any.

IWMMINIT Macro

Chapter 36. IWMMINIT – Monitor Environment Initialization 333

To code: Specify the RS-type address, or address in register (2)-(12), of an
8-character field.

,TTRACETOKEN=ttracetoken
,TTRACETOKEN=NO_TTRACETOKEN

An optional input parameter, which contains the transaction trace token. The
default is NO_TTRACETOKEN. indicates that no transaction trace token was
passed.

If MODE(RETAIN) is specified, NO_TTRACETOKEN will preserve the existing
transaction trace token, if any.

To code: Specify the RS-type address, or address in register (2)-(12), of a
32-character field.

,USERID=userid
,USERID=NO_USERID

An optional input parameter, which contains the local userid associated with the
work request. For environments where the user id is available on some, but not
all flows, provision of a data area initialized to all blanks is equivalent to
specification of NO_USERID when MODE(RESET) is specified. Providing an
area of all blanks when MODE(RETAIN) is specified will cause that to be used.
The default is NO_USERID. indicates that no userid was passed.

If MODE(RETAIN) is specified, NO_USERID will preserve the existing user id, if
any.

To code: Specify the RS-type address, or address in register (2)-(12), of an
8-character field.

ABEND Codes
None.

Return and Reason Codes
When the IWMMINIT macro returns control to your program:
v GPR 15 (and retcode, when you code RETCODE) contains a return code.
v When the value in GPR 15 is not zero, GPR 0 (and rsncode, when you code

RSNCODE) contains reason code.

The following table identifies the hexadecimal return and reason codes and the
equate symbol associated with each reason code. IBM support personnel may
request the entire reason code, including the xxxx value.

Table 40. Return and Reason Codes for the IWMMINIT Macro

Return Code Reason Code Equate Symbol Meaning and Action

0 — Equate Symbol: IwmRetCodeOkSuccessful completion.

Meaning: Successful completion.

4 — Equate Symbol: IwmRetCodeWarning

Meaning: Successful completion, unusual conditions noted.

4 xxxx0402 Equate Symbol: IwmRsnCodeNoMonEnv

Meaning: Monitoring token indicates that no monitoring
environment exists.

IWMMINIT Macro

334 z/OS V1R4.0 MVS Workload Management Services

Table 40. Return and Reason Codes for the IWMMINIT Macro (continued)

Return Code Reason Code Equate Symbol Meaning and Action

8 — Equate Symbol: IwmRetCodeInvocError

Meaning: Invalid invocation environment or parameters

8 xxxx081E Equate Symbol: IwmRsnCodeBadLU62TknLen

Meaning: The length byte of the LU62 token has an invalid
value. Only values 1-36 (decimal) are valid.

8 xxxx0820 Equate Symbol: IwmRsnCodeBadMonEnv

Meaning: Monitoring environment does not pass short form
verification.

C — Equate Symbol: IwmRetCodeEnvError

Meaning: Environmental error

C xxxx0C07 Equate Symbol: IwmRsnCodeNoArrTime:

Meaning: No arrival time was supplied to the service and
STCK gave a non-zero condition code.

C xxxx0C08 Equate Symbol: IwmRsnCodeNoExTime:

Meaning: No execution start time was supplied to the
service and STCK gave a non-zero condition code.

Examples
IWMMINIT MONTKN=(R9),ARRIVALTIMEP=YES,

ARRIVALTIME=(R3),EXSTARTTIMEP=YES,
EXSTARTTIME=(R4),DISPTYPE=TCB,TCB=(R7),
SCOPE=SINGLE,TRXNAME=WLTRXNAME,SOURCELU=SOURCELU,
CONTINUEP=YES,LU62TKN_FMT=OTHER,LU62TKN_LEN=LU62TKNLEN,
LU62TKN=LU62TKN1,MODE=RESET,FROM=NONE,
REPORTONLY=NO,RETCODE=RCODE,RSNCODE=RSN

IWMMINIT Macro

Chapter 36. IWMMINIT – Monitor Environment Initialization 335

|
|
|
|
|
|
|

IWMMINIT Macro

336 z/OS V1R4.0 MVS Workload Management Services

Chapter 37. IWMMNTFY – Notify of Work Execution
Completion

The primary purpose of this service is to notify MVS that the execution phase for a
work request associated with a monitoring environment has just completed. This
may represent the entire work request OR merely a subset of it. An indication is
also given as to whether the monitoring environment should be disassociated from
the work request or not. When DISASSOCIATE(YES) is specified, this service will
render the information associated with the monitoring environment unpredictable. To
associate a work request with the monitoring environment following use of
DISASSOCIATE(YES), first use Initialize Mode(Reset) or Relate/Transfer.

Environment
The requirements for the caller are:

Minimum authorization: Supervisor state. PSW key must either be 0 or match the
value supplied on IWMCONN when a connect token is
passed. PSW key must either be 0 or match the value
supplied on IWMMCREA. PSW key must be 0-7. See
restrictions below.

Dispatchable unit mode: Task or SRB

Cross memory mode: Any PASN, any HASN, any SASN

AMODE: 31-bit

ASC mode: Primary

Interrupt status: Enabled for I/O and external interrupts

Locks: LOCAL lock held

Control parameters: Control parameters must be in the primary address space.

Programming Requirements
1. The macro CVT must be included to use this macro.
2. The macro IWMYCON must be included to use this macro.
3. The macro IWMPB must be in the library concatenation, since it is included by

IWMYCON.
4. Note that the high order halfword of register 0, and the reason code variable

when specified, may be non-zero and represents diagnostic data which is NOT
part of the external interface. The high order halfword should thus be excluded
from comparison with the reason code values described above. The constant,
IWMRSNCODE_MASK_CONST defined in IWMYCON, may be used for this
purpose.

Restrictions
1. Caller is responsible for error recovery
2. Though the caller is required to be enabled, this is not checked. Violation of this

restriction may cause disabled program checks which would be the
responsibility of the caller’s recovery to handle.

3. When the invocation requests use of SYSEVENT TRAXFRPT, the restrictions
for that service must be satisfied. These are:
v Local lock must be held.
v Supervisor state.

© Copyright IBM Corp. 1988, 2002 337

v PSW key must be 0.
v Parameter list must be fully initialized (information will not be copied from the

other parameters supplied to complete initialization of the SYSEVENT
parameter list).

v SYSEVENT TRAXFRPT supports disabled callers, in which case the
parameter list and save area must be fixed, but IWMMNTFY does not
support disablement.

v Provide error recovery.
4. The monitoring environment must contain the information saved by IWMMINIT,

not IWMMRELA
5. The current PSW key must be 0 or match the key specified on IWMMCREA

provided the latter is a system key (0-7). x
6. This service cannot be used for Report-Only Monitoring Environments
7. If the key specified on IWMMCREA was a user key (8-F), then

v PSW key must be 0
v current primary must match the primary at the time that IWMMCREA was

invoked. Calling from a subspace is not supported.
8. If a connect token is passed to IWMMNTFY, then

v The connect token must be enabled for using the WLM Work Management
services (specifying WORK_MANAGER=YES on IWMCONN).

v If the key specified on IWMCONN was a user key (8-F), then
– PSW key must be 0
– current primary must match the primary at the time that IWMCONN was

invoked. Calling from a subspace is not supported.
9. The caller must serialize to prevent any delay monitoring services from being

invoked concurrently for the environment represented by the monitoring token

Input Register Information
Before issuing the IWMMNTFY macro, the caller must ensure that the following
general purpose registers (GPRs) contain the specified information:

Register
Contents

13 The address of a 72-byte standard save area in the primary address space

Before issuing the IWMMNTFY macro, the caller does not have to place any
information into any AR unless using it in register notation for a particular
parameter, or using it as a base register.

Output Register Information
When control returns to the caller, the GPRs contain:

Register
Contents

0-1 Used as work registers by the system
2-13 Unchanged
14-15 Used as work registers by the system.

When control returns to the caller, the ARs contain:

Register
Contents

0-1 Used as work registers by the system
2-13 Unchanged
14-15 Used as work registers by the system.

IWMMNTFY Macro

338 z/OS V1R4.0 MVS Workload Management Services

|

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the
caller depends, the caller must save them before issuing the service, and restore
them after the system returns control.

Performance Implications
None.

Syntax

main diagram

��
name

� IWMMNTFY � TRAXFRPT=YES ,SYSEVPL=sysevpl
TRAXFRPT=NO

�

� ,MONTKN=montkn ,COMPLETION=YES
,COMPLETION=NO

,DISASSOCIATE=YES
,DISASSOCIATE=NO

�

�
,CONNTKN=NO_CONNTKN

,CONNTKN=conntkn

,ENDTIME=CURRENT

,ENDTIME=endtime ,RETCODE=retcode
�

�
,RSNCODE=rsncode

,PLISTVER=IMPLIED_VERSION

,PLISTVER=MAX
,PLISTVER=0

�

�
,MF=S

,0D
,MF=(L ,list addr)

,attr
,COMPLETE

,MF=(E ,list addr)

�"

Parameters
The parameters are explained as follows:

name
An optional symbol, starting in column 1, that is the name on the IWMMNTFY
macro invocation. The name must conform to the rules for an ordinary
assembler language symbol.

,COMPLETION=YES
,COMPLETION=NO

A required parameter, which indicates whether the (or possibly one of several)
major execution phase(s) is(are) now complete.

,COMPLETION=YES
indicates that execution for an entire phase of processing has now
completed. Typically Iwmmntfy Completion(Yes) would be issued as a result
of the completion of the transaction program for the work request. When a

IWMMNTFY Macro

Chapter 37. IWMMNTFY – Notify of Work Execution Completion 339

work request is comprised of several (typically cascaded) transaction
programs, each would correspond to an invocation of Iwmmntfy
Completion(Yes).

The execution time, as given by the difference between the Iwmmntfy
ENDTIME value and the Execution start time (established via Iwmminit), will
be added to the running total execution time for the service class. There
may still be ″output″ processing left to perform for the work request, which
time would be accounted for via Iwmrpt. There may also be operations
corresponding to hardening of the database data outside the scope of
Notify.

,COMPLETION=NO
indicates that this invocation of Notify does not correspond to the
completion of an entire execution segment. Instead this invocation of Notify
corresponds to the portion of the work request represented by the
monitoring environment. For example, use Completion(No) when this
portion of processing behaves like a subroutine in the execution phase,
which is therefore a subset of the execution time passed in another Notify.

The execution time, as given by the difference between the Iwmmntfy
ENDTIME value and the Execution start time (established via Iwmminit), will
be treated separately from that passed for Completion(Yes), since otherwise
there would be double-counting.

,CONNTKN=conntkn
,CONNTKN=NO_CONNTKN

An optional input parameter, which is returned by IWMCONN. The default is
NO_CONNTKN. indicates that no connect token is passed.

To code: Specify the RS-type address, or address in register (2)-(12), of a 32
bit field.

,DISASSOCIATE=YES
,DISASSOCIATE=NO

A required parameter, which indicates whether the work request should be
disassociated from the monitoring environment or not.

,DISASSOCIATE=YES
indicates that the work request should be disassociated from the monitoring
environment.

,DISASSOCIATE=NO
indicates that the work request should not be disassociated from the
monitoring environment.

,ENDTIME=endtime
,ENDTIME=CURRENT

An optional input parameter, which specifies the ending execution time for the
transaction in STCK format. The default is CURRENT. indicates that the current
time should be used.

To code: Specify the RS-type address, or address in register (2)-(12), of a 64
bit field.

,MF=S
,MF=(L,list addr)
,MF=(L,list addr,attr)
,MF=(L,list addr,0D)
,MF=(E,list addr)

IWMMNTFY Macro

340 z/OS V1R4.0 MVS Workload Management Services

,MF=(E,list addr,COMPLETE)
An optional input parameter that specifies the macro form.

Use MF=S to specify the standard form of the macro, which builds an inline
parameter list and generates the macro invocation to transfer control to the
service. MF=S is the default.

Use MF=L to specify the list form of the macro. Use the list form together with
the execute form of the macro for applications that require reentrant code. The
list form defines an area of storage that the execute form uses to store the
parameters. Only the PLISTVER parameter may be coded with the list form of
the macro.

Use MF=E to specify the execute form of the macro. Use the execute form
together with the list form of the macro for applications that require reentrant
code. The execute form of the macro stores the parameters into the storage
area defined by the list form, and generates the macro invocation to transfer
control to the service.

,list addr
The name of a storage area to contain the parameters. For MF=S and
MF=E, this can be an RS-type address or an address in register (1)-(12).

,attr
An optional 1- to 60-character input string that you use to force boundary
alignment of the parameter list. Use a value of 0F to force the parameter
list to a word boundary, or 0D to force the parameter list to a doubleword
boundary. If you do not code attr, the system provides a value of 0D.

,COMPLETE
Specifies that the system is to check for required parameters and supply
defaults for omitted optional parameters.

,MONTKN=montkn
A required input parameter, which contains the delay monitoring token

To code: Specify the RS-type address, or address in register (2)-(12), of a 32
bit field.

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX
,PLISTVER=0

An optional input parameter that specifies the version of the macro. PLISTVER
determines which parameter list the system generates. PLISTVER is an
optional input parameter on all forms of the macro, including the list form. When
using PLISTVER, specify it on all macro forms used for a request and with the
same value on all of the macro forms. The values are:

v IMPLIED_VERSION, which is the lowest version that allows all parameters
specified on the request to be processed. If you omit the PLISTVER
parameter, IMPLIED_VERSION is the default.

v MAX, if you want the parameter list to be the largest size currently possible.
This size might grow from release to release and affect the amount of
storage that your program needs.

If you can tolerate the size change, IBM recommends that you always specify
PLISTVER=MAX on the list form of the macro. Specifying MAX ensures that
the list-form parameter list is always long enough to hold all the parameters
you might specify on the execute form; in this way, MAX ensures that the
parameter list does not overwrite nearby storage.

v 0, if you use the currently available parameters.

IWMMNTFY Macro

Chapter 37. IWMMNTFY – Notify of Work Execution Completion 341

To code: Specify one of the following:
v IMPLIED_VERSION
v MAX
v A decimal value of 0

,RETCODE=retcode
An optional output parameter into which the return code is to be copied from
GPR 15.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

,RSNCODE=rsncode
An optional output parameter into which the reason code is to be copied from
GPR 0.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

,SYSEVPL=sysevpl
When TRAXFRPT=YES is specified, a required input parameter, which is the
fully initialized SYSEVENT parameter list, as mapped by IHATRBPL.

To code: Specify the RS-type address, or address in register (2)-(12), of a
40-character field.

TRAXFRPT=YES
TRAXFRPT=NO

A required parameter, which indicated whether a SYSEVENT TRAXFRPT
should be issued when the system was in compatibility mode.

TRAXFRPT=YES
indicates that a SYSEVENT TRAXFRPT should be issued when the system
is in compatibility mode.

TRAXFRPT=NO
indicates that no SYSEVENT TRAXFRPT should be issued when the
system is in compatibility mode.

Note: Prior to z/OS R3, the TRAXFRPT setting indicated whether a SYSEVENT
TRAXFRPT was to be issued when the system was in compatibility mode.
This has become irrelevant, but the TRAXFRPT setting is still required.

ABEND Codes
None.

Return and Reason Codes
When the IWMMNTFY macro returns control to your program:
v GPR 15 (and retcode, if you coded RETCODE) contains a return code.
v When the value in GPR 15 is not zero, GPR 0 (and rsncode, if you coded

RSNCODE) contains reason code.

The following table identifies the hexadecimal return and reason codes and the
equate symbol associated with each reason code. IBM support personnel may
request the entire reason code, including the xxxx value.

IWMMNTFY Macro

342 z/OS V1R4.0 MVS Workload Management Services

Table 41. Return and Reason Codes for the IWMMNTFY Macro

Return Code Reason Code Equate Symbol Meaning and Action

0 — Equate Symbol: IwmRetCodeOk

Meaning: Successful completion.

Action: None required.

4 — Equate Symbol: IwmRetCodeWarning

Meaning: Successful completion, unusual conditions noted.

4 xxxx0401 Equate Symbol: IwmRsnCodeNoWLM

Meaning: System does not support delay monitoring
services. This return code is only set when the MVS release
is prior to MVS/ESA SP5.1.0.

Action: None required.

4 xxxx0404 Equate Symbol: IwmRsnCodeCompatNoSyseventRqd

Meaning: Reserved

4 xxxx0405 Equate Symbol: IwmRsnCodeGoalNoMonEnv

Meaning: System is in goal mode but the input monitoring
token indicates no monitoring environment was established,
hence MVS did not receive the information.

Action: None required.

8 — Equate Symbol: IwmRetCodeInvocError

Meaning: Invalid invocation environment or parameters.

8 xxxx080C Equate Symbol: IwmRsnCodeMonEnvLacksData

Meaning: Input monitoring environment does not contain
the necessary information.

Action: Ensure that the monitoring environment was
established with the necessary information.

8 xxxx080F Equate Symbol: IwmRsnCodeNoUserKeyNtfy

Meaning: User key routine not allowed to issue Notify.

Action: Avoid requesting this function in user key.

8 xxxx0820 Equate Symbol: IwmRsnCodeBadMonEnv

Meaning: Input monitoring environment does not pass short
form validity checking.

Action: Check for possible storage overlay.

8 xxxx087E Equate Symbol: IwmRsnCodeRoMonEnv

Meaning: Input monitoring environment is Report-Only.

Action: Avoid requesting this function for Report-Only PBs.

8 xxxx0821 Equate Symbol: IwmRsnCodeBadConn

Meaning: Input connect token does not pass validity
checking.

Action: Check for possible storage overlay.

IWMMNTFY Macro

Chapter 37. IWMMNTFY – Notify of Work Execution Completion 343

|||

|

|||

|

|

Table 41. Return and Reason Codes for the IWMMNTFY Macro (continued)

Return Code Reason Code Equate Symbol Meaning and Action

8 xxxx082D Equate Symbol: IwmRsnCodeExStTimeGTEndTime

Meaning: Input execution start time later than end time.

Action: Check for possible storage overlay of the parameter
list or variable.

8 xxxx0840 Equate Symbol: IwmRsnCodeServiceNotEnabled

Meaning: Caller’s space connection is not enabled for this
service.

Action: Avoid requesting this function under the input
connection. IWMCONN options must be specified previously
to enable this service.

C — Equate Symbol: IwmRetCodeEnvError

Meaning: Environmental error.

C xxxx0C02 Equate Symbol: IwmRsnCodeReportingSusp

Meaning: SYSEVENT TRAXFRPT invoked, but reporting is
temporarily suspended for one of the following reasons:
v RMF workload activity reporting is not active
v There is no installation control specification (IEAICSxx

parmlib member with RPGN specified for some
subsystem other than TSO) in effect. No data reported
but a later reissue could be successful.

Action: Invoke the function when the conditions are
alleviated.

C xxxx0C03 Equate Symbol: IwmRsnCodeSyseventNoWorkElt

Meaning: SYSEVENT TRAXFRPT invoked, but no work
element was available to save the input information.

Action: Invoke the function when the conditions are
alleviated. This condition may be due to a common storage
shortage condition.

C xxxx0C04 Equate Symbol: IwmRsnCodeNtfyNoWorkElt

Meaning: Notify routine invoked, but no work element was
available to save the input information.

Action: Invoke the function when the conditions are
alleviated. This condition may be due to a common storage
shortage condition.

C xxxx0C06 Equate Symbol: IwmRsnCodeNoEndTime

Meaning: No end time was supplied to the service and
STCK gave a non-zero condition code.

Action: No action required.

IWMMNTFY Macro

344 z/OS V1R4.0 MVS Workload Management Services

Chapter 38. IWMMRELA – Relate Monitoring Environment
Service

The calling subsystem work manager can use IWMMRELA to relate two different
monitoring environments that are associated with the same work request.
IWMMRELA initializes a monitoring environment, called a dependent monitoring
environment, and associates it with a previously established monitoring
environment, called a parent monitoring environment.

You can use IWMMRELA when you do not have direct access to the information
required by IWMMINIT. If the caller has the monitoring token for a parent monitoring
environment that is previously established for the same work request, you should
provide it in the PARENTMONTKN parameter. If the caller does not pass the parent
monitoring token, you can use PARENTP=FINDACTIVE to specify that the parent
monitoring environment is the active monitoring environment owned by the home
address space and which is associated with the TCB provided via PARENTTCB.

IWMMRELA must be used together with IWMMXFER to ensure that the dependent
monitoring environment is a valid representation for the work request.

Optionally with this macro, you can use the OWNER_TOKEN and OWNER_DATA
parameters to use the monitoring environment for your own purposes. You could
use the token/data to keep your own information.

Environment
The requirements for the caller are:

Minimum authorization: Problem state, or supervisor state. PSW key must either be
0, or match the value specified on IWMMCREA.

Dispatchable unit mode: Task or SRB

Cross memory mode: Any PASN, any HASN, any SASN

AMODE: 31-bit

ASC mode: Primary

Interrupt status: Enabled for I/O and external interrupts

Locks: Unlocked when PARENT=FINDACTIVE is specified,
otherwise, no restrictions.

Control parameters: Control parameters must be in the primary address space,
except the TCB, if specified, must reside in current home
address space.

Programming Requirements
1. You must include the IWMYCON mapping macro in the calling program.

2. If the key specified on IWMMCREA for the input MONTKN was a user key
(8-F), then the following must be true:
v If you specify PARENTP=YES, then:

– Primary addressability must exist to the performance block IWMMCREA
obtained (represented by the input MONTKN). You could do this by
ensuring that current primary matches primary at the time that

© Copyright IBM Corp. 1988, 2002 345

IWMMCREA was invoked. If this service is invoked in a subspace, the
condition may be satisfied by ensuring that the performance block is
shared with the base space.

– You cannot specify the list form of this macro. With PARENTP=YES,
IWMMRELA produces an inline expansion rather than an out-of-line
service, so you do not need a parameter list. Registers 0, 1, 14, and 15
are not preserved across the expansion.

v If you specify PARENTP=FINDACTIVE, then the caller must be in
non-cross-memory mode (PASN=SASN=HASN). That is, the current primary
(and home) must match the primary (and home) at the time that IWMMCREA
was invoked.

3. If the key specified on IWMMCREA for the parent environment was a user key
(8-F), then either primary or secondary addressability must exist to the
monitoring environment for the parent environment.

4. Both monitoring environments must be established on the same MVS image.

5. The caller must serialize to prevent any delay monitoring services from being
invoked concurrently for the monitoring environment.

6. When PARENTP=YES, the caller must provide recovery.

Restrictions
None.

Input Register Information
Before issuing the IWMMRELA macro, the caller does not have to place any
information into any register unless using it in register notation for a particular
parameter, or using it as a base register.

Output Register Information
When control returns to the caller, the GPRs contain:

Register
Contents

0 Reason code if the return code in GPR 15 is not 0, otherwise, used as a
work register by the system.

1 Used as a work register by the system.
2 - 13 Unchanged
14 Used as a work register by the system.
15 Return code

When control returns to the caller, the ARs contain:

Register
Contents

0 - 1 Used as a work register by the system.
2 - 13 Unchanged
14 - 15

Used as a work register by the system.

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the
caller depends, the caller must save them before issuing the service, and restore
them after the system returns control.

IWMMRELA Macro

346 z/OS V1R4.0 MVS Workload Management Services

Performance Implications
None.

Syntax
The syntax of the IWMMRELA macro is as follows:

main diagram

��
name

� IWMMRELA �
CREATE parameters-1

FUNCTION= DELETE �

� ,MONTKN=montkn
,RETCODE=retcode ,RSNCODE=rsncode

�

�
,MF=S

,0D
,MF=(L, MFCTRL)

,mfattr
,COMPLETE

,MF=(E, MFCTRL)
,complete

�"

parameters-1

��
,OWNER_TOKEN=NO_OWNER_TOKEN

,OWNER_TOKEN=owner_token

,OWNER_DATA=NO_OWNER_DATA

,OWNER_DATA=owner_data
�

� ,DISPTYPE= TCB ,TCB=tcb
SRB ,SAMEDU= YES

NO

�

�
YES parameters-2

,PARENTP= FINDACTIVE ,PARENTTCB=parenttcb �"

parameters-2

�� ,PARENTMONTKN=parentmontkn ,PARENTENV= NOSWITCH
SECONDARY
HOME

�"

Parameters
The parameters are explained as follows:

,FUNCTION=CREATE
,FUNCTION=DELETE

Required input parameter that specifies whether the relationship between a
parent monitoring environment and a dependent monitoring environment is
being established or ended.

IWMMRELA Macro

Chapter 38. IWMMRELA – Relate Monitoring Environment Service 347

Use FUNCTION=CREATE to indicate that the relationship is being established.

Use FUNCTION=DELETE to indicate that the relationship is being ended.

,OWNER_TOKEN=owner_token
Optional input parameter that specifies the name of a 32 bit field containing the
token maintained by the user or owner of the monitoring environment.

To code: Specify the name (RS-type), or address in register (2)-(12), of a 32 bit
input indicating owner_token.

,OWNER_DATA=owner_data
Optional input parameter that contains data maintained by the user/owner of the
monitoring environment. The format is undefined to MVS.

To code: Specify the name (RS-type), or address in register (2)-(12), of an 32
bit input indicating owner_data.

,DISPTYPE=TCB
,DISPTYPE=SRB

Required parameter that specifies the dispatchable units which participate in
processing work requests associated with the monitoring environment
represented by the monitoring token (MONTKN).

Use DISPTYPE=TCB to indicate that the work request represented by this
monitoring environment runs in TCB mode under a TCB within the current
home address space. If the caller is in cross-memory mode, this may be
different from the current primary address space.

Use DISPTYPE=SRB to indicate that the work request runs in SRB mode within
the home address space.

,TCB=tcb
Required input parameter for DISPTYPE=TCB that specifies the name of a field
containing the address of the TCB within the home address space which serves
the work request. This should be the TCB under which the work request runs
and under which the delay information is recorded.

To code: Specify the name (RS-type), or address in register (2)-(12), of a 4
byte field containing the TCB address.

,SAMEDU=YES
,SAMEDU=NO

Required parameter for DISPTYPE=SRB that specifies whether the dependent
monitoring environment associated with MONTKN is running under the same
dispatchable unit as the parent monitoring environment

Use SAMEDU=YES to indicate that the monitoring environment is running
under the same dispatchable unit as the parent.

Use SAMEDU=NO to indicate that the monitoring environment is running under
a different dispatchable unit as the parent.

,PARENTP=YES
,PARENTP=FINDACTIVE

Required parameter that specifies whether or not the caller knows the parent
monitoring environment. If it is known, it was established earlier by the parent
environment.

Use PARENTP=YES to indicate that the caller knows the parent monitoring
environment.

Use PARENTP=FINDACTIVE to:

v Specify that the parent monitoring environment is unknown

IWMMRELA Macro

348 z/OS V1R4.0 MVS Workload Management Services

v Relate the input monitoring environment to the active monitoring environment
owned by the home address space and which is associated with the TCB
specified by PARENTTCB. When no such monitoring environment exists, the
input monitoring environment is related to the current home address space.

,PARENTMONTKN=parentmontkn
Required parameter for PARENTP=YES that specifies the monitoring token for
the parent environment.

To code: Specify the name (RS-type), or address in register (2)-(12), of a 32 bit
field containing the monitoring token for the parent environment.

,PARENTENV=NOSWITCH
,PARENTENV=SECONDARY
,PARENTENV=HOME

Required parameter that specifies whether an address space switch is needed
to access the parent monitoring environment.

Use PARENTENV=NOSWITCH to indicate that an address space switch is not
needed to access the parent monitoring environment. You can use this
parameter if the parent monitoring environment was established (by
IWMMCREA) to be used by routines in a specific system key or if it was
established to be used in key 8 to 15 in the primary address space.

Use PARENTENV=SECONDARY to indicate that the caller can access the
parent monitoring environment in the secondary address space (for use by key
8 to 15).

Use PARENTENV=HOME to indicate that the parent monitoring environment
was established in current home (for use by a specific user key). If you use
PARENTENV=HOME, then the program must reside in the MVS common area.

,PARENTTCB=parenttcb
Required input parameter for PARENTP=FINDACTIVE that specifies the TCB
owned by the home address space associated with a monitoring environment
via IWMMINIT/IWMMRELA DISPTYPE=TCB,TCB=tcb. This TCB need not be
the owner of the monitoring environment.

To code: Specify the name (RS-type), or address in register (2)-(12), of a 4
byte field containing the TCB address.

,MONTKN=montkn
Required input parameter that specifies the name of a field containing the
monitoring token.

To code: Specify the name (RS-type), or address in register (2)-(12), of a 32 bit
field containing the monitoring token.

,RETCODE=retcode addr
Optional output parameter that specifies where the system is to store the return
code. The return code is also in GPR 15.

To code: Specify the name (RS-type) or address (using a register from 2 to 12)
of a fullword to contain the return code.

,RSNCODE=rsncode addr
Optional output parameter that specifies where the system is to store the
reason code. The reason code is also in GPR 0.

To code: Specify the name (RS-type) or address (using a register from 2 to 12)
of a fullword to contain the reason code (if any).

,MF=S

IWMMRELA Macro

Chapter 38. IWMMRELA – Relate Monitoring Environment Service 349

,MF=(L,mfctrl,mfattr)
,MF=(E,mfctrl,COMPLETE)

Use MF=S to specify the standard form, which places parameters into an inline
parameter list and invokes the IWMCONN macro service.

Use MF=L to specify the list form of the macro. Use the list form together with
the execute form of the macro for applications that require re-entrant code. The
list form defines an area of storage that the execute form uses to store the
parameters.

Use MF=E to specify the execute form of the macro. Use the execute form with
the list form of the macro for applications that require re-entrant code. The
execute form stores the parameters into the storage area defined by the list
form and generates the macro invocation to transfer control to the service.

,mfctrl
Use this output parameter to specify the name of the storage area to
contain the parameters.

To code: Specify the name (RS-type) or address (using a register from 2 to
12) of the storage area containing the parameter list.

,mfattr
Use this input parameter to specify the name of a 1 to 60 character storage
area that can contain any value that is valid on an assembler DS
pseudo-op. You can use this parameter to force boundary alignment of the
parameter list. If you do not code ,mfattr the system provides a value of 0D,
which forces the parameter on a doubleword boundary.

,COMPLETE
Use this input parameter to specify that the system check for required
parameters and supply defaults for omitted optional parameter.

ABEND Codes
None.

Return and Reason Codes
When IWMMRELA macro returns control to your program, GPR 15 contains a
return code. When the return code is non-zero, then GPR 0 contains a reason
code.

Hexadecimal
Return Code

Hexadecimal
Reason Code

Meaning

00 Meaning: Successful completion.

04 0401 Meaning: Warning. System does not support delay
monitoring services. This return code is only set when the
MVS release is prior to MVS/ESA SP5.1.0.

04 0402 Meaning: Warning. Input monitoring token indicates no
monitoring environment was established.

04 0406 Meaning: Warning. No parent monitoring environment was
established. The input dependent monitoring environment is
now related to the home address space.

08 0802 Meaning: Program error. Caller is in cross-memory mode
while the token was obtained in user key.

08 0803 Meaning: Program error. Caller is disabled.

08 0804 Meaning: Program error. Caller is locked.

IWMMRELA Macro

350 z/OS V1R4.0 MVS Workload Management Services

Hexadecimal
Return Code

Hexadecimal
Reason Code

Meaning

08 080B Meaning: Program error. Error accessing parameter list.

08 081A Meaning: Program error. Caller is not authorized to update
the dependent monitoring environment.

08 0820 Meaning: Program error. The monitoring environment does
not pass short form verification.

08 0822 Meaning: Program error. Parent monitoring environment
does not pass verification.

08 0823 Meaning: Program error. Caller invoked service while
DATOFF.

08 0824 Meaning: Program error. Caller invoked service but was in
24 bit addressing mode.

08 0825 Meaning: Program error. Caller invoked service but was not
DAT on Primary ASC mode.

08 0827 Meaning: Program error. Reserved field in parameter list
was non-zero.

08 0828 Meaning: Program error. Version number in parameter list
is not valid.

08 0829 Meaning: Program error. Parameter list omits required
parameters or supplies mutually exclusive parameters or
provides data associated with options not selected.

08 087E Meaning Monitoring environment is report only.

08 087F Meaning Parent monitoring environment is report only.

Example
To relate two monitoring environments where an address space switch is not
required, specify:
IWMMRELA FUNCTION=CREATE,MONTKN=(R7),PARENTP=YES,

PARENTMONTKN=(R8),PARENTENV=NOSWITCH,
DISPTYPE=SRB,SAMEDU=YES,
RETCODE=RCODE,RSNCODE=RSN

IWMMRELA Macro

Chapter 38. IWMMRELA – Relate Monitoring Environment Service 351

|||

|||

IWMMRELA Macro

352 z/OS V1R4.0 MVS Workload Management Services

Chapter 39. IWMMSWCH – Switch Monitoring Environment

The IWMMSWCH macro allows the caller to indicate that the delay information for a
work request may now also reside in another monitoring environment which is not
related (via IWMMRELA) to the current environment. You can also use
IWMMSWCH to indicate that there is no further information for the current work
request beyond the current monitoring environment.

The scope of this service is restricted to the input monitoring environment; no other
monitoring environments are accessed or otherwise involved.

Environment
The requirements for the caller are:

Minimum authorization: Problem state, or supervisor state. PSW key must either be
0, or match the value specified on IWMMCREA.

Dispatchable unit mode: Task or SRB

Cross memory mode: Any PASN, any HASN, any SASN

AMODE: 31-bit

ASC mode: Primary

Interrupt status: Enabled for I/O and external interrupts

Locks: Suspend locks are allowed, as are FRRs

Control parameters: Control parameters must be in the primary address space.

Programming Requirements
1. You must include the IWMYCON and CVT mapping macros in the calling

program.

2. The caller is responsible for error recovery.

3. If you specify FUNCTION=CONTINUE, you cannot specify the list form of this
macro. With FUNCTION=CONTINUE, IWMMSWCH produces an inline
expansion rather than an out-of-line service, so you do not need a parameter
list. Registers 0, 1, 14, and 15 are not preserved across the expansion.

4. If the key specified on IWMMCREA was a user key (8 - F) then primary
addressability must exist to the monitoring environment IWMMCREA obtained.
You could do this by making sure the primary address space matches the
primary at the time IWMMCREA was invoked.

5. The caller must serialize to prevent any delay monitoring services from being
invoked concurrently for the monitoring environment.

Restrictions
You cannot use FUNCTION=CONTINUE when there is an outstanding continuation
established by the IWMMXFER macro FUNCTION=CONTINUE.

Input Register Information
Before issuing the IWMMSWCH macro, the caller does not have to place any
information into any register unless using it in register notation for a particular
parameter, or using it as a base register.

© Copyright IBM Corp. 1988, 2002 353

Output Register Information
When control returns to the caller, the GPRs contain:

Register
Contents

0 Reason code if the return code in GPR 15 is not 0, otherwise, used as a
work register by the system.

1 Used as a work register by the system.
2 - 13 Unchanged
14 Used as a work register by the system.
15 Return code

When control returns to the caller, the ARs contain:

Register
Contents

0 - 1 Used as a work register by the system.
2 - 13 Unchanged
14 - 15

Used as a work register by the system.

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the
caller depends, the caller must save them before issuing the service, and restore
them after the system returns control.

Performance Implications
None.

Syntax
The syntax of the IWMMSWCH macro is as follows:

main diagram

��
name

� IWMMSWCH � �

�
CONTINUE parameters-1

FUNCTION= RETURN
,RUNTIME_VER= SHORT_FORM

MINIMAL

,MONTKN=montkn �

�
,COMPCODE= YES

NO
,RETCODE=retcode ,RSNCODE=rsncode

�

IWMMSWCH Macro

354 z/OS V1R4.0 MVS Workload Management Services

�
,MF=S

,0D
,MF=(L, MFCTRL)

,mfattr
,COMPLETE

,MF=(E, MFCTRL)
,complete

�"

parameters-1

��
,RUNTIME_VER= SHORT_FORM

MINIMAL

,WHERE= LOCALMVS
SYSPLEX
NETWORK

�"

Parameters
The parameters are explained as follows:

,FUNCTION=CONTINUE
,FUNCTION=RETURN

Required input parameter that specifies where there may be one or more
monitoring environments which represent current information about the work
request. FUNCTION indicates further continuations, and does not deal with any
parent environment that may exist.

Use FUNCTION=CONTINUE to indicate that the current monitoring
environment continues elsewhere.

If you specify FUNCTION=CONTINUE, you cannot specify the MF keyword.
With FUNCTION=CONTINUE, IWMMSWCH produces an inline expansion
rather than an out-of-line service, so that you do not need a parameter list.
Registers 0, 1, 14, and 15 are not preserved across the expansion.

Use FUNCTION=RETURN to indicate that continuations of the current
monitoring environment have completed. Registers 0, 1, 14, and 15 are not
preserved across the expansion.

,RUNTIME_VER=SHORT_FORM
,RUNTIME_VER=MINIMAL

Optional parameter that specifies what level of runtime verification will be
performed.

RUNTIME_VER=SHORT_FORM indicates that checking should verify that a
monitoring environment is established and passes a short form of verification
prior to being used.

RUNTIME_VER=MINIMAL indicates that checking should assume that if a
monitoring environment is created, it is valid and useable.

,WHERE=LOCALMVS
,WHERE=SYSPLEX
,WHERE=NETWORK

Required input parameter for FUNCTION=CONTINUE that specifies where
there may be another monitoring environment.

Use WHERE=LOCALMVS to indicate that another monitoring environment may
exist on the current MVS.

IWMMSWCH Macro

Chapter 39. IWMMSWCH – Switch Monitoring Environment 355

Use WHERE=SYSPLEX to indicate that another monitoring environment may
exist in the current sysplex, but is not expected to be on the current MVS
image.

Use WHERE=NETWORK to indicate that another monitoring environment may
exist, but is not expected to be in the current MVS sysplex.

,MONTKN=montkn
Required input parameter that specifies the monitoring token.

To code: Specify the RS-type name or address (using a register from 2 to 12)
of a 32 bit field containing the monitoring token.

,COMPCODE=NO
,COMPCODE=YES

Optional input parameter that specifies whether you need completion status for
IWMMSWCH.

COMPCODE=NO specifies that you do not need completion status. Registers
0, 15 cannot be used as reason code and return code registers upon
completion of the macro expansion. If you specify COMPCODE=NO, you
cannot specify RETCODE nor RSNCODE.

COMPCODE=YES specifies that you need completion status.

,RETCODE=retcode addr
Optional output parameter that specifies where the system is to store the return
code. The return code is also in GPR 15.

To code: Specify the name (RS-type) or address (using a register from 2 to 12)
of a fullword to contain the return code.

,RSNCODE=rsncode addr
Optional output parameter that specifies where the system is to store the
reason code. The reason code is also in GPR 0.

To code: Specify the name (RS-type) or address (using a register from 2 to 12)
of a fullword to contain the reason code (if any).

,MF=S
MF=(L,mfctrl,mfattr)
MF=(E,mfctrl,COMPLETE)

Use MF=S to specify the standard form, which places parameters into an inline
parameter list and invokes the IWMCONN macro service.

Use MF=L to specify the list form of the macro. Use the list form together with
the execute form of the macro for applications that require re-entrant code. The
list form defines an area of storage that the execute form uses to store the
parameters.

Use MF=E to specify the execute form of the macro. Use the execute form with
the list form of the macro for applications that require re-entrant code. The
execute form stores the parameters into the storage area defined by the list
form and generates the macro invocation to transfer control to the service.

,mfctrl
Use this output parameter to specify the name of the storage area to
contain the parameters.

To code: Specify the name (RS-type) or address (using a register from 2 to
12) of the storage area containing the parameter list.

,mfattr
Use this input parameter to specify the name of a 1 to 60 character storage

IWMMSWCH Macro

356 z/OS V1R4.0 MVS Workload Management Services

area that can contain any value that is valid on an assembler DS
pseudo-op. You can use this parameter to force boundary alignment of the
parameter list. If you do not code ,mfattr the system provides a value of 0D,
which forces the parameter on a doubleword boundary.

,COMPLETE
Use this input parameter to specify that the system check for required
parameters and supply defaults for omitted optional parameter.

ABEND Codes
None.

Return and Reason Codes
When IWMMSWCH macro returns control to your program, GPR 15 contains a
return code. When the return code is non-zero, then GPR 0 contains a reason
code.

Hexadecimal
Return Code

Hexadecimal
Reason Code

Meaning

00 Meaning: Successful completion.

04 0401 Meaning: Warning. The system does not support delay
monitoring services. This return code is only set when the
MVS release is prior to MVS/ESA SP 5.2

04 0402 Meaning: Warning. Input monitoring token indicates no
monitoring environment was established.

04 0407 Meaning: Warning. Switch return was from a monitoring
environment with an outstanding continuation.

08 081C Meaning: Program error. Outstanding continuation exists.

08 0820 Meaning: Program error. Monitoring environment does not
pass short form verification.

Example
To indicate that the current monitoring environment continues only once elsewhere
in the sysplex, specify:
IWMMSWCH FUNCTION=CONTINUE,WHERE=SYSPLEX,MONTKN=(R7),

RETCODE=RCODE,RSNCODE=RSN

IWMMSWCH Macro

Chapter 39. IWMMSWCH – Switch Monitoring Environment 357

IWMMSWCH Macro

358 z/OS V1R4.0 MVS Workload Management Services

Chapter 40. IWMMXFER – Transfer Monitoring Environment

The purpose of this service is to reflect that the delay information for a work request
may now also reside in a dependent monitoring environment (CONTINUE) OR that
delay information is no longer present in a dependent monitoring environment
(RETURN).

The two monitoring environments referred to above must be related by a previous
IWMMRELA invocation. This service requires as input the monitoring token for the
dependent environment, which is accessed, but the parent environment must also
be updated. This implies that the user must have addressability and update access
to the parent monitoring environment. PARENTKEYP and PARENTENV keywords
are provided to accommodate these requirements. These restrictions apply even
when the Relate was performed using the FINDACTIVE option, though when the
monitoring environment is related to the address space characteristics, no key or
addressability requirements exist beyond those for the dependent monitoring
environment.

Environment
The requirements for the caller are:

Minimum authorization: v Either problem state or supervisor state.
v PSW key must either be 0 or match the value supplied on

IWMMCREA for the (dependent) monitoring token.
v PARENTKEYP(VALUE) may only be specified in

supervisor state or with PKM authority to the key specified
by PARENTKEY. Note that the key for IWMMXFER is
located in bit positions 0-3 (using 0 origin), which is the
machine orientation to keeping keys, not the ″natural″ way
of declaring the key value.

v PARENTKEYP(UNKNOWN) may only be specified in
supervisor state or with PKM authority to key 0.

v When PARENTKEYP(PSWKEY) is specified, the PSW key
must either be 0 or match the value supplied on
IWMMCREA for the parent monitoring environment.

Dispatchable unit mode: Task or SRB

Cross memory mode: Any PASN, any HASN, any SASN

AMODE: 31-bit

ASC mode: Primary

Interrupt status: Enabled for I/O and external interrupts

Locks: No locks may be held.

Control parameters: Control parameters must be in the primary address space.

Programming Requirements
1. The macro IWMYCON must be included to use this macro.
2. The macro IWMPB must be in the library concatenation, since it is included by

IWMYCON.
3. Note that the high order halfword of register 0, and the reason code variable

when specified, may be non-zero and represents diagnostic data which is NOT
part of the external interface. The high order halfword should thus be excluded

© Copyright IBM Corp. 1988, 2002 359

from comparison with the reason code values described above. The constant,
IWMRSNCODE_MASK_CONST defined in IWMYCON, may be used for this
purpose.

4. Note that specification of FUNCTION(CONTINUE) produces an inline expansion
rather than an out-of-line service. Registers 0, 1, 14, and 15 are not preserved
across the expansion.

Restrictions
1. If the key specified on IWMMCREA for the dependent monitoring environment

was a user key (8-F), then primary addressability must exist to the performance
block IWMMCREA obtained. This condition is satisfied by ensuring that current
primary matches primary at the time that IWMMCREA was invoked. If this
service is invoked in a subspace, the condition may be satisfied by ensuring
that the performance block is shared with the base space.

2. If the key specified on IWMMCREA for the parent environment was a user key
(8-F), then either primary OR secondary addressability must exist to the
performance block for the parent environment.

3. When FUNCTION(CONTINUE|RETURN) are used, the caller is responsible for
error recovery

4. When FUNCTION(CONTINUE) is used, the caller is responsible to ensure that
the parent monitoring environment does not already have a continuation (via a
previous IWMMXFER or IWMMSWCH) to another (or other) dependent
monitoring environment(s).

5. Both monitoring environments must be established on the same MVS image.
6. The caller must serialize to prevent any delay monitoring services from being

invoked concurrently for the dependent monitoring environment.
7. The caller and/or the owner of the parent environment must ensure that parent

environment is not deleted while between the time that IWMMXFER
FUNCTION(CONTINUE) is used and the time that either IWMMXFER
FUNCTION(RETURN) is used against the dependent monitoring environment
OR IWMMSWCH FUNCTION(RETURN) is used against the parent monitoring
environment.

8. Only limited validity checking is done on the input monitoring tokens.
9. This macro supports multiple versions. Some keywords are unique to certain

versions. See the PLISTVER parameter description.

Input Register Information
Before issuing the IWMMXFER macro, the caller does not have to place any
information into any register unless using it in register notation for a particular
parameter, or using it as a base register.

Output Register Information
When control returns to the caller, the GPRs contain:

Register
Contents

0 Reason code if GR15 return code is non-zero
1 Used as work registers by the system
2-13 Unchanged
14 Used as work registers by the system
15 Return code

When control returns to the caller, the ARs contain:

IWMMXFER Macro

360 z/OS V1R4.0 MVS Workload Management Services

Register
Contents

0-1 Used as work registers by the system
2-13 Unchanged
14-15 Used as work registers by the system

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the
caller depends, the caller must save them before issuing the service, and restore
them after the system returns control.

Performance Implications
None.

Syntax

main diagram

��
name

� IWMMXFER � �

�
,RUNTIME_VER=SHORT_FORM

FUNCTION=CONTINUE
,RUNTIME_VER=MINIMAL

,RUNTIME_VER=SHORT_FORM
FUNCTION=RETURN

,RUNTIME_VER=MINIMAL

,MONTKN=montkn �

� ,PARENTKEYP=VALUE ,PARENTKEY=parentkey
,PARENTKEYP=PSWKEY
,PARENTKEYP=UNKNOWN

,PARENTENV=NOSWITCH
,PARENTENV=SECONDARY

�

�
,COMPCODE=YES

,COMPCODE=NO ,RETCODE=retcode ,RSNCODE=rsncode
�

�
,PLISTVER=IMPLIED_VERSION

,PLISTVER=MAX
,PLISTVER=0
,PLISTVER=1

,COMPLETE
,MF=(M ,list addr)

,NOCHECK
�"

Parameters
The parameters are explained as follows:

name
An optional symbol, starting in column 1, that is the name on the IWMMXFER
macro invocation. The name must conform to the rules for an ordinary
assembler language symbol.

,COMPCODE=YES

IWMMXFER Macro

Chapter 40. IWMMXFER – Transfer Monitoring Environment 361

,COMPCODE=NO
An optional parameter, which indicates whether completion status for this
service is needed. The default is COMPCODE=YES.

,COMPCODE=YES
indicates that completion status is needed.

,COMPCODE=NO
indicates that completion status is not needed. Registers 0, 15 cannot be
used as reason code and return code registers upon completion of the
macro expansion. For this reason neither RETCODE NOR RSNCODE may
be specified when COMPCODE(NO) is specified.

FUNCTION=CONTINUE
FUNCTION=RETURN

A required parameter, which indicates whether the dependent environment is
continuing from or returning to the parent environment.

FUNCTION=CONTINUE
indicates that this is a unique continuation of the work request which is
reflected in the dependent monitoring environment.

Note that the parent environment may continue to be active on behalf of the
work request.

Note that specification of FUNCTION(CONTINUE) produces an inline
expansion rather than an out-of-line service. Registers 0, 1, 14, and 15 are
not preserved across the expansion.

FUNCTION=RETURN
indicates that the work request is returning to a previously established
parent monitoring environment.

Use of this option indicates that the dependent environment no longer
represents the work request.

Note that specification of FUNCTION(RETURN) produces an inline
expansion rather than an out-of-line service. Registers 0, 1, 14, and 15 are
not preserved across the expansion.

,MONTKN=montkn
A required input parameter, which contains the delay monitoring token for the
dependent environment.

To code: Specify the RS-type address, or address in register (2)-(12), of a 32
bit field.

,PARENTENV=NOSWITCH
,PARENTENV=SECONDARY

A required parameter, which describes whether a space switch is needed to
access the parent monitoring environment.

,PARENTENV=NOSWITCH
indicates that NO space switch is needed to access the parent monitoring
environment. This would be appropriate if the parent monitoring
environment was established (by IWMMCREA) to be used by routines in a
specific system key or if it was established to be used in a specific user key
in the current primary.

,PARENTENV=SECONDARY
indicates that the parent monitoring environment was established in current
secondary (for use by a specific user key).

IWMMXFER Macro

362 z/OS V1R4.0 MVS Workload Management Services

,PARENTKEY=parentkey
When PARENTKEYP=VALUE is specified, a required input parameter, which
contains the key in which the parent monitoring environment must be accessed.
Use of this keyword value requires that the invoker be in supervisor state or
that the caller have PKM authority to the key specified. The high order 4 bits
(i.e. bits 0-3) contain the key value.

Note that this is different from the ″natural″ way of declaring the key, and uses
the machine orientation for keeping the storage key in the high order bits.

To code: Specify the RS-type address, or address in register (2)-(12), of an 8
bit field.

,PARENTKEYP=VALUE
,PARENTKEYP=PSWKEY
,PARENTKEYP=UNKNOWN

A required parameter, which describes whether a key switch is needed to
access the parent monitoring environment.

,PARENTKEYP=VALUE
indicates that the key is being passed explicitly via PARENTKEY.

,PARENTKEYP=PSWKEY
indicates that the current PSW key should be used. Use of this keyword
value requires that the parent monitoring environment was established with
the same key as the current PSW.

,PARENTKEYP=UNKNOWN
indicates that the key associated with the parent monitoring environment is
unknown. Use of this keyword value requires that the invoker be in
supervisor state or that the caller have PKM authority to key 0.

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX
,PLISTVER=0
,PLISTVER=1

An optional input parameter that specifies the version of the macro. PLISTVER
determines which parameter list the system generates. PLISTVER is an
optional input parameter on all forms of the macro, including the list form. When
using PLISTVER, specify it on all macro forms used for a request and with the
same value on all of the macro forms. The values are:

v IMPLIED_VERSION, which is the lowest version that allows all parameters
specified on the request to be processed. If you omit the PLISTVER
parameter, IMPLIED_VERSION is the default.

v MAX, if you want the parameter list to be the largest size currently possible.
This size might grow from release to release and affect the amount of
storage that your program needs.

If you can tolerate the size change, IBM recommends that you always specify
PLISTVER=MAX on the list form of the macro. Specifying MAX ensures that
the list-form parameter list is always long enough to hold all the parameters
you might specify on the execute form; in this way, MAX ensures that the
parameter list does not overwrite nearby storage.

v 0, which supports all parameters except those specifically referenced in
higher versions.

v 1, which supports all parameters except those specifically referenced in
higher versions. No parameters correspond to this version number.

To code: Specify one of the following:

IWMMXFER Macro

Chapter 40. IWMMXFER – Transfer Monitoring Environment 363

v IMPLIED_VERSION
v MAX
v A decimal value of 0 or 1

,RETCODE=retcode
An optional output parameter into which the return code is to be copied from
GPR 15.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

,RSNCODE=rsncode
An optional output parameter into which the reason code is to be copied from
GPR 0.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

,RUNTIME_VER=SHORT_FORM
,RUNTIME_VER=MINIMAL

When FUNCTION=CONTINUE is specified, an optional parameter, which
indicates what level of runtime verification will be performed. The default is
RUNTIME_VER=SHORT_FORM.

,RUNTIME_VER=SHORT_FORM
indicates that checking should verify that a monitoring environment is
established and passes a short form of verification prior to being used.

,RUNTIME_VER=MINIMAL
indicates that checking will only be done to verify that a monitoring
environment may be established, assuming that it would be valid and
useable if established.

,RUNTIME_VER=SHORT_FORM
,RUNTIME_VER=MINIMAL

When FUNCTION=RETURN is specified, an optional parameter, which
indicates what level of runtime verification will be performed. The default is
RUNTIME_VER=SHORT_FORM.

,RUNTIME_VER=SHORT_FORM
indicates that checking should verify that a monitoring environment is
established and passes a short form of verification prior to being used.

,RUNTIME_VER=MINIMAL
indicates that checking will only be done to verify that a monitoring
environment may be established, assuming that it would be valid and
useable if established.

ABEND Codes
None.

Return and Reason Codes
When the IWMMXFER macro returns control to your program:
v GPR 15 (and retcode, if you coded RETCODE) contains a return code.
v When the value in GPR 15 is not zero, GPR 0 (and rsncode, if you coded

RSNCODE) contains reason code.

The following table identifies the hexadecimal return and reason codes and the
equate symbol associated with each reason code. IBM support personnel may
request the entire reason code, including the xxxx value.

IWMMXFER Macro

364 z/OS V1R4.0 MVS Workload Management Services

Table 42. Return and Reason Codes for the IWMMXFER Macro

Return Code Reason Code Equate Symbol Meaning and Action

0 — Equate Symbol: IwmRetCodeOk

Meaning: Successful completion.

Action: None required.

4 — Equate Symbol: IwmRetCodeWarning

Meaning: Successful completion, unusual conditions noted.

4 xxxx0402 Equate Symbol: IwmRsnCodeNoMonEnv

Meaning: Input monitoring token indicates no monitoring
environment was established.

Action: None required.

8 — Equate Symbol: IwmRetCodeInvocError

Meaning: Invalid invocation environment or parameters.

8 xxxx081F Equate Symbol: IwmRsnCodeNoRelate

Meaning: NO Parent environment exists since Relate
Function(Continue) has not been performed or has not been
performed subsequent to a Relate Function(Delete).

Action: Check for possible storage overlay and whether
Relate Function(Continue) has been used properly.

8 xxxx0820 Equate Symbol: IwmRsnCodeBadMonEnv

Meaning: Monitoring environment does not pass
verification.

8 xxxx0822 IwmRsnCodeBadParEnv: Parent monitoring environment
does not pass verification.

Action: Check for possible storage overlay.

IWMMXFER Macro

Chapter 40. IWMMXFER – Transfer Monitoring Environment 365

IWMMXFER Macro

366 z/OS V1R4.0 MVS Workload Management Services

Chapter 41. IWMPACT – Activate Service Policy

The Activate Service Policy routine is given control from the IWMPACT macro. The
Activate Service Policy macro will complete the parameter list with caller provided
data and generate a stacking, program call to the activate policy service.

The purpose of this routine is to activate a service policy in the Sysplex. The name
of the service policy to be activated must be provided as input. The specified policy
must exist in the current WLM service definition installed on the WLM couple
dataset.

The Activate Service Policy service causes a service policy to be activated
synchronously. In other words, control will not be returned to the caller until the
policy has been activated on all systems in the sysplex or for some reason the
policy activation could not be completed.

Note that only a single policy activation request can be processed at any one time.
Therefore, if a previous policy activation request is being processed and a new
activation request is issued, the new request will be rejected with an appropriate
return and reason code. This will occur regardless of whether the 2 requests were
issued on the same system or different systems in the sysplex. The user can
optionally request that the name of the system where another policy activation is
taking place be returned in the variable specified in keyword SYSTEM_NAME.

The Activate Service Policy macro is provided in list, execute, and standard form.
The list form accepts no variable parameters and is used only to reserve space for
the activate policy parameter list. The standard form is provided for use with
routines which do not require reentrant code. The execute form is provided for use
with the list format for reentrant routines. The activate policy macro is provided in
PL/AS and assembler formats.

Environment
The requirements for the caller are:

Minimum authorization: Problem state. Any PSW key

Dispatchable unit mode: Task

Cross memory mode: PASN=HASN=SASN

AMODE: 31-bit

ASC mode: Primary

Interrupt status: Enabled for I/O and external interrupts

Locks: No locks may be held.

Control parameters: All parameter areas must reside in current primary.

Programming Requirements
1. The macro CVT must be included to use this macro.
2. This functions provided by this macro are only supported on MVS/ESA SP5.2.0

or later. If code with this macro expansion is executed on lower MVS/ESA
releases (version 3 or later) a return code of 4 and reason code of xxxx041A
(constant IwmRsnCodeNoPolMgt) will be returned indicating that the service is
not available. This macro should NOT be executed on MVS versions 1 or 2.

© Copyright IBM Corp. 1988, 2002 367

3. The macro IWMYCON must be included to use this macro.
4. The macro IWMPB must be in the library concatenation, since it is included by

IWMYCON.
5. Note that the high order halfword of register 0, and the reason code variable

when specified, may be non-zero and represents diagnostic data which is NOT
part of the external interface. The high order halfword should thus be excluded
from comparison with the reason code values described above. The constant,
IWMRSNCODE_MASK_CONST defined in IWMYCON, may be used for this
purpose.

Restrictions
The caller cannot have an EUT FRR established.

Input Register Information
Before issuing the IWMPACT macro, the caller does not have to place any
information into any register unless using it in register notation for a particular
parameter, or using it as a base register.

Output Register Information
When control returns to the caller, the GPRs contain:

Register
Contents

0 Reason code if GR15 return code is non-zero
1 Used as work registers by the system
2-13 Unchanged
14 Used as a work register by the system
15 Return code

When control returns to the caller, the ARs contain:

Register
Contents

0-1 Used as work registers by the system
2-13 Unchanged
14-15 Used as work registers by the system

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the
caller depends, the caller must save them before issuing the service, and restore
them after the system returns control.

Performance Implications
None.

Syntax

main diagram

��
name

� IWMPACT � POLICY_NAME=policy_name �

IWMPACT Macro

368 z/OS V1R4.0 MVS Workload Management Services

�
,SYSTEM_NAME=system_name ,RETCODE=retcode ,RSNCODE=rsncode

�

�
,PLISTVER=IMPLIED_VERSION

,PLISTVER=MAX
,PLISTVER=0

,MF=S

,0D
,MF=(L ,list addr)

,attr
,COMPLETE

,MF=(E ,list addr)

�"

Parameters
The parameters are explained as follows:

name
An optional symbol, starting in column 1, that is the name on the IWMPACT
macro invocation. The name must conform to the rules for an ordinary
assembler language symbol.

,MF=S
,MF=(L,list addr)
,MF=(L,list addr,attr)
,MF=(L,list addr,0D)
,MF=(E,list addr)
,MF=(E,list addr,COMPLETE)

An optional input parameter that specifies the macro form.

Use MF=S to specify the standard form of the macro, which builds an inline
parameter list and generates the macro invocation to transfer control to the
service. MF=S is the default.

Use MF=L to specify the list form of the macro. Use the list form together with
the execute form of the macro for applications that require reentrant code. The
list form defines an area of storage that the execute form uses to store the
parameters. Only the PLISTVER parameter may be coded with the list form of
the macro.

Use MF=E to specify the execute form of the macro. Use the execute form
together with the list form of the macro for applications that require reentrant
code. The execute form of the macro stores the parameters into the storage
area defined by the list form, and generates the macro invocation to transfer
control to the service.

,list addr
The name of a storage area to contain the parameters. For MF=S and
MF=E, this can be an RS-type address or an address in register (1)-(12).

,attr
An optional 1- to 60-character input string that you use to force boundary
alignment of the parameter list. Use a value of 0F to force the parameter
list to a word boundary, or 0D to force the parameter list to a doubleword
boundary. If you do not code attr, the system provides a value of 0D.

,COMPLETE
Specifies that the system is to check for required parameters and supply
defaults for omitted optional parameters.

,PLISTVER=IMPLIED_VERSION

IWMPACT Macro

Chapter 41. IWMPACT – Activate Service Policy 369

,PLISTVER=MAX
,PLISTVER=0

An optional input parameter that specifies the version of the macro. PLISTVER
determines which parameter list the system generates. PLISTVER is an
optional input parameter on all forms of the macro, including the list form. When
using PLISTVER, specify it on all macro forms used for a request and with the
same value on all of the macro forms. The values are:

v IMPLIED_VERSION, which is the lowest version that allows all parameters
specified on the request to be processed. If you omit the PLISTVER
parameter, IMPLIED_VERSION is the default.

v MAX, if you want the parameter list to be the largest size currently possible.
This size might grow from release to release and affect the amount of
storage that your program needs.

If you can tolerate the size change, IBM recommends that you always specify
PLISTVER=MAX on the list form of the macro. Specifying MAX ensures that
the list-form parameter list is always long enough to hold all the parameters
you might specify on the execute form; in this way, MAX ensures that the
parameter list does not overwrite nearby storage.

v 0, if you use the currently available parameters.

To code: Specify one of the following:
v IMPLIED_VERSION
v MAX
v A decimal value of 0

POLICY_NAME=policy_name
A required input parameter, variable specifying the name of the service policy to
be activated. The specified service policy must exist in the current service
definition that is installed on the WLM couple dataset.

To code: Specify the RS-type address, or address in register (2)-(12), of an
8-character field.

,RETCODE=retcode
An optional output parameter into which the return code is to be copied from
GPR 15.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

,RSNCODE=rsncode
An optional output parameter into which the reason code is to be copied from
GPR 0.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

,SYSTEM_NAME=system_name
An optional output parameter, variable where the name of the system where
another policy activation is taking place will be returned. This variable is only
filled in when a return code of 4 and a reason code of xxxx0415 is returned.

To code: Specify the RS-type address, or address in register (2)-(12), of an
8-character field.

ABEND Codes
Reason Code (Hex)

Explanation

IWMPACT Macro

370 z/OS V1R4.0 MVS Workload Management Services

0Axx0005
An attempt to reference caller’s parameters caused an OC4 abend.

Return and Reason Codes
When the IWMPACT macro returns control to your program:
v GPR 15 (and retcode, if you coded RETCODE) contains a return code.
v When the value in GPR 15 is not zero, GPR 0 (and rsncode, if you coded

RSNCODE) contains reason code.

The following table identifies the hexadecimal return and reason codes and the
equate symbol associated with each reason code. IBM support personnel may
request the entire reason code, including the xxxx value.

Table 43. Return and Reason Codes for the IWMPACT Macro

Return Code Reason Code Equate Symbol Meaning and Action

0 — Equate Symbol: IwmRetCodeOk

Meaning: Successful completion.

Action: None required.

4 — Equate Symbol: IwmRetCodeWarning

Meaning: Successful completion, unusual conditions noted.

4 xxxx0414 Equate Symbol: IwmRsnCodeNullCDS

Meaning: This request could not be completed because no
Service definition has been installed on the WLM CDS.

Action: None required.

4 xxxx0415 Equate Symbol: IwmRsnCodePolicyActInProgress

Meaning: This request could not be completed because
another policy activation request is currently being
processed. If specified, the SYSTEM_NAME parameter will
contain the name of the system on which policy activation is
in progress.

Action: None required. If this service is re-invoked at a later
time it may be successful.

4 xxxx0416 Equate Symbol: IwmRsnCodePolicyUndefined

Meaning: The service policy specified could not be found in
the service definition currently installed on the WLM couple
dataset. The service policy was not activated.

Action: None required. Verify that the policy was specified
correctly.

4 xxxx041A Equate Symbol: IwmRsnCodeNoPolMgt

Meaning: System does not support policy management
services. This return code is only set when the MVS release
is prior to MVS/ESA SP5.2.0.

Action: None required.

8 — Equate Symbol: IwmRetCodeInvocError

Meaning: Invalid invocation environment or parameters.

IWMPACT Macro

Chapter 41. IWMPACT – Activate Service Policy 371

Table 43. Return and Reason Codes for the IWMPACT Macro (continued)

Return Code Reason Code Equate Symbol Meaning and Action

8 xxxx0801 Equate Symbol: IwmRsnCodeSrbMode

Meaning: Caller is in SRB mode.

Action: Avoid requesting this function while in SRB mode.

8 xxxx0803 Equate Symbol: IwmRsnCodeDisabled

Meaning: Caller is disabled.

Action: Avoid requesting this function while disabled.

8 xxxx0804 Equate Symbol: IwmRsnCodeLocked

Meaning: Caller is locked.

Action: Avoid requesting this function while locked.

8 xxxx0810 Equate Symbol: IwmRsnCodeEutFrr

Meaning: Caller has EUT FRR established.

Action: Avoid requesting this function with an EUT FRR set.

8 xxxx0823 Equate Symbol: IwmRsnCodeDatoff

Meaning: Caller invoked service while DATOFF

Action: Avoid requesting this function in this environment.

8 xxxx0824 Equate Symbol: IwmRsnCodeAmode24

Meaning: Caller invoked service but was in 24 bit
addressing mode.

Action: Request this function only when you are in 31 bit
addressing mode.

8 xxxx0827 Equate Symbol: IwmRsnCodeRsvdNot0

Meaning: Reserved field in parameter list was non-zero.

Action: Check for possible storage overlay of the parameter
list.

8 xxxx0828 Equate Symbol: IwmRsnCodeBadVersion

Meaning: Version number in parameter list is not valid or
the length specified is incorrect.

Action: Check for possible storage overlay of the parameter
list.

8 xxxx0841 Equate Symbol: IwmRsnCodeXMemMode

Meaning: Caller is in cross memory mode.

Action: Invoke the function in non-cross memory mode.

C — Equate Symbol: IwmRetCodeEnvError

Meaning: Environmental error.

C xxxx0C01 Equate Symbol: IwmRsnCodeNoStg

Meaning: Storage is not available for the request.

Action: There is a storage shortage. The function may work
successfully at a later time.

IWMPACT Macro

372 z/OS V1R4.0 MVS Workload Management Services

Table 43. Return and Reason Codes for the IWMPACT Macro (continued)

Return Code Reason Code Equate Symbol Meaning and Action

C xxxx0C0E Equate Symbol: IwmRsnCodeInsufAccess

Meaning: The RACF facility class is active and a profile has
been defined for the MVSADMIN.WLM.POLICY RACF
facility class profile to which the caller does not have
sufficient (update) access.

Action: Invoke the function when the conditions are
alleviated.

C xxxx0C0F Equate Symbol: IwmRsnCodeCDSNotAvail

Meaning: A couple dataset for WLM has not been defined
or it has been defined but this system does not have
connectivity to the dataset.

Action: No action required.

C xxxx0C10 Equate Symbol: IwmRsnCodeCDSTooSmall

Meaning: WLM CDS is too small to process the request.

Action: No action required.

C xxxx0C11 Equate Symbol: IwmRsnCodeOneSystemUnable

Meaning: At least one system in the sysplex was unable to
activate the policy. One or more systems may have been
successful in activating the policy.

Action: No action required.

C xxxx0C13 Equate Symbol: IwmRsnCodePolicyNotAvail

Meaning: The service policy specified could not be verified
because the service definition retrieved from WLM CDS has
failed validation. The service policy was not activated.

Action: No action required.

10 — Equate Symbol: IwmRetCodeCompError

Meaning: Component error.

Action: No action required. The function may be successful
if invoked again.

IWMPACT Macro

Chapter 41. IWMPACT – Activate Service Policy 373

IWMPACT Macro

374 z/OS V1R4.0 MVS Workload Management Services

Chapter 42. IWMPQRY – Query Active Service Policy

The Query Active Service Policy routine is given control from the IWMPQRY macro.
The Query Active Service Policy macro will complete the parameter list with caller
provided data and generate a stacking, space switching, program call to the query
service.

The purpose of this routine is to return a representation of the active policy which
could be used to explain how the system/sysplex is being managed and could be
used in conjunction with current measurements to evaluate the condition of the
system/sysplex. The information returned is not serialized upon return to the caller,
and so may be out-of-date due to a change in policy.

The Query Active Service Policy macro is provided in list, execute, and standard
form. The list form accepts no variable parameters and is used only to reserve
space for the query parameter list. The standard form is provided for use with
routines which do not require reentrant code. The execute form is provided for use
with the list format for reentrant routines. The query macro is provided in PL/AS and
assembler formats.

The parameter list must be in the caller’s primary address space or be addressable
by the dispatchable unit access list.

Environment
The requirements for the caller are:

Minimum authorization: Supervisor state or program key mask (PKM) allowing keys
0-7.

Dispatchable unit mode: Task

Cross memory mode: Any PASN, any HASN, any SASN

AMODE: 31-bit

ASC mode: Primary or access register (AR) If in Access Register ASC
mode, specify SYSSTATE ASCENV=AR before invoking this
macro.

Interrupt status: Enabled for I/O and external interrupts

Locks: No locks may be held.

Control parameters: All parameter areas must reside in current primary or be
addressable by the dispatchable unit access list.

Programming Requirements
1. The macro CVT must be included to use this macro.
2. This macro may only be used on MVS/ESA SP5.1.0 or later.
3. The macro IWMYCON must be included to use this macro.
4. The macro IWMPB must be in the library concatenation, since it is included by

IWMYCON.
5. Note that the high order halfword of register 0, and the reason code variable

when specified, may be non-zero and represents diagnostic data which is NOT
part of the external interface. The high order halfword should thus be excluded

© Copyright IBM Corp. 1988, 2002 375

from comparison with the reason code values described above. The constant,
IWMRSNCODE_MASK_CONST defined in IWMYCON, may be used for this
purpose.

Restrictions
The caller cannot have an EUT FRR established.

Input Register Information
Before issuing the IWMPQRY macro, the caller does not have to place any
information into any register unless using it in register notation for a particular
parameter, or using it as a base register.

Output Register Information
When control returns to the caller, the GPRs contain:

Register
Contents

0 Reason code if GR15 return code is non-zero
1 Used as work registers by the system
2-13 Unchanged
14 Used as a work register by the system
15 Return code

When control returns to the caller, the ARs contain:

Register
Contents

0-1 Used as work registers by the system
2-13 Unchanged
14-15 Used as work registers by the system

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the
caller depends, the caller must save them before issuing the service, and restore
them after the system returns control.

Performance Implications
None.

IWMPQRY Macro

376 z/OS V1R4.0 MVS Workload Management Services

Syntax

main diagram

��
name

� IWMPQRY � ANSAREA=ansarea ,ANSLEN=anslen �

� ,QUERYLEN=querylen
,RETCODE=retcode ,RSNCODE=rsncode

�

�
,PLISTVER=IMPLIED_VERSION

,PLISTVER=MAX
,PLISTVER=0

,MF=S

,0D
,MF=(L ,list addr)

,attr
,COMPLETE

,MF=(E ,list addr)

�"

Parameters
The parameters are explained as follows:

name
An optional symbol, starting in column 1, that is the name on the IWMPQRY
macro invocation. The name must conform to the rules for an ordinary
assembler language symbol.

ANSAREA=ansarea
A required output parameter, variable specifying an area to contain the data
being returned by IWMPQRY. The answer area is defined by the IWMSVPOL
macro.

To code: Specify the RS-type address, or address in register (2)-(12), of a
character field.

,ANSLEN=anslen
A required input parameter, variable which contains the length of the area
provided to contain the data being returned by IWMPQRY.

To code: Specify the RS-type address, or address in register (2)-(12), of a
fullword field.

,MF=S
,MF=(L,list addr)
,MF=(L,list addr,attr)
,MF=(L,list addr,0D)
,MF=(E,list addr)
,MF=(E,list addr,COMPLETE)

An optional input parameter that specifies the macro form.

Use MF=S to specify the standard form of the macro, which builds an inline
parameter list and generates the macro invocation to transfer control to the
service. MF=S is the default.

Use MF=L to specify the list form of the macro. Use the list form together with
the execute form of the macro for applications that require reentrant code. The

IWMPQRY Macro

Chapter 42. IWMPQRY – Query Active Service Policy 377

list form defines an area of storage that the execute form uses to store the
parameters. Only the PLISTVER parameter may be coded with the list form of
the macro.

Use MF=E to specify the execute form of the macro. Use the execute form
together with the list form of the macro for applications that require reentrant
code. The execute form of the macro stores the parameters into the storage
area defined by the list form, and generates the macro invocation to transfer
control to the service.

,list addr
The name of a storage area to contain the parameters. For MF=S and
MF=E, this can be an RS-type address or an address in register (1)-(12).

,attr
An optional 1- to 60-character input string that you use to force boundary
alignment of the parameter list. Use a value of 0F to force the parameter
list to a word boundary, or 0D to force the parameter list to a doubleword
boundary. If you do not code attr, the system provides a value of 0D.

,COMPLETE
Specifies that the system is to check for required parameters and supply
defaults for omitted optional parameters.

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX
,PLISTVER=0

An optional input parameter that specifies the version of the macro. PLISTVER
determines which parameter list the system generates. PLISTVER is an
optional input parameter on all forms of the macro, including the list form. When
using PLISTVER, specify it on all macro forms used for a request and with the
same value on all of the macro forms. The values are:

v IMPLIED_VERSION, which is the lowest version that allows all parameters
specified on the request to be processed. If you omit the PLISTVER
parameter, IMPLIED_VERSION is the default.

v MAX, if you want the parameter list to be the largest size currently possible.
This size might grow from release to release and affect the amount of
storage that your program needs.

If you can tolerate the size change, IBM recommends that you always specify
PLISTVER=MAX on the list form of the macro. Specifying MAX ensures that
the list-form parameter list is always long enough to hold all the parameters
you might specify on the execute form; in this way, MAX ensures that the
parameter list does not overwrite nearby storage.

v 0, if you use the currently available parameters.

To code: Specify one of the following:
v IMPLIED_VERSION
v MAX
v A decimal value of 0

,QUERYLEN=querylen
A required output parameter, variable which contains the number of bytes
needed to contain the policy information.

To code: Specify the RS-type address, or address in register (2)-(12), of a
fullword field.

IWMPQRY Macro

378 z/OS V1R4.0 MVS Workload Management Services

,RETCODE=retcode
An optional output parameter into which the return code is to be copied from
GPR 15.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

,RSNCODE=rsncode
An optional output parameter into which the reason code is to be copied from
GPR 0.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

ABEND Codes
Reason Code (Hex)

Explanation

0Axx0005
An attempt to reference caller’s parameters caused an OC4 abend.

Return and Reason Codes
When the IWMPQRY macro returns control to your program:
v GPR 15 (and retcode, if you coded RETCODE) contains a return code.
v When the value in GPR 15 is not zero, GPR 0 (and rsncode, if you coded

RSNCODE) contains reason code.

The following table identifies the hexadecimal return and reason codes and the
equate symbol associated with each reason code. IBM support personnel may
request the entire reason code, including the xxxx value.

Table 44. Return and Reason Codes for the IWMPQRY Macro

Return Code Reason Code Equate Symbol Meaning and Action

0 — Equate Symbol: IwmRetCodeOk

Meaning: Successful completion.

Action: None required.

4 — Equate Symbol: IwmRetCodeWarning

Meaning: Successful completion, unusual conditions noted.

4 xxxx0401 Equate Symbol: IwmRsnCodeNoWLM

Meaning: System does not support policy management
services. This return code is only set when the MVS release
is prior to MVS/ESA SP5.1.0.

Action: None required.

4 xxxx040A Equate Symbol: IwmRsnCodeOutputAreaTooSmall

Meaning: The output area supplied is too small to receive
all the available information.

Action: None required. If necessary, reinvoke the service
with an output area of sufficient size to receive all
information.

4 xxxx0423 Equate Symbol: IwmRsnCodeDefaultPolicy

Meaning: The default policy was returned.

Action: None required.

IWMPQRY Macro

Chapter 42. IWMPQRY – Query Active Service Policy 379

Table 44. Return and Reason Codes for the IWMPQRY Macro (continued)

Return Code Reason Code Equate Symbol Meaning and Action

8 — Equate Symbol: IwmRetCodeInvocError

Meaning: Invalid invocation environment or parameters.

8 xxxx0801 Equate Symbol: IwmRsnCodeSrbMode

Meaning: Caller is in SRB mode.

Action: Avoid requesting this function while in SRB mode.

8 xxxx0803 Equate Symbol: IwmRsnCodeDisabled

Meaning: Caller is disabled.

Action: Avoid requesting this function while disabled.

8 xxxx0804 Equate Symbol: IwmRsnCodeLocked

Meaning: Caller is locked.

Action: Avoid requesting this function while locked.

8 xxxx0810 Equate Symbol: IwmRsnCodeEutFrr

Meaning: Caller has EUT FRR established.

Action: Avoid requesting this function with an EUT FRR set.

8 xxxx0830 Equate Symbol: IwmRsnCodeBadAlet

Meaning: Caller has passed an invalid ALET.

Action: Check for possible storage overlay of the parameter
list or variable.

IWMPQRY Macro

380 z/OS V1R4.0 MVS Workload Management Services

Chapter 43. IWMQDEL – Deleting a Request from the Queue
for An Execution Address Space

This service deletes a work request that was previously inserted using the Iwmqins
service, if it has not been selected using the Iwmssel service.

Environment
The requirements for the caller are:

Minimum authorization: Supervisor state or program key mask (PKM) allowing keys
0-7.

Dispatchable unit mode: Task or SRB

Cross memory mode: Any HASN, any SASN. PASN must be the address space
which connected to WLM (i.e. the address space that was
home when IWMCONN was issued for
Queue_Manager=Yes, or Server_Manager=Yes with
Server_Type=Queue).

AMODE: 31-bit

ASC mode: Primary

Interrupt status: Enabled for I/O and external interrupts

Locks: No locks may be held.

Control parameters: Control parameters must be in the primary address space.

Programming Requirements
1. The macro CVT must be included to use this macro.
2. The macro IWMYCON must be included to use this macro.
3. The macro IWMPB must be in the library concatenation, since it is included by

IWMYCON.
4. Note that the high order halfword of register 0, and the reason code variable

when specified, may be non-zero and represents diagnostic data which is NOT
part of the external interface. The high order halfword should thus be excluded
from comparison with the reason code values described above. The constant,
IWMRSNCODE_MASK_CONST defined in IWMYCON, may be used for this
purpose.

Restrictions
None.

Input Register Information
Before issuing the IWMQDEL macro, the caller does not have to place any
information into any register unless using it in register notation for a particular
parameter, or using it as a base register.

Output Register Information
When control returns to the caller, the GPRs contain:

© Copyright IBM Corp. 1988, 2002 381

Register
Contents

0 Reason code if GR15 return code is non-zero
1 Used as work registers by the system
2-13 Unchanged
14 Used as work registers by the system
15 Return code

When control returns to the caller, the ARs contain:

Register
Contents

0-1 Used as work registers by the system
2-13 Unchanged
14-15 Used as work registers by the system

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the
caller depends, the caller must save them before issuing the service, and restore
them after the system returns control.

Performance Implications
None.

Syntax

main diagram

��
name

� IWMQDEL � CONNTKN=conntkn ,WLMWUTKN=wlmwutkn �

�
,RETCODE=retcode ,RSNCODE=rsncode

,PLISTVER=IMPLIED_VERSION

,PLISTVER=MAX
,PLISTVER=0

�

�
,MF=S

,0D
,MF=(L ,list addr)

,attr
,COMPLETE

,MF=(E ,list addr)

�"

Parameters
The parameters are explained as follows:

name
An optional symbol, starting in column 1, that is the name on the IWMQDEL
macro invocation. The name must conform to the rules for an ordinary
assembler language symbol.

CONNTKN=conntkn
A required input parameter, which contains the connect token associated with

IWMQDEL Macro

382 z/OS V1R4.0 MVS Workload Management Services

the use of WLM Work Queuing services as returned by IWMCONN (specifying
Queue_Manager=Yes, or Server_Manager=Yes with Server_Type=Queue).

To code: Specify the RS-type address, or address in register (2)-(12), of a 32
bit field.

,MF=S
,MF=(L,list addr)
,MF=(L,list addr,attr)
,MF=(L,list addr,0D)
,MF=(E,list addr)
,MF=(E,list addr,COMPLETE)

An optional input parameter that specifies the macro form.

Use MF=S to specify the standard form of the macro, which builds an inline
parameter list and generates the macro invocation to transfer control to the
service. MF=S is the default.

Use MF=L to specify the list form of the macro. Use the list form together with
the execute form of the macro for applications that require reentrant code. The
list form defines an area of storage that the execute form uses to store the
parameters. Only the PLISTVER parameter may be coded with the list form of
the macro.

Use MF=E to specify the execute form of the macro. Use the execute form
together with the list form of the macro for applications that require reentrant
code. The execute form of the macro stores the parameters into the storage
area defined by the list form, and generates the macro invocation to transfer
control to the service.

,list addr
The name of a storage area to contain the parameters. For MF=S and
MF=E, this can be an RS-type address or an address in register (1)-(12).

,attr
An optional 1- to 60-character input string that you use to force boundary
alignment of the parameter list. Use a value of 0F to force the parameter
list to a word boundary, or 0D to force the parameter list to a doubleword
boundary. If you do not code attr, the system provides a value of 0D.

,COMPLETE
Specifies that the system is to check for required parameters and supply
defaults for omitted optional parameters.

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX
,PLISTVER=0

An optional input parameter that specifies the version of the macro. PLISTVER
determines which parameter list the system generates. PLISTVER is an
optional input parameter on all forms of the macro, including the list form. When
using PLISTVER, specify it on all macro forms used for a request and with the
same value on all of the macro forms. The values are:

v IMPLIED_VERSION, which is the lowest version that allows all parameters
specified on the request to be processed. If you omit the PLISTVER
parameter, IMPLIED_VERSION is the default.

v MAX, if you want the parameter list to be the largest size currently possible.
This size might grow from release to release and affect the amount of
storage that your program needs.

If you can tolerate the size change, IBM recommends that you always specify
PLISTVER=MAX on the list form of the macro. Specifying MAX ensures that

IWMQDEL Macro

Chapter 43. IWMQDEL – Deleting a Request from the Queue for An Execution Address Space 383

the list-form parameter list is always long enough to hold all the parameters
you might specify on the execute form; in this way, MAX ensures that the
parameter list does not overwrite nearby storage.

v 0, if you use the currently available parameters.

To code: Specify one of the following:
v IMPLIED_VERSION
v MAX
v A decimal value of 0

,RETCODE=retcode
An optional output parameter into which the return code is to be copied from
GPR 15.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

,RSNCODE=rsncode
An optional output parameter into which the reason code is to be copied from
GPR 0.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

,WLMWUTKN=wlmwutkn
A required input parameter, specifying the work unit to be deleted. This token
must be a token that was returned on a prior IWMQINS request.

To code: Specify the RS-type address, or address in register (2)-(12), of a
16-character field.

ABEND Codes
None.

Return and Reason Codes
When the IWMQDEL macro returns control to your program:
v GPR 15 (and retcode, if you coded RETCODE) contains a return code.
v When the value in GPR 15 is not zero, GPR 0 (and rsncode, if you coded

RSNCODE) contains reason code.

The following table identifies the hexadecimal return and reason codes and the
equate symbol associated with each reason code. IBM support personnel may
request the entire reason code, including the xxxx value.

Table 45. Return and Reason Codes for the IWMQDEL Macro

Return Code Reason Code Equate Symbol Meaning and Action

0 — Equate Symbol: IwmRetCodeOk

Meaning: Successful completion.

Action: None required.

4 — Equate Symbol: IwmRetCodeWarning

Meaning: Successful completion, unusual conditions noted.

4 xxxx0408 Equate Symbol: IwmRsnCodeWorkNotFound:

Meaning: No work matching the input search criteria was
found.

Action: None required.

IWMQDEL Macro

384 z/OS V1R4.0 MVS Workload Management Services

Table 45. Return and Reason Codes for the IWMQDEL Macro (continued)

Return Code Reason Code Equate Symbol Meaning and Action

8 — Equate Symbol: IwmRetCodeInvocError

Meaning: Invalid invocation environment or parameters.

8 xxxx0803 Equate Symbol: IwmRsnCodeDisabled

Meaning: Caller is disabled.

Action: Avoid requesting this function while disabled.

8 xxxx0804 Equate Symbol: IwmRsnCodeLocked

Meaning: Caller is locked.

Action: Avoid requesting this function while locked.

8 xxxx080B Equate Symbol: IwmRsnCodeBadPl

Meaning: Error accessing parameter list.

Action: Check for possible storage overlay.

8 xxxx0821 Equate Symbol: IwmRsnCodeBadConn

Meaning: Input connect token does not pass validity
checking.

Action: Make sure to use the connect token returned by the
IWMCONN service requesting Queue_Manager=Yes, or
Server_Manager=Yes with Server_Type=Queue.

8 xxxx0823 Equate Symbol: IwmRsnCodeDatoff

Meaning: Caller invoked service while DATOFF

Action: Avoid requesting this function in this environment.

8 xxxx0824 Equate Symbol: IwmRsnCodeAmode24

Meaning: Caller invoked service but was in 24 bit
addressing mode.

Action: Request this function only when you are in 31 bit
addressing mode.

8 xxxx0825 Equate Symbol: IwmRsnCodeAscModeNotPrimary

Meaning: Caller invoked service but was not DAT on
Primary ASC mod

Action: Avoid requesting this function in this environment.

8 xxxx0827 Equate Symbol: IwmRsnCodeRsvdNot0

Meaning: Reserved field in parameter list was non-zero.

Action: Check for use of keywords that are not supported
by the MVS release on which the program is running.

8 xxxx0828 Equate Symbol: IwmRsnCodeBadVersion

Meaning: Version number in parameter list is not valid.

Action: Check for possible storage overlay of the parameter
list.

IWMQDEL Macro

Chapter 43. IWMQDEL – Deleting a Request from the Queue for An Execution Address Space 385

Table 45. Return and Reason Codes for the IWMQDEL Macro (continued)

Return Code Reason Code Equate Symbol Meaning and Action

8 xxxx083F Equate Symbol: IwmRsnCodePrimaryNotOwnConn

Meaning: Primary address space does not own the passed
connect token.

Action: Avoid requesting this function while primary address
space does not own the connect token.

8 xxxx0840 Equate Symbol: IwmRsnCodeServiceNotEnabled

Meaning: Caller’s space connection is not enabled for this
service

Action: Make sure that Queue_Manager=Yes, or
Server_Manager=Yes with Server_Type=Queue is specified
on the IWMCONN request to enable this service.

8 xxxx0848 Equate Symbol: IwmRsnCodeBadWorkUnitToken

Meaning: The work unit token is not valid.

Action: Check the specification of the WLMWUTKN
parameter.

10 — Equate Symbol: IwmRetCodeCompError

Meaning: Component error.

Action: Contact your system programmer.

Example
To delete a work request from the WLM queue manager queues:

IWMQDEL CONNTKN=CONNTOKEN, X
WLMWUTKN=WLMWUTKN,RETCODE=RC,RSNCODE=RSN

*
* Storage areas
*
CONNTOKEN DS FL4 Contains the connect token
* associated with the use of WLM
* Queuing services as returned by
* IWMCONN
* (specifying QUEUE_MANAGER=YES
* or SERVER_MANAGER=YES
* SERVER_TYPE=QUEUE
WLMWUTKN DS CL16 Work unit token
RC DS F Return code
RSN DS F Reason code

IWMQDEL Macro

386 z/OS V1R4.0 MVS Workload Management Services

Chapter 44. IWMQINS – Inserting a Request Onto the Queue
for An Execution Address space

The IWMQINS service inserts a work request onto workload management queues
so its execution in a server address space can be managed by WLM.

Before using this service, the caller must connect to WLM using the IWMCONN
service, specifying Queue_Manager=Yes, or Server_Manager=Yes with
Server_Type=Queue.

The IWMQINS service requires the use of enclaves to manage the performance
goals and reporting of work. It requires the use of application environments to
associate types of work requests with servers capable of processing them.

Environment
The requirements for the caller are:

Minimum authorization: Supervisor state or program key mask (PKM) allowing keys
0-7.

Dispatchable unit mode: Task or SRB

Cross memory mode: Any HASN, any SASN. PASN must be the address space
which connected to WLM (i.e. the address space that was
home when IWMCONN was issued for
Queue_Manager=Yes, or Server_Manager=Yes with
Server_Type=Queue).

AMODE: 31-bit

ASC mode: Primary

Interrupt status: Enabled for I/O and external interrupts

Locks: No locks may be held.

Control parameters: Control parameters must be in the primary address space.

Programming Requirements
1. The macro CVT must be included to use this macro.
2. The macro IWMYCON must be included to use this macro.
3. The macro IWMPB must be in the library concatenation, since it is included by

IWMYCON.
4. Note that the high order halfword of register 0, and the reason code variable

when specified, may be non-zero and represents diagnostic data which is NOT
part of the external interface. The high order halfword should thus be excluded
from comparison with the reason code values described above. The constant,
IWMRSNCODE_MASK_CONST defined in IWMYCON, may be used for this
purpose.

5. All character data, unless otherwise specified, is assumed to be left justified and
padded with blanks on the right, as needed, to occupy the specified number of
bytes.

Restrictions
This macro supports multiple versions. Some keywords are unique to certain
versions. See the PLISTVER parameter description.

© Copyright IBM Corp. 1988, 2002 387

Input Register Information
Before issuing the IWMQINS macro, the caller does not have to place any
information into any register unless using it in register notation for a particular
parameter, or using it as a base register.

Output Register Information
When control returns to the caller, the GPRs contain:

Register
Contents

0 Reason code if GR15 return code is non-zero
1 Used as work registers by the system
2-13 Unchanged
14 Used as work registers by the system
15 Return code

When control returns to the caller, the ARs contain:

Register
Contents

0-1 Used as work registers by the system
2-13 Unchanged
14-15 Used as work registers by the system

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the
caller depends, the caller must save them before issuing the service, and restore
them after the system returns control.

Performance Implications
None.

Syntax

main diagram

��
name

� IWMQINS � CONNTKN=conntkn ,ETOKEN=etoken �

� ,USERDATA=userdata ,APPLENV=applenv
,SECUSER=NO

,SECUSER=YES ,USERID=userid
�

�
,WLMWUTKN=wlmwutkn

,SERVER_TOKEN=0

,SERVER_TOKEN=server_token
�

�
,REGION_TOKEN=0

,REGION_TOKEN=region_token ,RETCODE=retcode ,RSNCODE=rsncode
�

IWMQINS Macro

388 z/OS V1R4.0 MVS Workload Management Services

�
,PLISTVER=IMPLIED_VERSION

,PLISTVER=MAX
,PLISTVER=0
,PLISTVER=1
,PLISTVER=2

,MF=S

,0D
,MF=(L ,list addr)

,attr
,COMPLETE

,MF=(E ,list addr)

�"

Parameters
The parameters are explained as follows:

name
An optional symbol, starting in column 1, that is the name on the IWMQINS
macro invocation. The name must conform to the rules for an ordinary
assembler language symbol.

,APPLENV=applenv
A required input parameter, which contains an application environment name.
An application environment is defined in the workload manager service
definition and instructs WLM how to create a server address space.

To code: Specify the RS-type address, or address in register (2)-(12), of a
32-character field.

CONNTKN=conntkn
A required input parameter, which contains the connect token returned by the
IWMCONN macro.

To code: Specify the RS-type address, or address in register (2)-(12), of a 32
bit field.

,ETOKEN=etoken
A required input parameter, which contains the enclave token associated with
the work request. An enclave token is obtained using either the IWMECREA or
IWMESQRY macro.

To code: Specify the RS-type address, or address in register (2)-(12), of an
8-character field.

,MF=S
,MF=(L,list addr)
,MF=(L,list addr,attr)
,MF=(L,list addr,0D)
,MF=(E,list addr)
,MF=(E,list addr,COMPLETE)

An optional input parameter that specifies the macro form.

Use MF=S to specify the standard form of the macro, which builds an inline
parameter list and generates the macro invocation to transfer control to the
service. MF=S is the default.

Use MF=L to specify the list form of the macro. Use the list form together with
the execute form of the macro for applications that require reentrant code. The
list form defines an area of storage that the execute form uses to store the
parameters. Only the PLISTVER parameter may be coded with the list form of
the macro.

Use MF=E to specify the execute form of the macro. Use the execute form
together with the list form of the macro for applications that require reentrant

IWMQINS Macro

Chapter 44. IWMQINS – Inserting a Request Onto the Queue for An Execution Address space 389

code. The execute form of the macro stores the parameters into the storage
area defined by the list form, and generates the macro invocation to transfer
control to the service.

,list addr
The name of a storage area to contain the parameters. For MF=S and
MF=E, this can be an RS-type address or an address in register (1)-(12).

,attr
An optional 1- to 60-character input string that you use to force boundary
alignment of the parameter list. Use a value of 0F to force the parameter
list to a word boundary, or 0D to force the parameter list to a doubleword
boundary. If you do not code attr, the system provides a value of 0D.

,COMPLETE
Specifies that the system is to check for required parameters and supply
defaults for omitted optional parameters.

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX
,PLISTVER=0
,PLISTVER=1
,PLISTVER=2

An optional input parameter that specifies the version of the macro. PLISTVER
determines which parameter list the system generates. PLISTVER is an
optional input parameter on all forms of the macro, including the list form. When
using PLISTVER, specify it on all macro forms used for a request and with the
same value on all of the macro forms. The values are:

v IMPLIED_VERSION, which is the lowest version that allows all parameters
specified on the request to be processed. If you omit the PLISTVER
parameter, IMPLIED_VERSION is the default.

v MAX, if you want the parameter list to be the largest size currently possible.
This size might grow from release to release and affect the amount of
storage that your program needs.

If you can tolerate the size change, IBM recommends that you always specify
PLISTVER=MAX on the list form of the macro. Specifying MAX ensures that
the list-form parameter list is always long enough to hold all the parameters
you might specify on the execute form, when both are assembled with the
same level of the system. In this way, MAX ensures that the parameter list
does not overwrite nearby storage.

v 0, which supports all parameters except those specifically referenced in
higher versions.

v 1, which supports both the following parameters and those from version 0:

SERVER_TOKEN

v 2, which supports both the following parameters and those from version 0
and 1:

REGION_TOKEN

To code: Specify one of the following:
v IMPLIED_VERSION
v MAX
v A decimal value of 0, 1 or 2

,REGION_TOKEN=region_token

IWMQINS Macro

390 z/OS V1R4.0 MVS Workload Management Services

,REGION_TOKEN=0
An optional input parameter, which contains a region token returned by the
IWMSSEL macro. Use REGION_TOKEN to queue a work request to a specific
server region. Such a work request is considered to be part of a set of work
requests which all need access to the same status information which is kept in
the virtual storage of the server region.

The following qualifications apply when specifying a region token:

v The application is responsible for passing the region token to the queueing
manager so that it can insert the work request to the region.

v WLM has to know that temporal affinities for work requests to a specific
server region exist in order not to stop the server region.The application must
use the IWMTAFF macro to tell WLM when a temporal affinity starts and
when it ends.

Coding REGION_TOKEN=0 is equivalent to omitting the REGION_TOKEN
keyword. The default is 0.

To code: Specify the RS-type address, or address in register (2)-(12), of a
16-character field.

,RETCODE=retcode
An optional output parameter into which the return code is to be copied from
GPR 15.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

,RSNCODE=rsncode
An optional output parameter into which the reason code is to be copied from
GPR 0.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

,SECUSER=NO
,SECUSER=YES

An optional parameter, which specifies whether the security environment of the
user should be associated with the request at run time. The default is
SECUSER=NO.

,SECUSER=NO
No security environment to be established.

,SECUSER=YES
Use the specified userid to establish a security environment.

,SERVER_TOKEN=server_token
,SERVER_TOKEN=0

An optional input parameter, which contains a server token returned by the
IWMSSEL macro. Use SERVER_TOKEN to queue a secondary work request to
the same server task that selected a prior work request. A secondary work
request is considered to be an extension of the prior work request.

The following qualifications apply when specifying a server token:

v The server task is responsible for passing the server token to the queueing
manager so that it can insert a secondary work request.

v Coordination is required between the queueing manager and the server task
so that the server task knows when to expect secondary work requests. The
server task uses the IWMSSEM macro to select secondary work requests. It
must select all secondary work requests before it can resume normal
selection using IWMSSEL.

IWMQINS Macro

Chapter 44. IWMQINS – Inserting a Request Onto the Queue for An Execution Address space 391

v The same application environment and enclave token passed for the original
work request must be passed for each secondary work request.

v A secondary work request cannot be deleted using the IWMQDEL macro.
IWMQINS does not return a work unit token (WLMWUTKN).

v The SECUSER keyword is ignored.

Coding SERVER_TOKEN=0 is equivalent to omitting the SERVER_TOKEN
keyword. The default is 0.

To code: Specify the RS-type address, or address in register (2)-(12), of a
32-character field.

,USERDATA=userdata
A required input parameter, which contains data to pass to the server address
space. This user data is returned to the caller of the IWMSSEL or IWMSSEM
macro. The format is undefined to MVS.

To code: Specify the RS-type address, or address in register (2)-(12), of a
16-character field.

,USERID=userid
When SECUSER=YES is specified, a required input parameter, which contains
the requester’s userid.

To code: Specify the RS-type address, or address in register (2)-(12), of an
8-character field.

,WLMWUTKN=wlmwutkn
An optional output parameter, which will receive the work unit token. This token
can be passed to the IWMQDEL service to delete the work request.

To code: Specify the RS-type address, or address in register (2)-(12), of a
16-character field.

ABEND Codes
None.

Return and Reason Codes
When the IWMQINS macro returns control to your program:
v GPR 15 (and retcode, when you code RETCODE) contains a return code.
v When the value in GPR 15 is not zero, GPR 0 (and rsncode, when you code

RSNCODE) contains reason code.

The following table identifies the hexadecimal return and reason codes and the
equate symbol associated with each reason code. IBM support personnel may
request the entire reason code, including the xxxx value.

Table 46. Return and Reason Codes for the IWMQINS Macro

Return Code Reason Code Equate Symbol Meaning and Action

0 — Equate Symbol: IwmRetCodeOk

Meaning: Successful completion.

Action: None required.

4 — Equate Symbol: IwmRetCodeWarning

Meaning: Successful completion, unusual conditions noted.

IWMQINS Macro

392 z/OS V1R4.0 MVS Workload Management Services

Table 46. Return and Reason Codes for the IWMQINS Macro (continued)

Return Code Reason Code Equate Symbol Meaning and Action

4 xxxx042E Equate Symbol: IwmRsnCodeServerNotFound

Meaning: The server token does not identify an existing
server tas The server task may have terminated since the
token was obtained.

Action: If the server task has not terminated, check that the
correct token is specified.

4 xxxx043A Equate SymbolIwmRsnCodeRegionNotFound

Meaning: The region token does not identify a valid server
region.

Action: Please specify the correct region token.

8 — Equate Symbol: IwmRetCodeInvocError

Meaning: Invalid invocation environment or parameters.

8 xxxx0803 Equate Symbol: IwmRsnCodeDisabled

Meaning: Caller is disabled.

Action: Avoid requesting this function while disabled.

8 xxxx0804 Equate Symbol: IwmRsnCodeLocked

Meaning: Caller is locked.

Action: Avoid requesting this function while locked.

8 xxxx080B Equate Symbol: IwmRsnCodeBadPl

Meaning: Error accessing parameter list.

Action: Check for possible storage overlay.

8 xxxx0821 Equate Symbol: IwmRsnCodeBadConn

Meaning: Input connect token does not pass validity
checking.

Action: Make sure to use the connect token returned by the
IWMCONN service requesting Queue_Manager=Yes, or
Server_Manager=Yes with Server_Type=Queue.

8 xxxx0823 Equate Symbol: IwmRsnCodeDatoff

Meaning: Caller invoked service while DATOFF

Action: Avoid requesting this function in this environment.

8 xxxx0824 Equate Symbol: IwmRsnCodeAmode24

Meaning: Caller invoked service but was in 24 bit
addressing mode.

Action: Request this function only when you are in 31 bit
addressing mode.

8 xxxx0825 Equate Symbol: IwmRsnCodeAscModeNotPrimary

Meaning: Caller invoked service but was not in primary
ASC mode.

Action: Avoid requesting this function in this environment.

IWMQINS Macro

Chapter 44. IWMQINS – Inserting a Request Onto the Queue for An Execution Address space 393

Table 46. Return and Reason Codes for the IWMQINS Macro (continued)

Return Code Reason Code Equate Symbol Meaning and Action

8 xxxx0827 Equate Symbol: IwmRsnCodeRsvdNot0

Meaning: Reserved field in parameter list was non-zero.

Action: Check for use of keywords that are not supported
by the MVS release on which the program is running.

8 xxxx0828 Equate Symbol: IwmRsnCodeBadVersion

Meaning: Version number in parameter list is not valid.

Action: Check for possible storage overlay of the parameter
list.

8 xxxx083A Equate Symbol: IwmRsnCodeBadEnclave

Meaning: Enclave token in parameter list is not valid.

Action: Check the specification of the ETOKEN parameter.

8 xxxx083F Equate Symbol: IwmRsnCodePrimaryNotOwnConn

Meaning: Primary address space does not own the passed
connect token.

Action: Ensure that the primary address space has
previously connected to WLM using the IWMCONN macro.
Ensure that the connect token returned by the IWMCONN
macro is passed to the IWMQINS macro.

8 xxxx0840 Equate Symbol: IwmRsnCodeServiceNotEnabled

Meaning: Caller’s space connection is not enabled for this
service

Action: Make sure that Queue_Manager=Yes, or
Server_Manager=Yes with Server_Type=Queue is specified
on the IWMCONN request to enable this service.

8 xxxx0842 Equate Symbol: IwmRsnCodeNoWLMConnect

Meaning: Caller’s space disconnected from WLM during
processing of the insert request.

Action: None.

8 xxxx0845 Equate Symbol: IwmRsnCodeWrongEnclave

Meaning: The caller tried to queue a secondary work
request to a specific server task using the
SERVER_TOKEN parameter. The caller’s enclave token
does not match the enclave token of the last work request
selected by the server task.

Action: Check that the correct enclave token was specified.
Check that the server task is invoking the IWMSSEL and
IWMSSEM macros in the correct sequence.

C — Equate Symbol: IwmRetCodeEnvError

Meaning: Environmental error.

C xxxx0C01 Equate Symbol: IwmRsnCodeNoStg

Meaning: Storage is not available for the request.

Action: Contact your system programmer. There is a
common storage shortage.

IWMQINS Macro

394 z/OS V1R4.0 MVS Workload Management Services

Table 46. Return and Reason Codes for the IWMQINS Macro (continued)

Return Code Reason Code Equate Symbol Meaning and Action

C xxxx0C16 Equate Symbol: IwmRsnCodeServerUnavail

Meaning: A server cannot be started to process the work
request. This is probably caused by one of the following:

1. An error in the JCL procedure used to start the server
address space.

2. Repeated, unexpected terminations of the server
address space.

In either of these cases, workload management stops the
application environment. A DISPLAY WLM command shows
this state as INTERNALLY STOPPED.

Action: Look at the system log to determine what caused
the error:

1. If it is a JCL error, correct the error in the procedure.

2. If it is repeated terminations of the server address
space, correct the application error causing the
termination.

In either case, the server environment can then be resumed
using the VARY operator command: V
WLM,APPLENV=nnn,RESUME where nnn is the applicable
application environment name.
Note: A re-IPL of some or all of the systems in the sysplex
does not reset the stopped state of the application
environment. The VARY command is the only way to
resume the environment.

C xxxx0C1A Equate Symbol: IwmRsnCodeApplNotDefined

Meaning: The application environment name is not defined
in the active WLM policy.

Action: Check whether the correct application environment
name is being used. If so, a service administrator must
define the application environment in the WLM service
definition.

C xxxx0C1B Equate Symbol: IwmRsnCodeApplNotSST

Meaning: The application environment name is defined for
use by a different subsystem type in the active WLM policy.

Action: Check whether the correct application environment
name is being used. If so, a service administrator must
change the application environment in the WLM service
definition to specify the correct subsystem type.

C xxxx0C1D Equate Symbol: IwmRsnCodeQMgrNotActive

Meaning: The required Queue Manager is not active.

Action: The Queue Manager with the same subsystem type
and name as the server must be started and connected to
workload management before the request can be honored.

C xxxx0C22 Equate Symbol: IwmRsnCodeApplEnvQuiesced

Meaning: For server applications connecting to WLM with
subsystem type IWEB only: The application environment
has been quiesced. The work request is not inserted to the
WLM work queue.

Action: Resume the application environment.

IWMQINS Macro

Chapter 44. IWMQINS – Inserting a Request Onto the Queue for An Execution Address space 395

Table 46. Return and Reason Codes for the IWMQINS Macro (continued)

Return Code Reason Code Equate Symbol Meaning and Action

C xxxx0C40 Equate Symbol: IwmRsnCodeNoSafCheckPossible

Meaning: MLS is active but a security check could not be
per- formed probably for one of the following reasons:

v No security decision could be made.The RACF router
was not loaded; the request, resource, subsystem
combination could not be found in the RACF ROUTER
table..

v A resource or class name is not defined to RACF or the
class has not been RAClisted.

v The class was RAClisted, but the data space cannot be
accessed due to an ALESERV failure.

v The class was RAClisted, but the data space has been
deleted.

v No security decision could be made.The RACF router
was not loaded, the request ,resource, subsystem
combination could not be found in the RACF ROUTER
table.

Action: Contact your RACF Security Administrator. Check if
RACF is properly installed, configured and tuned. Correct
the eventual problems.

C xxxx0C41 Equate Symbol: IwmRsnCodeSafCheckFailed

Meaning: MLS is active.Queue Manager and Server
Manager are not authorized to communicate.

Action: Normally none. If QM and SM really must
communicate, contact your RACF Security Administrator.
Set the appropriate Security Labels.

C xxxx0C42 Equate Symbol: IwmRsnCodeAletError

Meaning: Error while accessing access list with ALESERV
probably because of one of the following:

v The current access list cannot be expanded. There are
no free access list entries and the maximum size has
been reached.

v ALESERV could not obtain storage for an expanded
access list.

Action: Delete unused entries and reissue the request in
first case. Free some storage and retry the request in
second case. Contact your System Programmer if none
works.

10 — Equate Symbol: IwmRetCodeCompError

Meaning: Component error.

Action: Contact your system programmer.

Example
To insert a work request onto the WLM queue manager queues:

IWMQINS CONNTKN=CONNTOKEN,ETOKEN=ENCTOKEN, X
USERDATA=USERDATA,APPLENV=APPLENV,SECUSER=NO, X
WLMWUTKN=WLMWUTKN,RETCODE=RC,RSNCODE=RSN

*
* Storage areas
*
CONNTOKEN DS FL4 Contains the connect token

IWMQINS Macro

396 z/OS V1R4.0 MVS Workload Management Services

|||

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|

|||

|
|

|
|
|

|||

|
|
|
|
|
|
|

|
|
|
|

* associated with the use of WLM
* Queuing services as returned by
* IWMCONN
* (specifying QUEUE_MANAGER=YES
* or SERVER_MANAGER=YES
* SERVER_TYPE=QUEUE
ENCTOKEN DS CL8 Contains the Enclave token
* associated with the work
* request as returned by IWMECREA
USERDATA DS CL16 Contains data maintained by the
* user
APPLENV DS CL32 Contains the application
* environment name
WLMWUTKN DS CL16 Work unit token
RC DS F Return code
RSN DS F Reason code

IWMQINS Macro

Chapter 44. IWMQINS – Inserting a Request Onto the Queue for An Execution Address space 397

IWMQINS Macro

398 z/OS V1R4.0 MVS Workload Management Services

Chapter 45. IWMRCOLL – Collecting Workload Activity Data

With the IWMRCOLL macro, the caller can get information on:

v Workload activity information (ICS=NO)

The following information is available:
– Resource consumption data
– Response times and distributions
– General execution delays
– Work manager and resource manager delays

To help a caller keep track of changes in workload management, this service
returns a token, ANSTOKN. ANSTOKN is a required input on all subsequent calls to
IWMRCOLL. When a change occurs in workload management, such as when a
new policy is activated, or a system is switched into goal mode, IWMRCOLL returns
a new token value. The caller’s code should check the reason codes to see if the
ANSTOKEN has changed since the last call to IWMRCOLL. If the token has
changed, the performance monitor should reset its reporting interval. If the token
has not changed, the performance monitor can continue with its existing reporting
interval.

There are also some ENF event codes to keep track of changes in workload
management. For information about the ENF codes, see z/OS MVS Programming:
Authorized Assembler Services Reference ENF-IXG.

Specifying the Answer Areas
The caller of IWMRCOLL must provide storage for an answer area for the workload
activity information. This answer area may reside in either address space related
storage or dataspace storage.

Workload Activity Answer Area
For workload activity information, you must specify
ICS=NO,ANSAREA=ansarea, ANSLEN=anslen,MINLEN=minlen,MAXLEN=maxlen.

The caller must provide an area of storage in the ANSAREA=ansarea and the
length of that area in the ANSLEN=anslen for IWMRCOLL to place the workload
activity information. IWMRCOLL returns the information, which is mapped by
IWMWRCAA.

You must also specify the MINLEN and MAXLEN parameters. IWMRCOLL fills in
the minimum and maximum amount of storage required for the answer area.

The caller should issue the IWMPQRY macro for active service policy information to
map the workload activity information.

If the caller does not provide enough storage to contain all of the workload data, no
data are returned. IWMRCOLL returns the minimum length of the storage required
in the ANSLEN field, and issues the appropriate return and reason codes.

© Copyright IBM Corp. 1988, 2002 399

|
|
|

|
|

Environment
The requirements for the caller are:

Minimum authorization: Supervisor state or program key mask (PKM) allowing keys
0-7

Dispatchable unit mode: Task

Cross memory mode: Any PASN, any HASN, any SASN

AMODE: 31-bit

ASC mode: Primary or access register. If in access register ASC mode,
specify SYSSTATE ASCENV = AR before invoking
IWMRCOLL.

Interrupt status: Enabled for I/O and external interrupts

Locks: No locks held.

Control parameters: Control parameters must be in the primary address space.

Programming Requirements
v Make sure no EUT FRRs are established.

v If in access register ASC mode, specify SYSSTATE ASCENV=AR before invoking
IWMRCOLL.

v You must include the CVT and the IWMYCON mapping macros in the calling
program.

v The parameter list must be in the caller’s primary address space, or be
addressable by the current dispatchable unit access list.

Restrictions
The parameter list must be in the caller’s primary address space, or be addressable
by the dispatchable unit access list.

Input Register Information
Before issuing the IWMRCOLL macro, the caller does not have to place any
information into any register unless using it in register notation for a particular
parameter, using it as a base register, or using it to provide the ALET of the storage
area.

Output Register Information
When control returns to the caller, the GPRs contain:

Register
Contents

0 Reason code if the return code in GPR 15 is not 0, otherwise, used as a
work register by the system.

1 Used as a work register by the system.
2 - 13 Unchanged
14 Used as a work register by the system.
15 Return code

When control returns to the caller, the ARs contain:

IWMRCOLL Macro

400 z/OS V1R4.0 MVS Workload Management Services

Register
Contents

0 - 1 Used as work registers by the system.
2 - 13 Unchanged
14 - 15

Used as work registers by the system.

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the
caller depends, the caller must save them before issuing the service, and restore
them after the system returns control.

Performance Implications
None.

Syntax
The syntax of the IWMRCOLL macro is as follows:

main diagram

��
name

� IWMRCOLL �
NO parameters-1

ICS=

�

� ,ANSTOKN=anstokn
,RETCODE=retcode ,RSNCODE=rsncode

�

�
,MF=S

,0D
,MF=(L, MFCTRL)

,mfattr
,COMPLETE

,MF=(E, MFCTRL)
,complete

�"

parameters-1

�� ,ANSAREA=ansarea ,ANSLEN=anslen ,MINLEN=minlen ,MAXLEN=maxlen �"

Parameters
The parameters are explained as follows:

ICS=NO
Returns workload activity information.

,ANSAREA=ansarea
Required output parameter that contains the address of a storage area to hold
the information returned by IWMRCOLL. The area is mapped by the
IWMWRCAA mapping macro.

IWMRCOLL Macro

Chapter 45. IWMRCOLL – Collecting Workload Activity Data 401

|
|

To code: Specify the RS-type name or address (using a register from 2 to 12)
of a 4 byte input containing the data area.

,ANSLEN=anslen
Required input parameter that contains the length of the storage area (answer
area) you are providing on ANSAREA.

To code: Specify the RS-type name or address (using a register from 2 to 12)
of a fullword input containing the length of the data area.

,MINLEN=minlen
Required fullword output parameter that contains the minimum length of the
storage area required by IWMRCOLL to contain all existing performance data.

To code: Specify the RS-type name or address (using a register from 2 to 12)
of a fullword output to contain the minimum length required for the data area.

,MAXLEN=maxlen
Required output parameter that contains the maximum length of the storage
area required by IWMRCOLL to contain all the performance data for
transactions that might run while the ANSTOKN is valid.

To code: Specify the RS-type name or address (using a register from 2 to 12)
of a fullword field to contain the maximum length of the data area.

,ANSTOKN=anstoken,
Required input/output parameter that contains a token value. On your first call
to IWMRCOLL, you specify ANSTOKEN as an output parameter. IWMRCOLL
provides a token value that is required for subsequent calls to IWMRCOLL.

To code: Specify the RS-type name or address (using a register from 2 to 12)
of an 8 character input/output containing the address space token.

,RETCODE=retcode addr
Optional output parameter that specifies where the system is to store the return
code. The return code is also in GPR 15.

To code: Specify the name (RS-type) or address (using a register from 2 to 12)
of a fullword to contain the return code.

,RSNCODE=rsncode addr
Optional output parameter that specifies where the system is to store the
reason code. The reason code is also in GPR 0.

To code: Specify the name (RS-type) or address (using a register from 2 to 12)
of a fullword to contain the reason code (if any).

,MF=S
,MF=(L,mfctrl,mfattr)
,MF=(E,mfctrl,COMPLETE)

Use MF=S to specify the standard form, which places parameters into an inline
parameter list and invokes the IWMRCOLL macro service.

Use MF=L to specify the list form of the macro. Use the list form together with
the execute form of the macro for applications that require re-entrant code. The
list form defines an area of storage that the execute form uses to store the
parameters.

Use MF=E to specify the execute form of the macro. Use the execute form with
the list form of the macro for applications that require re-entrant code. The
execute form stores the parameters into the storage area defined by the list
form and generates the macro invocation to transfer control to the service.

IWMRCOLL Macro

402 z/OS V1R4.0 MVS Workload Management Services

,mfctrl
Use this output parameter to specify the name of the storage area to
contain the parameters.

To code: Specify the name (RS-type) or address (using a register from 2 to
12) of the storage area containing the parameter list.

,mfattr
Use this input parameter to specify the name of a 1 to 60 character storage
area that can contain any value that is valid on an assembler DS
pseudo-op. You can use this parameter to force boundary alignment of the
parameter list. If you do not code ,mfattr the system provides a value of 0D,
which forces the parameter on a doubleword boundary.

,COMPLETE
Use this input parameter to specify that the system check for required
parameters and supply defaults for omitted optional parameter.

ABEND Codes
None.

Return and Reason Codes
When IWMRCOLL macro returns control to your program, GPR 15 contains a return
code. When the return code is non-zero, then GPR 0 contains a reason code.

Hexadecimal
Return Code

Hexadecimal
Reason Code

Meaning

00 - Meaning: Successful completion.

04 0401 Meaning: Warning. System does not support workload
activity data collection. The collect output area has not been
modified. This return code is set only when the MVS
release is prior to MVS/ESA SP5.1.0.

Action: Correct your program so that it is called on a
system that is at least at MVS/ESA SP5.1.0.

04 040A Meaning: Warning. The output area supplied is too small to
receive all the available information. The correct answer
area length is returned in the MINLEN and MAXLEN fields.

04 040D Meaning: Warning. The system default ICS is in effect. No
ICS information is returned.

04 040E Meaning: Reserved.

04 040F Meaning: Warning. The token value specified on the
ANSTOKN keyword is associated with a WLM state that is
no longer valid. The new system state is represented by the
token returned in the ANSTOKN field. The answer area
provided is large enough to contain the available data,
however, the new answer area length required is returned in
the MINLEN and MAXLEN fields.

08 0801 Meaning: Program error. Caller is in SRB mode.

Action: Correct your program so that it issues IWMRCOLL
only while in task mode.

08 0803 Meaning: Program error. Caller is disabled.

Action: Correct your program so that it issues IWMRCOLL
only while it is enabled.

IWMRCOLL Macro

Chapter 45. IWMRCOLL – Collecting Workload Activity Data 403

|||

Hexadecimal
Return Code

Hexadecimal
Reason Code

Meaning

08 0804 Meaning: Program error. The caller is locked.

Action: Correct your program so that it issues IWMRCOLL
only while it is unlocked.

08 0810 Meaning: Program error. Caller has an EUT FRR set.

Action: Correct your program so that it issues IWMRCOLL
only while does not have an EUT FRR set.

08 0830 Meaning: Program error. Caller specified an invalid ALET
for the storage pointed to by the ANSAREA keyword.

Action: Correct your program so that it issues IWMRCOLL
only while does not have an EUT FRR set.

08 0832 Meaning: Program error. The token value specified on the
ANSTOKN keyword is associated with a WLM state that is
no longer valid. A new token has been returned. The
storage provided is not large enough to contain all of the
data available because of the state change. No data was
returned. The length of the new answer area required is
returned in the MINLEN and MAXLEN fields.

08 0833 Meaning: Reserved.

08 0835 Meaning: Program error. Caller specified an invalid ALET
for the storage pointed to by the ICSAREA keyword.

Action: Correct the ALET and re-issue IWMRCOLL.

0C 0C01 Meaning: Environment error. Storage is not available for the
request.

Action: Correct the ALET and re-issue IWMRCOLL.

0C 0C0A Meaning: Environment error. Data collection is suspended
as a result of a component error. No data can be returned
for this IWMRCOLL invocation, future invocations may be
successful.

10 - Meaning: Component error.

Example
For workload activity information from a system running in goal mode, specify:
IWMRCOLL ICS=NO,ANSAREA=(R6),ANSLEN=(R8),

MINLEN=QMINLEN,MAXLEN=QMAXLEN,
RSNCODE=RSN,MF=(E,MFRCOLL)

IWMRCOLL Macro

404 z/OS V1R4.0 MVS Workload Management Services

|||

Chapter 46. IWMRESET – Change a Job

The IWMRESET macro allows the caller to perform the same functions as the
RESET system command. If the system is running in workload management goal
mode mode, the caller can:

v Change the service class of work currently in execution, with the SRVCLASS
keyword. Resetting to a new service class also resumes quiesced work.

v Quiesce work currently in execution, with the QUIESCE keyword.

v Reclassify work currently in execution according to the service policy in effect,
with the RESUME keyword. The RESUME keyword also resumes quiesced work.

The system does not allow every address space to be reset. The IWMRESET
service has the same restrictions as the RESET system command. Refer to OS/390
MVS System Commands for more information.

Environment
The requirements for the caller are:

Minimum authorization: Supervisor state or program key mask (PKM) allowing keys
0-7.

Dispatchable unit mode: Task

Cross memory mode: PASN=HASN=SASN

AMODE: 31-bit

ASC mode: Primary

Interrupt status: Enabled for I/O and external interrupts

Locks: No locks may be held.

Control parameters: Control parameters must be in the primary address space.

Programming Requirements
1. The macro CVT must be included to use this macro.
2. The macro IWMYCON must be included to use this macro.
3. The macro IWMPB must be in the library concatenation, since it is included by

IWMYCON.
4. Note that the high order halfword of register 0, and the reason code variable

when specified, may be non-zero and represents diagnostic data which is NOT
part of the external interface. The high order halfword should thus be excluded
from comparison with the reason code values described above. The constant,
IWMRSNCODE_MASK_CONST defined in IWMYCON, may be used for this
purpose.

Restrictions
1. The caller cannot have an EUT FRR established.

Input Register Information
Before issuing the IWMRESET macro, the caller does not have to place any
information into any register unless using it in register notation for a particular
parameter, or using it as a base register.

© Copyright IBM Corp. 1988, 2002 405

Output Register Information
When control returns to the caller, the GPRs contain:

Register
Contents

0 Reason code if GR15 return code is non-zero
1 Used as work registers by the system
2-13 Unchanged
14 Used as work registers by the system
15 Return code

When control returns to the caller, the ARs contain:

Register
Contents

0-1 Used as work registers by the system
2-13 Unchanged
14-15 Used as work registers by the system

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the
caller depends, the caller must save them before issuing the service, and restore
them after the system returns control.

Performance Implications
None.

IWMRESET Macro

406 z/OS V1R4.0 MVS Workload Management Services

Syntax

main diagram

��
name

� IWMRESET �

'

JOBNAME=jobname
.,

ASID=asid

�

�
,FUNCTION=RESET

,SRVCLASS=srvclass
,FUNCTION=QUIESCE
,FUNCTION=RESUME

,USERID=userid �

� ,PRODUCT=product
,RETCODE=retcode ,RSNCODE=rsncode

�

�
,PLISTVER=IMPLIED_VERSION

,PLISTVER=MAX
,PLISTVER=0

,MF=S

,0D
,MF=(L ,list addr)

,attr
,COMPLETE

,MF=(E ,list addr)
,NOCHECK
,COMPLETE

,MF=(M ,list addr)
,NOCHECK

�"

Parameters
The parameters are explained as follows:

name
An optional symbol, starting in column 1, that is the name on the IWMRESET
macro invocation. The name must conform to the rules for an ordinary
assembler language symbol.

ASID=asid
A parameter which contains the address space identifier (ASID) of the job you
want to change.

To code: Specify the RS-type address, or address in register (2)-(12), of a
halfword field.

,FUNCTION=RESET
,FUNCTION=QUIESCE
,FUNCTION=RESUME

An optional parameter, which indicates the function to perform against the job.
The default is FUNCTION=RESET.

,FUNCTION=RESET
Requests that the job’s service class or performance group be changed.

,FUNCTION=QUIESCE
Requests that the job be quiesced. If the job is non-swappable, it is given
the lowest possible performance characteristics.

IWMRESET Macro

Chapter 46. IWMRESET – Change a Job 407

,FUNCTION=RESUME
Requests that the job be reclassified according to the service policy in
effect. This undoes a prior request to reset the job to a particular service
class, or to quiesce the job.

JOBNAME=jobname
A parameter which contains the jobname of the job you want to change. If there
is more than one executing job with this jobname, you must specify the ASID
parameter to identify the specific job.

To code: Specify the RS-type address, or address in register (2)-(12), of an
8-character field.

,MF=S
,MF=(L,list addr)
,MF=(L,list addr,attr)
,MF=(L,list addr,0D)
,MF=(E,list addr)
,MF=(E,list addr,COMPLETE)
,MF=(E,list addr,NOCHECK)
,MF=(M,list addr)
,MF=(M,list addr,COMPLETE)
,MF=(M,list addr,NOCHECK)

An optional input parameter that specifies the macro form.

Use MF=S to specify the standard form of the macro, which builds an inline
parameter list and generates the macro invocation to transfer control to the
service. MF=S is the default.

Use MF=L to specify the list form of the macro. Use the list form together with
the execute form of the macro for applications that require reentrant code. The
list form defines an area of storage that the execute form uses to store the
parameters. Only the PLISTVER parameter may be coded with the list form of
the macro.

Use MF=E to specify the execute form of the macro. Use the execute form
together with the list form of the macro for applications that require reentrant
code. The execute form of the macro stores the parameters into the storage
area defined by the list form, and generates the macro invocation to transfer
control to the service.

Use MF=M together with the list and execute forms of the macro for service
routines that need to provide different options according to user-provided input.
Use the list form to define a storage area; use the modify form to set the
appropriate options; then use the execute form to call the service.

IBM recommends that you use the modify and execute forms of IWMRESET in
the following order:

v Use IWMRESET ...MF=(M,list-addr,COMPLETE) specifying appropriate
parameters, including all required ones.

v Use IWMRESET ...MF=(M,list-addr,NOCHECK), specifying the parameters
that you want to change.

v Use IWMRESET ...MF=(E,list-addr,NOCHECK), to execute the macro.

,list addr
The name of a storage area to contain the parameters. For MF=S, MF=E,
and MF=M, this can be an RS-type address or an address in register
(1)-(12).

IWMRESET Macro

408 z/OS V1R4.0 MVS Workload Management Services

,attr
An optional 1- to 60-character input string that you use to force boundary
alignment of the parameter list. Use a value of 0F to force the parameter
list to a word boundary, or 0D to force the parameter list to a doubleword
boundary. If you do not code attr, the system provides a value of 0D.

,COMPLETE
Specifies that the system is to check for required parameters and supply
defaults for omitted optional parameters.

,NOCHECK
Specifies that the system is not to check for required parameters and is not
to supply defaults for omitted optional parameters.

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX
,PLISTVER=0

An optional input parameter that specifies the version of the macro. PLISTVER
determines which parameter list the system generates. PLISTVER is an
optional input parameter on all forms of the macro, including the list form. When
using PLISTVER, specify it on all macro forms used for a request and with the
same value on all of the macro forms. The values are:

v IMPLIED_VERSION, which is the lowest version that allows all parameters
specified on the request to be processed. If you omit the PLISTVER
parameter, IMPLIED_VERSION is the default.

v MAX, if you want the parameter list to be the largest size currently possible.
This size might grow from release to release and affect the amount of
storage that your program needs.

If you can tolerate the size change, IBM recommends that you always specify
PLISTVER=MAX on the list form of the macro. Specifying MAX ensures that
the list-form parameter list is always long enough to hold all the parameters
you might specify on the execute form; in this way, MAX ensures that the
parameter list does not overwrite nearby storage.

v 0, if you use the currently available parameters.

To code: Specify one of the following:
v IMPLIED_VERSION
v MAX
v A decimal value of 0

,PRODUCT=product
A required input parameter, which contains the product name that is requesting
the job be changed. The product name is included in the SMF 90 subtype 30
record created by IWMRESET.

To code: Specify the RS-type address, or address in register (2)-(12), of an
8-character field.

,RETCODE=retcode
An optional output parameter into which the return code is to be copied from
GPR 15.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

,RSNCODE=rsncode
An optional output parameter into which the reason code is to be copied from
GPR 0.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

IWMRESET Macro

Chapter 46. IWMRESET – Change a Job 409

,SRVCLASS=srvclass
A parameter which is the service class to be assigned to the job. Resetting to a
new service class also resumes quiesced work.

When you reset a server to a new service class, the goals associated with that
service class are ignored. However the resource group associated with the new
service class is honored. The one exception where the goal for a server is
honored is when the transactions it is serving have been assigned a
discretionary goal.

When FUNCTION=RESET is specified, either PERFORM or SRVCLASS is
required.

To code: Specify the RS-type address of an 8-character field.

,USERID=userid
A required input parameter, which contains the id of the user who is requesting
the job be changed. The userid is included in the SMF 90 subtype 30 record
created by IWMRESET. If there is no userid available, the caller should pass
blanks.

To code: Specify the RS-type address, or address in register (2)-(12), of an
8-character field.

ABEND Codes
None.

Return and Reason Codes
When the IWMRESET macro returns control to your program:
v GPR 15 (and retcode, if you coded RETCODE) contains a return code.
v When the value in GPR 15 is not zero, GPR 0 (and rsncode, if you coded

RSNCODE) contains reason code.

The following table identifies the hexadecimal return and reason codes and the
equate symbol associated with each reason code. IBM support personnel may
request the entire reason code, including the xxxx value.

Table 47. Return and Reason Codes for the IWMRESET Macro

Return Code Reason Code Equate Symbol Meaning and Action

0 — Equate Symbol: IwmRetCodeOk

Meaning: Successful completion.

Action: None required.

4 — Equate Symbol: IwmRetCodeWarning

Meaning: Successful completion, unusual conditions noted.

4 xxxx0408 Equate Symbol: IwmRsnCodeWorkNotFound

Meaning: A job matching the input job name or ASID was
not found.

Action: The caller should report the error appropriately.

8 — Equate Symbol: IwmRetCodeInvocError

Meaning: Invalid invocation environment or parameters.

IWMRESET Macro

410 z/OS V1R4.0 MVS Workload Management Services

Table 47. Return and Reason Codes for the IWMRESET Macro (continued)

Return Code Reason Code Equate Symbol Meaning and Action

8 xxxx0801 Equate Symbol: IwmRsnCodeSRBMode

Meaning: Caller is in SRB mode.

Action: Avoid requesting this function while in SRB mode.

8 xxxx0803 Equate Symbol: IwmRsnCodeDisabled

Meaning: Caller is disabled.

Action: Avoid requesting this function while disabled.

8 xxxx0804 Equate Symbol: IwmRsnCodeLocked

Meaning: Caller is locked.

Action: Avoid requesting this function while locked.

8 xxxx080B Equate Symbol: IwmRsnCodeBadPl

Meaning: Error accessing parameter list.

Action: Check for possible storage overlay.

8 xxxx0810 Equate Symbol: IwmRsnCodeEutFrr

Meaning: Caller has EUT FRR established.

Action: Avoid requesting this function with an EUT FRR set.

8 xxxx0824 Equate Symbol: IwmRsnCodeAmode24

Meaning: Caller invoked service but was in 24 bit
addressing mode.

Action: Request this function only when you are in 31 bit
addressing mode.

8 xxxx0825 Equate Symbol: IwmRsnCodeAscModeNotPrimary

Meaning: Caller invoked service but was not in primary
ASC mode.

Action: Avoid requesting this function in this environment.

8 xxxx0827 Equate Symbol: IwmRsnCodeRsvdNot0

Meaning: Reserved field in parameter list was non-zero.

Action: Check for use of keywords that are not supported
by the MVS release on which the program is running.

8 xxxx0828 Equate Symbol: IwmRsnCodeBadVersion

Meaning: Version number in parameter list is not valid.

Action: Check for possible storage overlay of the parameter
list.

8 xxxx0829 Equate Symbol: IwmRsnCodeBadOptions

Meaning: Parameter list omits required parameters.

Action: Check for possible storage overlay of the parameter
list.

8 xxxx0841 Equate Symbol: IwmRsnCodeXMemMode

Meaning: Caller is in cross memory mode.

Action: Invoke the function in non-cross memory mode.

IWMRESET Macro

Chapter 46. IWMRESET – Change a Job 411

Table 47. Return and Reason Codes for the IWMRESET Macro (continued)

Return Code Reason Code Equate Symbol Meaning and Action

C — Equate Symbol: IwmRetCodeEnvError

Meaning: Environmental error.

C xxxx0C28 Equate Symbol: IwmRsnCodeBadServiceClass

Meaning: The input service class name is not defined in the
active workload manager policy.

Action: Record or report the error if appropriate.

C xxxx0C2D Equate Symbol: IwmRsnCodeBadPerformanceGroup

Meaning: Reserved.

C xxxx0C2F Equate Symbol: IwmRsnCodeSystemSpace

Meaning: The input address space is either a system
component address space or a privileged address space. It
cannot be reset.

Action: Record or report the error if appropriate.

C xxxx0C30 Equate Symbol: IwmRsnCodeDuplicateJobs

Meaning: There is more than one job active with the same
jobname.

Action: Specify the ASID parameter to identify the specific
job.

C xxxx0C31 Equate Symbol: IwmRsnCodeWrongASID

Meaning: The active job in the specified address space has
a different jobname than the one passed by the caller.

Action: Record or report the error if appropriate.

C xxxx0C32 Equate Symbol: IwmRsnCodeNotEligibleForSrvClass

Meaning: The active job in the specified address space is
not eligible for reset into the specified system service class.
Only address spaces created with the ASCRE HIPRI
attribute are eligible for reset into the SYSTEM service
class.

Action: Record or report the error if appropriate.

10 — Equate Symbol: IwmRetCodeCompError

Meaning: Component error.

Action: Contact your system programmer.

Example
To change the service class of the job executing in the ASID at location JOBASID:

IWMRESET ASID=JOBASID,SRVCLASS=SCNAME,USERID=USR,
PRODUCT=PROD

*
* Storage areas
*
JOBASID DS H Contains the address space id
* of the job
SCNAME DS CL8 Contains the service class name
* to assign to the job
USR DS CL8 Contains the id of the user who

IWMRESET Macro

412 z/OS V1R4.0 MVS Workload Management Services

|||

|

* is requesting the change
PROD DS CL8 Contains the product name of
* the code invoking IWMRESET

IWMRESET Macro

Chapter 46. IWMRESET – Change a Job 413

IWMRESET Macro

414 z/OS V1R4.0 MVS Workload Management Services

Chapter 47. IWMRPT – Reporting on Work Request
Completion

The primary purpose of this service is to allow MVS to obtain the total response
time for a completed work request and its corresponding service class and (when
customer specified) its report class.

The second purpose in using this service is to allow MVS to know which address
spaces were involved in serving the service class.

When a monitoring token is provided, the third purpose in using this service is to
allow MVS to know that the monitoring environment should no longer be associated
with the now completed work request. The use of this service will render the
information associated with the monitoring environment unpredictable. To associate
a work request with the monitoring environment following use of Report, first use
Initialize Mode(Reset) or Relate/Transfer.

Environment
The requirements for the caller are:

Minimum authorization: Supervisor state. PSW key must either be 0 or match the
value supplied on IWMCONN. PSW key must either be 0 or
match the value supplied on IWMMCREA when a monitoring
token is passed. PSW key must be 0-7. See restrictions
below.

Dispatchable unit mode: Task or SRB

Cross memory mode: Any PASN, any HASN, any SASN

AMODE: 31-bit

ASC mode: Primary

Interrupt status: Enabled for I/O and external interrupts

Locks: LOCAL lock held

Control parameters: Control parameters must be in the primary address space.

Programming Requirements
1. The macro CVT must be included to use this macro.
2. The macro IWMYCON must be included to use this macro.
3. The macro IWMPB must be in the library concatenation, since it is included by

IWMYCON.
4. Note that the high order halfword of register 0, and the reason code variable

when specified, may be non-zero and represents diagnostic data which is NOT
part of the external interface. The high order halfword should thus be excluded
from comparison with the reason code values described above. The constant,
IWMRSNCODE_MASK_CONST defined in IWMYCON, may be used for this
purpose.

5. All character data, unless otherwise specified, is assumed to be left justified and
padded with blanks on the right, as needed, to occupy the specified number of
bytes.

© Copyright IBM Corp. 1988, 2002 415

Restrictions
1. Caller is responsible for error recovery
2. Though the caller is required to be enabled, this is not checked. Violation of this

restriction may cause disabled program checks which would be the
responsibility of the caller’s recovery to handle.

3. When the invocation requests use of SYSEVENT TRAXFRPT, the restrictions
for that service must be satisfied. These are:
v Local lock must be held.
v Supervisor state.
v PSW key must be 0.
v Parameter list must be fully initialized (information will not be copied from the

other parameters supplied to complete initialization of the SYSEVENT
parameter list).

v Note that SYSEVENT TRAXFRPT supports disabled callers, in which case
the parameter list and save area must be fixed, but IWMRPT does not
support disablement.

v Provide error recovery.
4. If a delay monitoring token is provided, then

v The caller must serialize to prevent any delay monitoring services from being
invoked concurrently for the environment represented by the monitoring
token.

v The monitoring environment must contain the information saved by
IWMMINIT, not IWMMRELA

v If the key specified on IWMMCREA was a system key (0-7), then the current
PSW key must be 0 or match the key specified on IWMMCREA.

v If the key specified on IWMMCREA was a user key (8-F), then
– PSW key must be 0
– current primary must match the primary at the time that IWMMCREA was

invoked. Calling from a subspace is not supported.
5. If the the key specified on IWMCONN for the input connect token was a user

key (8-F), then
v PSW key must be 0
v current primary must match the primary at the time that IWMCONN was

invoked. Calling from a subspace is not supported.

Input Register Information
Before issuing the IWMRPT macro, the caller must ensure that the following
general purpose registers (GPRs) contain the specified information:

Register
Contents

13 The address of a 72-byte standard save area in the primary address space

Before issuing the IWMRPT macro, the caller does not have to place any
information into any AR unless using it in register notation for a particular
parameter, or using it as a base register.

Output Register Information
When control returns to the caller, the GPRs contain:

Register
Contents

0-1 Used as work registers by the system
2-13 Unchanged

IWMRPT Macro

416 z/OS V1R4.0 MVS Workload Management Services

14-15 Used as work registers by the system.

When control returns to the caller, the ARs contain:

Register
Contents

0-1 Used as work registers by the system
2-13 Unchanged
14-15 Used as work registers by the system.

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the
caller depends, the caller must save them before issuing the service, and restore
them after the system returns control.

Performance Implications
None.

Syntax

main diagram

��
name

�

� IWMRPT � TRAXFRPT=YES SYSEVPL=sysevpl
,TRAXFRPT=NO ,PSWKEYP=VALUE ,PSWKEY=pswkey

,PSWKEYP=CURRENT

�

� ,MONTKNI=YES ,MONTKN=montkn
,MONTKNI=NO parameters-1

,CONNTKN=conntkn
,ENDTIME=CURRENT

,ENDTIME=endtime
�

�
,STATUS=NORMAL ,WORK_COMPCD=NO_WORK_COMPCD

,WORK_COMPCD=work_compcd
,WORK_COMPCD=NO_WORK_COMPCD

,STATUS=ABNORMAL
,WORK_COMPCD=work_compcd

,STATUS=NORMAL_LE_VAL ,WORK_COMPCD=work_compcd ,OK_THRESHOLD=ok_threshold
,STATUS=NORMAL_GE_VAL ,WORK_COMPCD=work_compcd ,OK_THRESHOLD=ok_threshold

�

�
,RETCODE=retcode ,RSNCODE=rsncode

,PLISTVER=IMPLIED_VERSION

,PLISTVER=MAX
,PLISTVER=0

�

�
,MF=S

,0D
,MF=(L ,list addr)

,attr
,COMPLETE

,MF=(E ,list addr)

�"

parameters-1

�� ,ARRIVALTIME=arrivaltime ,EXSTARTTIMEP=NO
,EXSTARTTIMEP=YES ,EXSTARTTIME=exstarttime

�

IWMRPT Macro

Chapter 47. IWMRPT – Reporting on Work Request Completion 417

� ,SERVCLS=servcls �"

Parameters
The parameters are explained as follows:

name
An optional symbol, starting in column 1, that is the name on the IWMRPT
macro invocation. The name must conform to the rules for an ordinary
assembler language symbol.

,ARRIVALTIME=arrivaltime
When MONTKNI=NO is specified, a required input parameter, which contains
the arrival time for the work unit in STCK format.

To code: Specify the RS-type address, or address in register (2)-(12), of a 64
bit field.

,CONNTKN=conntkn
A required input parameter, which is returned by IWMCONN.

If a monitoring token is passed (MONTKNI(YES)), AND this monitoring token
was obtained using a connect token on IWMMCREA, then the latter connect
token is expected to be the same as that specified for IWMRPT.

To code: Specify the RS-type address, or address in register (2)-(12), of a 32
bit field.

,ENDTIME=endtime
,ENDTIME=CURRENT

An optional input parameter, which specifies the ending time for the transaction
(typically, when the output is sent or available to be sent) in STCK format. The
default is CURRENT. indicates that the current time should be used.

To code: Specify the RS-type address, or address in register (2)-(12), of a 64
bit field.

,EXSTARTTIME=exstarttime
When EXSTARTTIMEP=YES and MONTKNI=NO are specified, a required input
parameter, which contains the start execution time in STCK format. Note that
this should only be used when IWMMNTFY was NOT used to pass the
execution time for this work request.

To code: Specify the RS-type address, or address in register (2)-(12), of a 64
bit field.

,EXSTARTTIMEP=NO
,EXSTARTTIMEP=YES

When MONTKNI=NO is specified, a required parameter, which indicates
whether the start execution time value is passed.

,EXSTARTTIMEP=NO
indicates that the start execution time value is not passed.

,EXSTARTTIMEP=YES
indicates that the start execution time value is passed. Note that this should
only be used when IWMMNTFY was NOT used to pass the execution time
for this work request.

,MF=S
,MF=(L,list addr)
,MF=(L,list addr,attr)

IWMRPT Macro

418 z/OS V1R4.0 MVS Workload Management Services

,MF=(L,list addr,0D)
,MF=(E,list addr)
,MF=(E,list addr,COMPLETE)

An optional input parameter that specifies the macro form.

Use MF=S to specify the standard form of the macro, which builds an inline
parameter list and generates the macro invocation to transfer control to the
service. MF=S is the default.

Use MF=L to specify the list form of the macro. Use the list form together with
the execute form of the macro for applications that require reentrant code. The
list form defines an area of storage that the execute form uses to store the
parameters. Only the PLISTVER parameter may be coded with the list form of
the macro.

Use MF=E to specify the execute form of the macro. Use the execute form
together with the list form of the macro for applications that require reentrant
code. The execute form of the macro stores the parameters into the storage
area defined by the list form, and generates the macro invocation to transfer
control to the service.

,list addr
The name of a storage area to contain the parameters. For MF=S and
MF=E, this can be an RS-type address or an address in register (1)-(12).

,attr
An optional 1- to 60-character input string that you use to force boundary
alignment of the parameter list. Use a value of 0F to force the parameter
list to a word boundary, or 0D to force the parameter list to a doubleword
boundary. If you do not code attr, the system provides a value of 0D.

,COMPLETE
Specifies that the system is to check for required parameters and supply
defaults for omitted optional parameters.

,MONTKN=montkn
When MONTKNI=YES is specified, a required input parameter, which contains
the delay monitoring token

To code: Specify the RS-type address, or address in register (2)-(12), of a 32
bit field.

,MONTKNI=YES
,MONTKNI=NO

A required parameter, which indicates whether a delay monitoring token is
provided.

,MONTKNI=YES
indicates that a delay monitoring token is provided.

,MONTKNI=NO
indicates that no delay monitoring token is provided.

,OK_THRESHOLD=ok_threshold
When STATUS=NORMAL_LE_VAL is specified, a required input parameter,
which contains the threshold value at which the work request is considered to
have ended normally.

To code: Specify the RS-type address, or address in register (2)-(12), of a
fullword field.

IWMRPT Macro

Chapter 47. IWMRPT – Reporting on Work Request Completion 419

,OK_THRESHOLD=ok_threshold
When STATUS=NORMAL_GE_VAL is specified, a required input parameter,
which contains the threshold value at which the work request is considered to
have ended normally.

To code: Specify the RS-type address, or address in register (2)-(12), of a
fullword field.

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX
,PLISTVER=0

An optional input parameter that specifies the version of the macro. PLISTVER
determines which parameter list the system generates. PLISTVER is an
optional input parameter on all forms of the macro, including the list form. When
using PLISTVER, specify it on all macro forms used for a request and with the
same value on all of the macro forms. The values are:

v IMPLIED_VERSION, which is the lowest version that allows all parameters
specified on the request to be processed. If you omit the PLISTVER
parameter, IMPLIED_VERSION is the default.

v MAX, if you want the parameter list to be the largest size currently possible.
This size might grow from release to release and affect the amount of
storage that your program needs.

If you can tolerate the size change, IBM recommends that you always specify
PLISTVER=MAX on the list form of the macro. Specifying MAX ensures that
the list-form parameter list is always long enough to hold all the parameters
you might specify on the execute form; in this way, MAX ensures that the
parameter list does not overwrite nearby storage.

v 0, if you use the currently available parameters.

To code: Specify one of the following:
v IMPLIED_VERSION
v MAX
v A decimal value of 0

,PSWKEY=pswkey
When PSWKEYP=VALUE and TRAXFRPT=NO are specified, a required input
parameter, which contains the current PSW key. The low order 4 bits (bits 4-7)
contain the key value. The high order 4 bits (bits 0-3) contain zeros.

To code: Specify the RS-type address, or address in register (2)-(12), of an 8
bit field.

,PSWKEYP=VALUE
,PSWKEYP=CURRENT

When TRAXFRPT=NO is specified, a required parameter, which describes how
to determine the current PSW key.

,PSWKEYP=VALUE
indicates that the key is being passed explicitly via PSWKEY.

,PSWKEYP=CURRENT
indicates that the current PSW key should be determined.

,RETCODE=retcode
An optional output parameter into which the return code is to be copied from
GPR 15.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

IWMRPT Macro

420 z/OS V1R4.0 MVS Workload Management Services

,RSNCODE=rsncode
An optional output parameter into which the reason code is to be copied from
GPR 0.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

,SERVCLS=servcls
When MONTKNI=NO is specified, a required input parameter, which contains
the service class token.

To code: Specify the RS-type address, or address in register (2)-(12), of a 32
bit field.

,STATUS=NORMAL
,STATUS=ABNORMAL
,STATUS=NORMAL_LE_VAL
,STATUS=NORMAL_GE_VAL

An optional parameter, which indicates whether the portion of the work request
associated with the Report call has completed normally or not. The default is
STATUS=NORMAL.

,STATUS=NORMAL
indicates that work request execution associated with the Report call has
completed normally.

,STATUS=ABNORMAL
indicates that work request execution associated with the Report call has
completed abnormally.

,STATUS=NORMAL_LE_VAL
indicates that work request execution associated with the Report call has
completed normally PROVIDED the work completion code is below or at
(<=) the threshold value given by OK_THRESHOLD.

,STATUS=NORMAL_GE_VAL
indicates that work request execution associated with the Report call has
completed normally PROVIDED the work completion code is above or at
(>=) the threshold value given by OK_THRESHOLD.

,SYSEVPL=sysevpl
When TRAXFRPT=YES is specified, a required input parameter, which is the
fully initialized SYSEVENT parameter list, as mapped by IHATRBPL.

To code: Specify the RS-type address, or address in register (2)-(12), of a
40-character field.

TRAXFRPT=YES
TRAXFRPT=NO

A required parameter, which indicates whether a SYSEVENT TRAXFRPT
should be issued when the system is in compatibility mode.

Note: Prior to z/OS R3, the TRAXFRPT setting indicated whether a
SYSEVENT TRAXFRPT was to be issued when the system was in
compatibility mode. This has become irrelevant, but the TRAXFRPT
setting is still required.

TRAXFRPT=YES
indicates that a SYSEVENT TRAXFRPT should be issued when the system
is in compatibility mode.

IWMRPT Macro

Chapter 47. IWMRPT – Reporting on Work Request Completion 421

|
|
|
|

TRAXFRPT=NO
indicates that no SYSEVENT TRAXFRPT should be issued when the
system is in compatibility mode.

,WORK_COMPCD=work_compcd
,WORK_COMPCD=NO_WORK_COMPCD

When STATUS=NORMAL is specified, an optional input parameter, which
contains the completion/return code for the work request execution associated
with the Report call. The default is NO_WORK_COMPCD. indicates that NO
completion/return code is passed.

To code: Specify the RS-type address, or address in register (2)-(12), of a
fullword field.

,WORK_COMPCD=work_compcd
,WORK_COMPCD=NO_WORK_COMPCD

When STATUS=ABNORMAL is specified, an optional input parameter, which
contains the completion/return code for the work request execution associated
with the Report call. The default is NO_WORK_COMPCD. indicates that NO
completion/return code is passed.

To code: Specify the RS-type address, or address in register (2)-(12), of a
fullword field.

,WORK_COMPCD=work_compcd
When STATUS=NORMAL_LE_VAL is specified, a required input parameter,
which contains the completion/return code for the work request execution
associated with the Report call.

To code: Specify the RS-type address, or address in register (2)-(12), of a
fullword field.

,WORK_COMPCD=work_compcd
When STATUS=NORMAL_GE_VAL is specified, a required input parameter,
which contains the completion/return code for the work request execution
associated with the Report call.

To code: Specify the RS-type address, or address in register (2)-(12), of a
fullword field.

ABEND Codes
None.

Return and Reason Codes
When the IWMRPT macro returns control to your program:
v GPR 15 (and retcode, if you coded RETCODE) contains a return code.
v When the value in GPR 15 is not zero, GPR 0 (and rsncode, if you coded

RSNCODE) contains reason code.

The following table identifies the hexadecimal return and reason codes and the
equate symbol associated with each reason code. IBM support personnel may
request the entire reason code, including the xxxx value.

IWMRPT Macro

422 z/OS V1R4.0 MVS Workload Management Services

Table 48. Return and Reason Codes for the IWMRPT Macro

Return Code Reason Code Equate Symbol Meaning and Action

0 — Equate Symbol: IwmRetCodeOk

Meaning: Successful completion.

Action: None required.

4 — Equate Symbol: IwmRetCodeWarning

Meaning: Successful completion, unusual conditions noted.

4 xxxx0401 Equate Symbol: IwmRsnCodeNoWLM

Meaning: System does not support delay monitoring
services. This return code is only set when the MVS release
is prior to MVS/ESA SP5.1.0.

Action: None required.

4 xxxx0404 Equate Symbol: IwmRsnCodeCompatNoSyseventRqd

Meaning: Reserved.

4 xxxx0405 Equate Symbol: IwmRsnCodeGoalNoMonEnv

Meaning: System is in goal mode but the input monitoring
token indicates no monitoring environment was established,
hence MVS did not receive the information.

Action: None required.

4 xxxx0409 Equate Symbol: IwmRsnCodeNoConn

Meaning: Connect token does not reflect a successful
Connect. The system did not receive the information . No
SYSEVENT TRAXFRPT was issued.

Action: None required.

8 — Equate Symbol: IwmRetCodeInvocError

Meaning: Invalid invocation environment or parameters.

8 xxxx080C Equate Symbol: IwmRsnCodeMonEnvLacksData

Meaning: Input monitoring environment does not contain
the necessary information.

Action: Ensure that the monitoring environment was
established with the necessary information.

8 xxxx080E Equate Symbol: IwmRsnCodeArrTimeGTEndTime

Meaning: Input arrival time later than end time.

Action: Check for possible storage overlay of the parameter
list or variable.

8 xxxx0820 Equate Symbol: IwmRsnCodeBadMonEnv

Meaning: Input monitoring environment does not pass short
form validity checking.

Action: Check for possible storage overlay.

8 xxxx0821 Equate Symbol: IwmRsnCodeBadConn

Meaning: Input connect token does not pass validity
checking.

Action: Check for possible storage overlay.

IWMRPT Macro

Chapter 47. IWMRPT – Reporting on Work Request Completion 423

|||

|

Table 48. Return and Reason Codes for the IWMRPT Macro (continued)

Return Code Reason Code Equate Symbol Meaning and Action

8 xxxx082D Equate Symbol: IwmRsnCodeExStTimeGTEndTime

Meaning: Execution start time greater than execution end
time

Action: Check for possible storage overlay of the parameter
list or variable.

8 xxxx0840 Equate Symbol: IwmRsnCodeServiceNotEnabled

Meaning: Caller’s space connection is not enabled for this
service.

Action: Avoid requesting this function under the input
connection. IWMCONN options must be specified previously
to enable this service.

8 xxxx087E Equate Symbol: IwmRsnCodeRoMonEnv

Meaning: Input monitoring environment is report-only.

Action:Avoid calling this function for report-only monitoring
environments.

C — Equate Symbol: IwmRetCodeEnvError

Meaning: Environmental error.

C xxxx0C02 Equate Symbol: IwmRsnCodeReportingSusp

Meaning: SYSEVENT TRAXFRPT invoked, but reporting is
temporarily suspended for one of the following reasons:
v RMF workload activity reporting is not active
v There is no installation control specification (IEAICSxx

parmlib member with RPGN specified for some
subsystem other than TSO) in effect. No data reported
but a later reissue could be successful.

Action: Invoke the function when the conditions are
alleviated.

C xxxx0C03 Equate Symbol: IwmRsnCodeSyseventNoWorkElt

Meaning: SYSEVENT TRAXFRPT invoked, but no work
element was available to save the input information.

Action: Invoke the function when the conditions are
alleviated. This condition may be due to a common storage
shortage condition.

C xxxx0C05 Equate Symbol: IwmRsnCodeRptNoWorkElt

Meaning: Report routine invoked, but no work element was
available to save the input information.

Action: Invoke the function when the conditions are
alleviated. This condition may be due to a common storage
shortage condition.

C xxxx0C06 Equate Symbol: IwmRsnCodeNoEndTime

Meaning: No end time was supplied to the service and
STCK gave a non-zero condition code.

Action: No action required.

IWMRPT Macro

424 z/OS V1R4.0 MVS Workload Management Services

Chapter 48. IWMRQRY – Collecting Address Space Delay
Information

IWMRQRY is the interface reporting products should use to obtain address space
related general execution delays. Enclave related information may optionally be
requested.

The macro will complete the parameter list with caller specified data and invoke a
stacking, space switching PC routine in the WLM address space. Address space
related data collected will be aggregated on an address space basis, while Enclave
related data (if requested) will be aggregated by Enclave.

If a user does not know the size of the answer area required by the service, he
should code issue IWMRQRY with ANSLEN set to zero. The length of the answer
area will be placed in QRYLEN.

The IWMRQRY macro is provided in list, execute, and standard form. The list form
accepts no variable parameters and is used only to reserve space for the parameter
list. The standard form is provided for use with routines which do not require
reentrant code. The execute form is provided for use with the list format for
reentrant routines. The IWMRQRY macro is provided in PL/AS and assembler
formats.

The parameter list must be in the caller’s primary address space, or in a dataspace
accesible by the current unit of work’s dispatchable unit access list (DUal).

Environment
The requirements for the caller are:

Minimum authorization: Supervisor state or program key mask (PKM) allowing keys
0-7.

Dispatchable unit mode: Task

Cross memory mode: Any PASN, any HASN, any SASN

AMODE: 31-bit

ASC mode: Primary or access register (AR) Any P,S,H.

If in Access Register ASC mode, specify SYSSTATE
ASCENV=AR before invoking this macro.

Interrupt status: Enabled for I/O and external interrupts

Locks: No locks may be held.

Control parameters: The caller of IWMRQRY must provide storage for an answer
area mapped by IWMWRQAA. This answer area may reside
in the caller’s primary address space, or in a dataspace
accessible via the current unit of work’s dispatchable unit
access list (DUal).

Programming Requirements
1. The macro CVT must be included to use this macro.
2. The functions provided by this macro are only supported on MVS/ESA SP5.2.0

or later.

© Copyright IBM Corp. 1988, 2002 425

3. The ENCLAVES=ONE keyword is only supported on OS/390 R4 or later. If code
with this keyword expansion is executed on lower OS/390 releases a return
code of 8 and reason code of xxxx0828 (constant IwmRsnCodeBadVersion) will
be returned indicating that the version is incorrect.

4. The macro IWMYCON must be included to use this macro.
5. The macro IWMPB must be in the library concatenation, since it is included by

IWMYCON.
6. Note that the high order halfword of register 0, and the reason code variable

when specified, may be non-zero and represents diagnostic data which is NOT
part of the external interface. The high order halfword should thus be excluded
from comparison with the reason code values described above. The constant,
IWMRSNCODE_MASK_CONST defined in IWMYCON, may be used for this
purpose.

Restrictions
The caller cannot have an EUT FRR established.

Input Register Information
Before issuing the IWMRQRY macro, the caller does not have to place any
information into any register unless using it in register notation for a particular
parameter, or using it as a base register.

Output Register Information
When control returns to the caller, the GPRs contain:

Register
Contents

0 Reason code if GR15 return code is non-zero
1 Used as work registers by the system
2-13 Unchanged
14 Used as a work register by the system
15 Return code

When control returns to the caller, the ARs contain:

Register
Contents

0-1 Used as work registers by the system
2-13 Unchanged
14-15 Used as work registers by the system

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the
caller depends, the caller must save them before issuing the service, and restore
them after the system returns control.

Performance Implications
None.

IWMRQRY Macro

426 z/OS V1R4.0 MVS Workload Management Services

Syntax

main diagram

��
name

� IWMRQRY � INFO=ALL
INFO=ONE ,ASID=asid

�

�
,ENCLAVES=NONE

,ENCLAVES=ALL
,ENCLAVES=ONE ,ETOKEN=etoken

,ANSAREA=ansarea ,ANSLEN=anslen �

� ,QUERYLEN=querylen
,RETCODE=retcode ,RSNCODE=rsncode

�

�
,PLISTVER=IMPLIED_VERSION

,PLISTVER=MAX
,PLISTVER=0
,PLISTVER=1

,MF=S

,0D
,MF=(L ,list addr)

,attr
,COMPLETE

,MF=(E ,list addr)

�"

Parameters
The parameters are explained as follows:

name
An optional symbol, starting in column 1, that is the name on the IWMRQRY
macro invocation. The name must conform to the rules for an ordinary
assembler language symbol.

,ANSAREA=ansarea
A required output parameter, variable specifying an area to contain the data
returned by the query service. If the length of the output area is insufficient, no
data is returned.

To code: Specify the RS-type address, or address in register (2)-(12), of a
character field.

,ANSLEN=anslen
A required input parameter, which contains the length of the answer area.

To code: Specify the RS-type address, or address in register (2)-(12), of a
fullword field.

,ASID=asid
When INFO=ONE is specified, a required input parameter, which contains the
ASID of the address space to be queried.

To code: Specify the RS-type address, or address in register (2)-(12), of a
fullword field.

,ENCLAVES=NONE
,ENCLAVES=ALL
,ENCLAVES=ONE

An optional parameter, which indicates whether Enclave information is
requested. The default is ENCLAVES=NONE.

IWMRQRY Macro

Chapter 48. IWMRQRY – Collecting Address Space Delay Information 427

,ENCLAVES=NONE
indicates that no Enclave information is requested.

,ENCLAVES=ALL
indicates that information for all Enclaves should be returned.

,ENCLAVES=ONE
indicates that Enclave information is requested for a particular Enclave.

This ENCLAVES=ONE keyword is only supported on OS/390 R4 or later.

,ETOKEN=etoken
When ENCLAVES=ONE is specified, a required input parameter, which
contains the Enclave token of the Enclave to be queried.

To code: Specify the RS-type address, or address in register (2)-(12), of an
8-character field.

INFO=ALL
INFO=ONE

A required parameter, which indicates what information the query service is to
return

INFO=ALL
indicates that information for all address spaces should be returned.

INFO=ONE
indicates that address space information is requested for a particular asid.

,MF=S
,MF=(L,list addr)
,MF=(L,list addr,attr)
,MF=(L,list addr,0D)
,MF=(E,list addr)
,MF=(E,list addr,COMPLETE)

An optional input parameter that specifies the macro form.

Use MF=S to specify the standard form of the macro, which builds an inline
parameter list and generates the macro invocation to transfer control to the
service. MF=S is the default.

Use MF=L to specify the list form of the macro. Use the list form together with
the execute form of the macro for applications that require reentrant code. The
list form defines an area of storage that the execute form uses to store the
parameters. Only the PLISTVER parameter may be coded with the list form of
the macro.

Use MF=E to specify the execute form of the macro. Use the execute form
together with the list form of the macro for applications that require reentrant
code. The execute form of the macro stores the parameters into the storage
area defined by the list form, and generates the macro invocation to transfer
control to the service.

,list addr
The name of a storage area to contain the parameters. For MF=S and
MF=E, this can be an RS-type address or an address in register (1)-(12).

,attr
An optional 1- to 60-character input string that you use to force boundary
alignment of the parameter list. Use a value of 0F to force the parameter
list to a word boundary, or 0D to force the parameter list to a doubleword
boundary. If you do not code attr, the system provides a value of 0D.

IWMRQRY Macro

428 z/OS V1R4.0 MVS Workload Management Services

,COMPLETE
Specifies that the system is to check for required parameters and supply
defaults for omitted optional parameters.

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX
,PLISTVER=0
,PLISTVER=1

An optional input parameter that specifies the version of the macro. PLISTVER
determines which parameter list the system generates. PLISTVER is an
optional input parameter on all forms of the macro, including the list form. When
using PLISTVER, specify it on all macro forms used for a request and with the
same value on all of the macro forms. The values are:

v IMPLIED_VERSION, which is the lowest version that allows all parameters
specified on the request to be processed. If you omit the PLISTVER
parameter, IMPLIED_VERSION is the default.

v MAX, if you want the parameter list to be the largest size currently possible.
This size might grow from release to release and affect the amount of
storage that your program needs.

If you can tolerate the size change, IBM recommends that you always specify
PLISTVER=MAX on the list form of the macro. Specifying MAX ensures that
the list-form parameter list is always long enough to hold all the parameters
you might specify on the execute form; in this way, MAX ensures that the
parameter list does not overwrite nearby storage.

v 0, if you use only the following parameters:

ANSAREA ASID INFO
ANSLEN ENCLAVES QUERYLEN

v 1, if you use any of the following parameters, and parameters from version 0,
or both:

ETOKEN

To code: Specify one of the following:
v IMPLIED_VERSION
v MAX
v A decimal value of 0 or 1

,QUERYLEN=querylen
A required output parameter, which contains the length of the storage area
required by the IWMRQRY service. The length of the area may change
between invocations.

To code: Specify the RS-type address, or address in register (2)-(12), of a
fullword field.

,RETCODE=retcode
An optional output parameter into which the return code is to be copied from
GPR 15.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

,RSNCODE=rsncode
An optional output parameter into which the reason code is to be copied from
GPR 0.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

IWMRQRY Macro

Chapter 48. IWMRQRY – Collecting Address Space Delay Information 429

ABEND Codes
None.

Return and Reason Codes
When the IWMRQRY macro returns control to your program:
v GPR 15 (and retcode, if you coded RETCODE) contains a return code.
v When the value in GPR 15 is not zero, GPR 0 (and rsncode, if you coded

RSNCODE) contains reason code.

The following table identifies the hexadecimal return and reason codes and the
equate symbol associated with each reason code. IBM support personnel may
request the entire reason code, including the xxxx value.

Table 49. Return and Reason Codes for the IWMRQRY Macro

Return Code Reason Code Equate Symbol Meaning and Action

0 — Equate Symbol: IwmRetCodeOk

Meaning: Successful completion.

Action: None required.

4 — Equate Symbol: IwmRetCodeWarning

Meaning: Successful completion, unusual conditions noted.

4 xxxx0401 Equate Symbol: IwmRsnCodeNoWLM

Meaning: System does not support workload activity query
services. The query output area has not been modified. This
return code is set only when the MVS release is prior to
MVS/ESA SP5.1.0.

Action: None required.

4 xxxx040A Equate Symbol: IwmRsnCodeOutputAreaTooSmall

Meaning: The output area supplied is too small to receive
all the available information.

Action: None required. If necessary, reinvoke the service
with an output area of sufficient size to receive all
information.

4 xxxx042C Equate Symbol: IwmRsnCodeEtokenNoMatch

Meaning: No Enclave information matching the input
Enclave token was found. Enclave related information is not
returned.

Action: None required.

8 — Equate Symbol: IwmRetCodeInvocError

Meaning: Invalid invocation environment or parameters.

8 xxxx0801 Equate Symbol: IwmRsnCodeSrbMode

Meaning: Caller is in SRB mode.

Action: Avoid requesting this function while in SRB mode.

8 xxxx0803 Equate Symbol: IwmRsnCodeDisabled

Meaning: Caller is disabled.

Action: Avoid requesting this function while disabled.

IWMRQRY Macro

430 z/OS V1R4.0 MVS Workload Management Services

Table 49. Return and Reason Codes for the IWMRQRY Macro (continued)

Return Code Reason Code Equate Symbol Meaning and Action

8 xxxx0804 Equate Symbol: IwmRsnCodeLocked

Meaning: Caller is locked.

Action: Avoid requesting this function while locked.

8 xxxx080B Equate Symbol: IwmRsnCodeBadPl

Meaning: Error accessing parameter list.

Action: Check for possible storage overlay.

8 xxxx0810 Equate Symbol: IwmRsnCodeEutFrr

Meaning: Caller has EUT FRR established.

Action: Avoid requesting this function with an EUT FRR set.

8 xxxx0812 Equate Symbol: IwmRsnCodeBadAscb

Meaning: The ASID value specified on the ASID keyword is
invalid.

Action: Check for possible storage overlay.

8 xxxx0828 Equate Symbol: IwmRsnCodeBadVersion

Meaning: Version number in parameter list is not valid or
version length field is not valid.

Action: Check for possible storage overlay of the parameter
list.

8 xxxx0830 Equate Symbol: IwmRsnCodeBadAlet

Meaning: Caller has passed an invalid ALET.

Action: Check for possible storage overlay of the parameter
list or variable.

C — Equate Symbol: IwmRetCodeEnvError

Meaning: Environmental error.

C xxxx0C01 Equate Symbol: IwmRsnCodeNoStg

Meaning: Storage is not available for the request.

Action: There is a storage shortage. The function may work
successfully at a later time.

C xxxx0C0A Equate Symbol: IwmRsnCodeSuspended

Meaning: Data sampling is suspended as a result of a
component error. No data can be returned for this
IWMRQRY invocation.

Action: Reinvoke the function as it may be sucessful.

C xxxx0C0B Equate Symbol: IwmRsnCodeStateChanged

Meaning: A state change (a policy activation) occured while
the data for the last sampling interval was being collected.
No data is returned for this invocation of IWMRQRY.

Action: The current sampling interval should be bypassed,
future invocations of IWMRQRY for subsequent sampling
intervals should begin returning data again.

IWMRQRY Macro

Chapter 48. IWMRQRY – Collecting Address Space Delay Information 431

|||

|
|
|

|
|
|

Table 49. Return and Reason Codes for the IWMRQRY Macro (continued)

Return Code Reason Code Equate Symbol Meaning and Action

10 — Equate Symbol: IwmRetCodeCompError

Meaning: Component error.

Action: No action required. The function may be successful
if invoked again.

IWMRQRY Macro

432 z/OS V1R4.0 MVS Workload Management Services

Chapter 49. IWMSEDES – Scheduling Environments
Determine Execution Service

The IWMSEDES service determines if a scheduling environment is available on a
specified system. A scheduling environment is a list of resource names and their
required states. If all of the resources are in the required state, the scheduling
environment is available. If any of the resources is not in the required state, the
scheduling environment is not available.

The caller can use the IWMSEDES service to perform certain work only when a
particular scheduling environment is available.

If the scheduling environment is available, the caller receives return code
IwmRetCodeOK. If the scheduling environment is not available, the caller receives
return code IwmRetCodeWarning and reason code
IwmRsnCodeSCHENVNotAvailable.

Environment
The requirements for the caller are:

Minimum authorization: Supervisor state or program key mask (PKM) allowing keys
0-7.

Dispatchable unit mode: Task

Cross memory mode: Any PASN, any HASN, any SASN

AMODE: 31-bit

ASC mode: Primary

Interrupt status: Enabled for I/O and external interrupts

Locks: No locks may be held.

Control parameters: Control parameters must be in the primary address space.

Programming Requirements
1. The macro CVT must be included to use this macro.
2. The macro IWMYCON must be included to use this macro.
3. The macro IWMPB must be in the library concatenation, since it is included by

IWMYCON.
4. Note that the high order halfword of register 0, and the reason code variable

when specified, may be non-zero and represents diagnostic data which is NOT
part of the external interface. The high order halfword should thus be excluded
from comparison with the reason code values described above. The constant,
IWMRSNCODE_MASK_CONST defined in IWMYCON, may be used for this
purpose.

Restrictions
None.

© Copyright IBM Corp. 1988, 2002 433

Input Register Information
Before issuing the IWMSEDES macro, the caller does not have to place any
information into any register unless using it in register notation for a particular
parameter, or using it as a base register.

Output Register Information
When control returns to the caller, the GPRs contain:

Register
Contents

0 Reason code if GR15 return code is non-zero
1 Used as work registers by the system
2-13 Unchanged
14 Used as work registers by the system
15 Return code

When control returns to the caller, the ARs contain:

Register
Contents

0-1 Used as work registers by the system
2-13 Unchanged
14-15 Used as work registers by the system

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the
caller depends, the caller must save them before issuing the service, and restore
them after the system returns control.

Performance Implications
None.

Syntax

main diagram

��
name

� IWMSEDES � SCHENV=schenv ,SYSTEM_NAME=system_name �

�
,RETCODE=retcode ,RSNCODE=rsncode

,PLISTVER=IMPLIED_VERSION

,PLISTVER=MAX
,PLISTVER=0

�

�
,MF=S

,0D
,MF=(L ,list addr)

,attr
,COMPLETE

,MF=(E ,list addr)

�"

IWMSEDES Macro

434 z/OS V1R4.0 MVS Workload Management Services

Parameters
The parameters are explained as follows:

name
An optional symbol, starting in column 1, that is the name on the IWMSEDES
macro invocation. The name must conform to the rules for an ordinary
assembler language symbol.

,MF=S
,MF=(L,list addr)
,MF=(L,list addr,attr)
,MF=(L,list addr,0D)
,MF=(E,list addr)
,MF=(E,list addr,COMPLETE)

An optional input parameter that specifies the macro form.

Use MF=S to specify the standard form of the macro, which builds an inline
parameter list and generates the macro invocation to transfer control to the
service. MF=S is the default.

Use MF=L to specify the list form of the macro. Use the list form together with
the execute form of the macro for applications that require reentrant code. The
list form defines an area of storage that the execute form uses to store the
parameters. Only the PLISTVER parameter may be coded with the list form of
the macro.

Use MF=E to specify the execute form of the macro. Use the execute form
together with the list form of the macro for applications that require reentrant
code. The execute form of the macro stores the parameters into the storage
area defined by the list form, and generates the macro invocation to transfer
control to the service.

,list addr
The name of a storage area to contain the parameters. For MF=S and
MF=E, this can be an RS-type address or an address in register (1)-(12).

,attr
An optional 1- to 60-character input string that you use to force boundary
alignment of the parameter list. Use a value of 0F to force the parameter
list to a word boundary, or 0D to force the parameter list to a doubleword
boundary. If you do not code attr, the system provides a value of 0D.

,COMPLETE
Specifies that the system is to check for required parameters and supply
defaults for omitted optional parameters.

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX
,PLISTVER=0

An optional input parameter that specifies the version of the macro. PLISTVER
determines which parameter list the system generates. PLISTVER is an
optional input parameter on all forms of the macro, including the list form. When
using PLISTVER, specify it on all macro forms used for a request and with the
same value on all of the macro forms. The values are:

v IMPLIED_VERSION, which is the lowest version that allows all parameters
specified on the request to be processed. If you omit the PLISTVER
parameter, IMPLIED_VERSION is the default.

IWMSEDES Macro

Chapter 49. IWMSEDES – Scheduling Environments Determine Execution Service 435

v MAX, if you want the parameter list to be the largest size currently possible.
This size might grow from release to release and affect the amount of
storage that your program needs.

If you can tolerate the size change, IBM recommends that you always specify
PLISTVER=MAX on the list form of the macro. Specifying MAX ensures that
the list-form parameter list is always long enough to hold all the parameters
you might specify on the execute form; in this way, MAX ensures that the
parameter list does not overwrite nearby storage.

v 0, if you use the currently available parameters.

To code: Specify one of the following:
v IMPLIED_VERSION
v MAX
v A decimal value of 0

,RETCODE=retcode
An optional output parameter into which the return code is to be copied from
GPR 15.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

,RSNCODE=rsncode
An optional output parameter into which the reason code is to be copied from
GPR 0.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

SCHENV=schenv
A required input parameter, which contains the scheduling environment name to
be checked.

To code: Specify the RS-type address, or address in register (2)-(12), of a
16-character field.

,SYSTEM_NAME=system_name
A required input parameter, which contains the system name to be checked.

To code: Specify the RS-type address, or address in register (2)-(12), of an
8-character field.

ABEND Codes
None.

Return and Reason Codes
When the IWMSEDES macro returns control to your program:
v GPR 15 (and retcode, if you coded RETCODE) contains a return code.
v When the value in GPR 15 is not zero, GPR 0 (and rsncode, if you coded

RSNCODE) contains reason code.

The following table identifies the hexadecimal return and reason codes and the
equate symbol associated with each reason code. IBM support personnel may
request the entire reason code, including the xxxx value.

Table 50. Return and Reason Codes for the IWMSEDES Macro

Return Code Reason Code Equate Symbol Meaning and Action

0 — IwmRetCodeOk: Successful completion.

IWMSEDES Macro

436 z/OS V1R4.0 MVS Workload Management Services

Table 50. Return and Reason Codes for the IWMSEDES Macro (continued)

Return Code Reason Code Equate Symbol Meaning and Action

4 — IwmRetCodeWarning: Successful completion, unusual
conditions noted.

4 xxxx0425 Equate Symbol: IwmRsnCodeNoSCHENV:

Meaning: The system does not support scheduling
environments services. This return code is set for releases
prior to OS/390 Release 4.

Action: Avoid requesting this function on releases prior to
OS/390 Release 4.

4 xxxx0426 Equate Symbol: IwmRsnCodeSCHENVNotFound:

Meaning: The scheduling environment specified by
SCHENV does not exist.

Action: Check the specification of the SCHENV parameter.
If the SCHENV parameter is correct, check whether the
scheduling environment is defined in the active service
policy.

4 xxxx0427 Equate Symbol: IwmRsnCodeSCHENVNotAvailable:

Meaning: The scheduling environment is not available on
the specified system.

Action: Do not process work that depends upon the
scheduling environment being available on the specified
system.

4 xxxx042A Equate Symbol: IwmRsnCodeSCHENVNoSystem:

Meaning: The scheduling environment exists however the
specified system does not exist.

Action: Do not process work that depends upon the
scheduling environment being available on the specified
system.

8 — IwmRetCodeInvocError: Invalid invocation environment or
parameters

8 xxxx0801 Equate Symbol: IwmRsnCodeSrbMode:

Meaning: Caller is in SRB mode.

Action: Avoid requesting this function while in SRB mode.

8 xxxx0803 Equate Symbol: IwmRsnCodeDisabled

Meaning: Caller is disabled.

Action: Avoid requesting this function while disabled.

8 xxxx0804 Equate Symbol: IwmRsnCodeLocked

Meaning: Caller is locked.

Action: Avoid requesting this function while locked.

8 xxxx080B Equate Symbol: IwmRsnCodeBadPl

Meaning: Error accessing parameter list.

Action: Check for possible storage overlay.

8 xxxx0824 Equate Symbol: IwmRsnCodeAmode24

Meaning: Caller in 24 bit addressing mode.

Action: Request this function in 31 bit addressing mode.

IWMSEDES Macro

Chapter 49. IWMSEDES – Scheduling Environments Determine Execution Service 437

Table 50. Return and Reason Codes for the IWMSEDES Macro (continued)

Return Code Reason Code Equate Symbol Meaning and Action

8 xxxx0825 Equate Symbol: IwmRsnCodeAscModeNotPrimary

Meaning: Caller invoked service but was not in primary
ASC mode.

Action: Request this function in primary mode.

8 xxxx0827 Equate Symbol: IwmRsnCodeRsvdNot0

Meaning: Reserved field in parameter list was non-zero.

Action: Request this function with reserved fields zero.

8 xxxx0828 Equate Symbol: IwmRsnCodeBadVersion

Meaning: Version number in parameter list or version
length field is not valid.

Action: Request this function with corrent version number.

10 — Equate Symbol: IwmRetCodeCompError

Meaning: Component error.

Action: Contact your system programmer.

Example
To determine if the scheduling environment at location ENVNAME is available on
the system name at location SYSNAME specify:

IWMSEDES SCHENV=ENVNAME,
SYSTEM_NAME=SYSNAME,
RETCODE=RETCODE,
RSNCODE=RSNCODE

*
* Storage areas
*
ENVNAME DS CL16 Scheduling environment name
SYSNAME DS CL8 Name of system
RETCODE DS 1F Return code
RSNCODE DS 1F Reason code

IWMSEDES Macro

438 z/OS V1R4.0 MVS Workload Management Services

Chapter 50. IWMSEQRY – Scheduling Environments Query
Service

IWMSEQRY returns information about the scheduling environments and resources
that are defined in the active service policy. The information includes the current
state of each scheduling environment and resource on the current system and on
other systems in the sysplex.

The information is obtained without serialization. Data may not be available for all
systems in the sysplex.

The information is returned in a work area that you specify. The work area must be
located in the caller’s primary address space. The format of the work area is
mapped by the IWMSET macro. IWMSEQRY checks if the specified work area
length (ANSLEN) is large enough to receive the output. If so, IWMSEQRY returns
the information in the work area and returns the actual length of the information in
the QUERYLEN parameter. If the storage provided is not large enough, the caller
receives reason code 040A, and IWMSEQRY returns the required amount of
storage in the QUERYLEN parameter.

Environment
The requirements for the caller are:

Minimum authorization: Supervisor state or program key mask (PKM) allowing keys
0-7.

Dispatchable unit mode: Task

Cross memory mode: Any PASN, any HASN, any SASN

AMODE: 31-bit

ASC mode: Primary

Interrupt status: Enabled for I/O and external interrupts

Locks: No locks may be held.

Control parameters: Control parameters must be in the primary address space.

Programming Requirements
1. The macro CVT must be included to use this macro.
2. The macro IWMYCON must be included to use this macro.
3. The macro IWMPB must be in the library concatenation, since it is included by

IWMYCON.
4. Note that the high order halfword of register 0, and the reason code variable

when specified, may be non-zero and represents diagnostic data which is NOT
part of the external interface. The high order halfword should thus be excluded
from comparison with the reason code values described above. The constant,
IWMRSNCODE_MASK_CONST defined in IWMYCON, may be used for this
purpose.

Restrictions
1. The caller cannot have an EUT FRR established.

© Copyright IBM Corp. 1988, 2002 439

Input Register Information
Before issuing the IWMSEQRY macro, the caller does not have to place any
information into any register unless using it in register notation for a particular
parameter, or using it as a base register.

Output Register Information
When control returns to the caller, the GPRs contain:

Register
Contents

0 Reason code if GR15 return code is non-zero
1 Used as work registers by the system
2-13 Unchanged
14 Used as work registers by the system
15 Return code

When control returns to the caller, the ARs contain:

Register
Contents

0-1 Used as work registers by the system
2-13 Unchanged
14-15 Used as work registers by the system

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the
caller depends, the caller must save them before issuing the service, and restore
them after the system returns control.

Performance Implications
None.

Syntax

main diagram

��
name

� IWMSEQRY � ANSLEN=anslen ,ANSAREA=ansarea �

� ,QUERYLEN=querylen
,RETCODE=retcode ,RSNCODE=rsncode

�

�
,PLISTVER=IMPLIED_VERSION

,PLISTVER=MAX
,PLISTVER=0

,MF=S

,0D
,MF=(L ,list addr)

,attr
,COMPLETE

,MF=(E ,list addr)

�"

IWMSEQRY Macro

440 z/OS V1R4.0 MVS Workload Management Services

Parameters
The parameters are explained as follows:

name
An optional symbol, starting in column 1, that is the name on the IWMSEQRY
macro invocation. The name must conform to the rules for an ordinary
assembler language symbol.

,ANSAREA=ansarea
A required input/output parameter, of an area to contain the data returned by
IWMSEQRY. The area is mapped by macro IWMSET.

To code: Specify the RS-type address, or address in register (2)-(12), of a field.

ANSLEN=anslen
A required input parameter, which contains the length of the area provided to
contain the data returned by IWMSEQRY.

To code: Specify the RS-type address, or address in register (2)-(12), of a
fullword field.

,MF=S
,MF=(L,list addr)
,MF=(L,list addr,attr)
,MF=(L,list addr,0D)
,MF=(E,list addr)
,MF=(E,list addr,COMPLETE)

An optional input parameter that specifies the macro form.

Use MF=S to specify the standard form of the macro, which builds an inline
parameter list and generates the macro invocation to transfer control to the
service. MF=S is the default.

Use MF=L to specify the list form of the macro. Use the list form together with
the execute form of the macro for applications that require reentrant code. The
list form defines an area of storage that the execute form uses to store the
parameters. Only the PLISTVER parameter may be coded with the list form of
the macro.

Use MF=E to specify the execute form of the macro. Use the execute form
together with the list form of the macro for applications that require reentrant
code. The execute form of the macro stores the parameters into the storage
area defined by the list form, and generates the macro invocation to transfer
control to the service.

,list addr
The name of a storage area to contain the parameters. For MF=S and
MF=E, this can be an RS-type address or an address in register (1)-(12).

,attr
An optional 1- to 60-character input string that you use to force boundary
alignment of the parameter list. Use a value of 0F to force the parameter
list to a word boundary, or 0D to force the parameter list to a doubleword
boundary. If you do not code attr, the system provides a value of 0D.

,COMPLETE
Specifies that the system is to check for required parameters and supply
defaults for omitted optional parameters.

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX

IWMSEQRY Macro

Chapter 50. IWMSEQRY – Scheduling Environments Query Service 441

,PLISTVER=0
An optional input parameter that specifies the version of the macro. PLISTVER
determines which parameter list the system generates. PLISTVER is an
optional input parameter on all forms of the macro, including the list form. When
using PLISTVER, specify it on all macro forms used for a request and with the
same value on all of the macro forms. The values are:

v IMPLIED_VERSION, which is the lowest version that allows all parameters
specified on the request to be processed. If you omit the PLISTVER
parameter, IMPLIED_VERSION is the default.

v MAX, if you want the parameter list to be the largest size currently possible.
This size might grow from release to release and affect the amount of
storage that your program needs.

If you can tolerate the size change, IBM recommends that you always specify
PLISTVER=MAX on the list form of the macro. Specifying MAX ensures that
the list-form parameter list is always long enough to hold all the parameters
you might specify on the execute form; in this way, MAX ensures that the
parameter list does not overwrite nearby storage.

v 0, if you use the currently available parameters.

To code: Specify one of the following:
v IMPLIED_VERSION
v MAX
v A decimal value of 0

,QUERYLEN=querylen
A required output parameter, which contains the number of bytes needed to
contain the scheduling environment information.

To code: Specify the RS-type address, or address in register (2)-(12), of a
fullword field.

,RETCODE=retcode
An optional output parameter into which the return code is to be copied from
GPR 15.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

,RSNCODE=rsncode
An optional output parameter into which the reason code is to be copied from
GPR 0.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

ABEND Codes
None.

Return and Reason Codes
When the IWMSEQRY macro returns control to your program:
v GPR 15 (and retcode, if you coded RETCODE) contains a return code.
v When the value in GPR 15 is not zero, GPR 0 (and rsncode, if you coded

RSNCODE) contains reason code.

The following table identifies the hexadecimal return and reason codes and the
equate symbol associated with each reason code. IBM support personnel may
request the entire reason code, including the xxxx value.

IWMSEQRY Macro

442 z/OS V1R4.0 MVS Workload Management Services

Table 51. Return and Reason Codes for the IWMSEQRY Macro

Return Code Reason Code Equate Symbol Meaning and Action

0 — IwmRetCodeOk: Successful completion. All requested data
returned.

4 — IwmRetCodeWarning: Successful completion, unusual
conditions noted.

4 xxxx040A Equate Symbol: IwmRsnCodeOutputAreaTooSmall:

Meaning: The output area supplied is too small to receive
all the available information.

Action: Obtain a new output area using the length returned
in the QUERYLEN parameter and invoke the service again.

4 xxxx0425 Equate Symbol: IwmRsnCodeNoSCHENV:

Meaning: The system does not support scheduling
environments services. This return code is set for releases
prior to OS/390 Release 4.

Action: Avoid requesting this function on releases prior to
OS/390 Release 4.

4 xxxx0428 Equate Symbol: IwmRsnCodeNoSCHENVDefined

Meaning: No scheduling environments or resources are
defined in the active service policy. No data is returned in
the output area.

Action: Do not use the output area.

8 — IwmRetCodeInvocError: Invalid invocation environment or
parameters

8 xxxx0801 Equate Symbol: IwmRsnCodeSrbMode:

Meaning: Caller is in SRB mode.

Action: Avoid requesting this function while in SRB mode.

8 xxxx0803 Equate Symbol: IwmRsnCodeDisabled

Meaning: Caller is disabled.

Action: Avoid requesting this function while disabled.

8 xxxx0804 Equate Symbol: IwmRsnCodeLocked

Meaning: Caller is locked.

Action: Avoid requesting this function while locked.

8 xxxx080B Equate Symbol: IwmRsnCodeBadPl

Meaning: Error accessing parameter list.

Action: Check for possible storage overlay.

8 xxxx0810 Equate Symbol: IwmRsnCodeEutFrr

Meaning: Caller has an EUT FRR established.

Action: Avoid requesting this function with an EUT FRR set.

8 xxxx0824 Equate Symbol: IwmRsnCodeAmode24

Meaning: Caller is in 24 bit addressing mode.

Action: Request this function in 31 bit addressing mode.

IWMSEQRY Macro

Chapter 50. IWMSEQRY – Scheduling Environments Query Service 443

Table 51. Return and Reason Codes for the IWMSEQRY Macro (continued)

Return Code Reason Code Equate Symbol Meaning and Action

8 xxxx0825 Equate Symbol: IwmRsnCodeAscModeNotPrimary

Meaning: Caller invoked service but was not in primary
ASC mode.

Action: Request this function in primary mode.

8 xxxx0827 Equate Symbol: IwmRsnCodeRsvdNot0

Meaning: Reserved field in parameter list was non-zero.

Action: Request this function with reserved fields zero.

C — Equate Symbol: IwmRetCodeEnvError

Meaning: Environmental error.

C xxxx0C2C Equate Symbol: IwmRsnCodeCannotAccessPolicy

Meaning: The service cannot access the active policy
possibly due to a policy activation in progress.

Action: The caller can try the service again later, or return
an error indication to its caller.

10 — Equate Symbol: IwmRetCodeCompError

Meaning: Component error.

Action: Contact your system programmer.

Example
To store scheduling environment and resource information into an area whose
address is in register 5 and whose length is at location ANSLEN:

IWMSEQRY ANSAREA=(R5),
ANSLEN=ANSLEN,
QUERYLEN=RQDLEN,
RETCODE=RETCODE,
RSNCODE=RSNCODE

*
* Storage areas
*
ANSLEN DS 1F Answer area length
RQDLEN DS 1F Required length
RETCODE DS 1F Return code
RSNCODE DS 1F Reason code
*

IWMSEQRY Macro

444 z/OS V1R4.0 MVS Workload Management Services

Chapter 51. IWMSESET – Scheduling Environments Set
Resource

IWMSESET allows the caller to modify the state of a resource. A resource is an
abstract element that can represent an actual physical entity (such as a peripheral
device), or an intangible quality (such as a certain time of day). A resource has an
ON, OFF, or RESET state.

A resource is a component of a scheduling environment. A scheduling environment
is a list of resource names and their required states. By modifing the state of a
resource you can:
v change a scheduling environment such that the resources are in the required

state thereby allowing work to be scheduled,
v change a scheduling environment such that the resources are not in the required

state thereby preventing work from being scheduled.

Environment
The requirements for the caller are:

Minimum authorization: Supervisor state or program key mask (PKM) allowing keys
0-7.

Dispatchable unit mode: Task

Cross memory mode: Any PASN, any HASN, any SASN

AMODE: 31-bit

ASC mode: Primary

Interrupt status: Enabled for I/O and external interrupts

Locks: No locks may be held.

Control parameters: Control parameters must be in the primary address space.

Programming Requirements
1. The macro CVT must be included to use this macro.
2. The macro IWMYCON must be included to use this macro.
3. The macro IWMPB must be in the library concatenation, since it is included by

IWMYCON.
4. Note that the high order halfword of register 0, and the reason code variable

when specified, may be non-zero and represents diagnostic data which is NOT
part of the external interface. The high order halfword should thus be excluded
from comparison with the reason code values described above. The constant,
IWMRSNCODE_MASK_CONST defined in IWMYCON, may be used for this
purpose.

Restrictions
None.

Input Register Information
Before issuing the IWMSESET macro, the caller does not have to place any
information into any register unless using it in register notation for a particular
parameter, or using it as a base register.

© Copyright IBM Corp. 1988, 2002 445

Output Register Information
When control returns to the caller, the GPRs contain:

Register
Contents

0 Reason code if GR15 return code is non-zero
1 Used as work registers by the system
2-13 Unchanged
14 Used as work registers by the system
15 Return code

When control returns to the caller, the ARs contain:

Register
Contents

0-1 Used as work registers by the system
2-13 Unchanged
14-15 Used as work registers by the system

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the
caller depends, the caller must save them before issuing the service, and restore
them after the system returns control.

Performance Implications
None.

Syntax

main diagram

��
name

� IWMSESET � RESOURCE=resource ,STATE=ON
,STATE=OFF
,STATE=RESET

�

�
,RETCODE=retcode ,RSNCODE=rsncode

,PLISTVER=IMPLIED_VERSION

,PLISTVER=MAX
,PLISTVER=0

�

�
,MF=S

,0D
,MF=(L ,list addr)

,attr
,COMPLETE

,MF=(E ,list addr)

�"

Parameters
The parameters are explained as follows:

IWMSESET Macro

446 z/OS V1R4.0 MVS Workload Management Services

name
An optional symbol, starting in column 1, that is the name on the IWMSESET
macro invocation. The name must conform to the rules for an ordinary
assembler language symbol.

,MF=S
,MF=(L,list addr)
,MF=(L,list addr,attr)
,MF=(L,list addr,0D)
,MF=(E,list addr)
,MF=(E,list addr,COMPLETE)

An optional input parameter that specifies the macro form.

Use MF=S to specify the standard form of the macro, which builds an inline
parameter list and generates the macro invocation to transfer control to the
service. MF=S is the default.

Use MF=L to specify the list form of the macro. Use the list form together with
the execute form of the macro for applications that require reentrant code. The
list form defines an area of storage that the execute form uses to store the
parameters. Only the PLISTVER parameter may be coded with the list form of
the macro.

Use MF=E to specify the execute form of the macro. Use the execute form
together with the list form of the macro for applications that require reentrant
code. The execute form of the macro stores the parameters into the storage
area defined by the list form, and generates the macro invocation to transfer
control to the service.

,list addr
The name of a storage area to contain the parameters. For MF=S and
MF=E, this can be an RS-type address or an address in register (1)-(12).

,attr
An optional 1- to 60-character input string that you use to force boundary
alignment of the parameter list. Use a value of 0F to force the parameter
list to a word boundary, or 0D to force the parameter list to a doubleword
boundary. If you do not code attr, the system provides a value of 0D.

,COMPLETE
Specifies that the system is to check for required parameters and supply
defaults for omitted optional parameters.

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX
,PLISTVER=0

An optional input parameter that specifies the version of the macro. PLISTVER
determines which parameter list the system generates. PLISTVER is an
optional input parameter on all forms of the macro, including the list form. When
using PLISTVER, specify it on all macro forms used for a request and with the
same value on all of the macro forms. The values are:

v IMPLIED_VERSION, which is the lowest version that allows all parameters
specified on the request to be processed. If you omit the PLISTVER
parameter, IMPLIED_VERSION is the default.

v MAX, if you want the parameter list to be the largest size currently possible.
This size might grow from release to release and affect the amount of
storage that your program needs.

If you can tolerate the size change, IBM recommends that you always specify
PLISTVER=MAX on the list form of the macro. Specifying MAX ensures that

IWMSESET Macro

Chapter 51. IWMSESET – Scheduling Environments Set Resource 447

the list-form parameter list is always long enough to hold all the parameters
you might specify on the execute form; in this way, MAX ensures that the
parameter list does not overwrite nearby storage.

v 0, if you use the currently available parameters.

To code: Specify one of the following:
v IMPLIED_VERSION
v MAX
v A decimal value of 0

RESOURCE=resource
A required input parameter, which contains the resource name to be modified.

To code: Specify the RS-type address, or address in register (2)-(12), of a
16-character field.

,RETCODE=retcode
An optional output parameter into which the return code is to be copied from
GPR 15.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

,RSNCODE=rsncode
An optional output parameter into which the reason code is to be copied from
GPR 0.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

,STATE=ON
,STATE=OFF
,STATE=RESET

A required parameter, which sets the state of the resource.

,STATE=ON
sets the resource to the ON state.

,STATE=OFF
sets the resource to the OFF state.

,STATE=RESET
sets the resource to the RESET state.

ABEND Codes
None.

Return and Reason Codes
When the IWMSESET macro returns control to your program:
v GPR 15 (and retcode, if you coded RETCODE) contains a return code.
v When the value in GPR 15 is not zero, GPR 0 (and rsncode, if you coded

RSNCODE) contains reason code.

The following table identifies the hexadecimal return and reason codes and the
equate symbol associated with each reason code. IBM support personnel may
request the entire reason code, including the xxxx value.

IWMSESET Macro

448 z/OS V1R4.0 MVS Workload Management Services

Table 52. Return and Reason Codes for the IWMSESET Macro

Return Code Reason Code Equate Symbol Meaning and Action

0 — IwmRetCodeOk: Successful completion. All requested data
returned.

4 — IwmRetCodeWarning: Successful completion, unusual
conditions noted.

4 xxxx0425 Equate Symbol: IwmRsnCodeNoSCHENV:

Meaning: The system does not support scheduling
environments services. This return code is set for releases
prior to OS/390 Release 4.

Action: Avoid requesting this function on releases prior to
OS/390 Release 4.

4 xxxx0429 Equate Symbol: IwmRsnCodeResourceNotFound:

Meaning: The resource specified by RESOURCE does not
exist.

Action: Check the specification of the RESOURCE
parameter. If the RESOURCE parameter is correct, check
whether the resource is defined in the active service policy.

8 — IwmRetCodeInvocError: Invalid invocation environment or
parameters

8 xxxx0801 Equate Symbol: IwmRsnCodeSrbMode:

Meaning: Caller is in SRB mode.

Action: Avoid requesting this function while in SRB mode.

8 xxxx0803 Equate Symbol: IwmRsnCodeDisabled

Meaning: Caller is disabled.

Action: Avoid requesting this function while disabled.

8 xxxx0804 Equate Symbol: IwmRsnCodeLocked

Meaning: Caller is locked.

Action: Avoid requesting this function while locked.

8 xxxx080B Equate Symbol: IwmRsnCodeBadPl

Meaning: Error accessing parameter list.

Action: Check for possible storage overlay.

8 xxxx0824 Equate Symbol: IwmRsnCodeAmode24

Meaning: Caller is in 24 bit addressing mode.

Action: Request this function in 31 bit addressing mode.

8 xxxx0825 Equate Symbol: IwmRsnCodeAscModeNotPrimary

Meaning: Caller invoked service but was not in primary
ASC mode.

Action: Request this function in primary mode.

8 xxxx0827 Equate Symbol: IwmRsnCodeRsvdNot0

Meaning: Reserved field in parameter list was non-zero.

Action: Request this function with reserved fields zero.

IWMSESET Macro

Chapter 51. IWMSESET – Scheduling Environments Set Resource 449

Table 52. Return and Reason Codes for the IWMSESET Macro (continued)

Return Code Reason Code Equate Symbol Meaning and Action

8 xxxx0828 Equate Symbol: IwmRsnCodeBadVersion

Meaning: Version number in parameter list or version
length field is not valid.

Action: Request this function with correct version number.

10 — Equate Symbol: IwmRetCodeCompError

Meaning: Component error.

Action: Contact your system programmer.

Example
To set the resource specified at location RESNAME to the ON state specify:

IWMSESET RESOURCE=RESNAME,
STATE=ON,
RETCODE=RETCODE,
RSNCODE=RSNCODE

*
* Storage areas
*
RESNAME DS CL16 Resource name
RETCODE DS 1F Return code
RSNCODE DS 1F Reason code
*

IWMSESET Macro

450 z/OS V1R4.0 MVS Workload Management Services

Chapter 52. IWMSEVAL – Scheduling Environments Validate
Service

The IWMSEVAL service validates a scheduling environment name. The caller can
validate a scheduling environment prior to associating it with a work item (such as a
job or transaction).

If the scheduling environment is valid, the caller receives return code
IwmRetCodeOK. If the scheduling environment is not valid, the caller receives
return code IwmRetCodeWarning and reason code
IwmRsnCodeSCHENVNotFound.

Environment
The requirements for the caller are:

Minimum authorization: Supervisor state or program key mask (PKM) allowing keys
0-7.

Dispatchable unit mode: Task

Cross memory mode: Any PASN, any HASN, any SASN

AMODE: 31-bit

ASC mode: Primary

Interrupt status: Enabled for I/O and external interrupts

Locks: No locks may be held.

Control parameters: Control parameters must be in the primary address space.

Programming Requirements
1. The macro CVT must be included to use this macro.
2. The macro IWMYCON must be included to use this macro.
3. The macro IWMPB must be in the library concatenation, since it is included by

IWMYCON.
4. Note that the high order halfword of register 0, and the reason code variable

when specified, may be non-zero and represents diagnostic data which is NOT
part of the external interface. The high order halfword should thus be excluded
from comparison with the reason code values described above. The constant,
IWMRSNCODE_MASK_CONST defined in IWMYCON, may be used for this
purpose.

Restrictions
None.

Input Register Information
Before issuing the IWMSEVAL macro, the caller does not have to place any
information into any register unless using it in register notation for a particular
parameter, or using it as a base register.

© Copyright IBM Corp. 1988, 2002 451

Output Register Information
When control returns to the caller, the GPRs contain:

Register
Contents

0 Reason code if GR15 return code is non-zero
1 Used as work registers by the system
2-13 Unchanged
14 Used as work registers by the system
15 Return code

When control returns to the caller, the ARs contain:

Register
Contents

0-1 Used as work registers by the system
2-13 Unchanged
14-15 Used as work registers by the system

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the
caller depends, the caller must save them before issuing the service, and restore
them after the system returns control.

Performance Implications
None.

Syntax

main diagram

��
name

� IWMSEVAL � SCHENV=schenv
,RETCODE=retcode

�

�
,RSNCODE=rsncode

,PLISTVER=IMPLIED_VERSION

,PLISTVER=MAX
,PLISTVER=0

�

�
,MF=S

,0D
,MF=(L ,list addr)

,attr
,COMPLETE

,MF=(E ,list addr)

�"

Parameters
The parameters are explained as follows:

IWMSEVAL Macro

452 z/OS V1R4.0 MVS Workload Management Services

name
An optional symbol, starting in column 1, that is the name on the IWMSEVAL
macro invocation. The name must conform to the rules for an ordinary
assembler language symbol.

,MF=S
,MF=(L,list addr)
,MF=(L,list addr,attr)
,MF=(L,list addr,0D)
,MF=(E,list addr)
,MF=(E,list addr,COMPLETE)

An optional input parameter that specifies the macro form.

Use MF=S to specify the standard form of the macro, which builds an inline
parameter list and generates the macro invocation to transfer control to the
service. MF=S is the default.

Use MF=L to specify the list form of the macro. Use the list form together with
the execute form of the macro for applications that require reentrant code. The
list form defines an area of storage that the execute form uses to store the
parameters. Only the PLISTVER parameter may be coded with the list form of
the macro.

Use MF=E to specify the execute form of the macro. Use the execute form
together with the list form of the macro for applications that require reentrant
code. The execute form of the macro stores the parameters into the storage
area defined by the list form, and generates the macro invocation to transfer
control to the service.

,list addr
The name of a storage area to contain the parameters. For MF=S and
MF=E, this can be an RS-type address or an address in register (1)-(12).

,attr
An optional 1- to 60-character input string that you use to force boundary
alignment of the parameter list. Use a value of 0F to force the parameter
list to a word boundary, or 0D to force the parameter list to a doubleword
boundary. If you do not code attr, the system provides a value of 0D.

,COMPLETE
Specifies that the system is to check for required parameters and supply
defaults for omitted optional parameters.

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX
,PLISTVER=0

An optional input parameter that specifies the version of the macro. PLISTVER
determines which parameter list the system generates. PLISTVER is an
optional input parameter on all forms of the macro, including the list form. When
using PLISTVER, specify it on all macro forms used for a request and with the
same value on all of the macro forms. The values are:

v IMPLIED_VERSION, which is the lowest version that allows all parameters
specified on the request to be processed. If you omit the PLISTVER
parameter, IMPLIED_VERSION is the default.

v MAX, if you want the parameter list to be the largest size currently possible.
This size might grow from release to release and affect the amount of
storage that your program needs.

If you can tolerate the size change, IBM recommends that you always specify
PLISTVER=MAX on the list form of the macro. Specifying MAX ensures that

IWMSEVAL Macro

Chapter 52. IWMSEVAL – Scheduling Environments Validate Service 453

the list-form parameter list is always long enough to hold all the parameters
you might specify on the execute form; in this way, MAX ensures that the
parameter list does not overwrite nearby storage.

v 0, if you use the currently available parameters.

To code: Specify one of the following:
v IMPLIED_VERSION
v MAX
v A decimal value of 0

,RETCODE=retcode
An optional output parameter into which the return code is to be copied from
GPR 15.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

,RSNCODE=rsncode
An optional output parameter into which the reason code is to be copied from
GPR 0.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

SCHENV=schenv
A required input parameter, which contains the scheduling environment to be
validated.

To code: Specify the RS-type address, or address in register (2)-(12), of a
16-character field.

ABEND Codes
None.

Return and Reason Codes
When the IWMSEVAL macro returns control to your program:
v GPR 15 (and retcode, if you coded RETCODE) contains a return code.
v When the value in GPR 15 is not zero, GPR 0 (and rsncode, if you coded

RSNCODE) contains reason code.

The following table identifies the hexadecimal return and reason codes and the
equate symbol associated with each reason code. IBM support personnel may
request the entire reason code, including the xxxx value.

Table 53. Return and Reason Codes for the IWMSEVAL Macro

Return Code Reason Code Equate Symbol Meaning and Action

0 — IwmRetCodeOk: Successful completion.

4 — IwmRetCodeWarning: Successful completion, unusual
conditions noted.

4 xxxx0425 Equate Symbol: IwmRsnCodeNoSCHENV:

Meaning: The system does not support scheduling
environments services. This return code is set for releases
prior to OS/390 Release 4.

Action: Avoid requesting this function on releases prior to
OS/390 Release 4.

IWMSEVAL Macro

454 z/OS V1R4.0 MVS Workload Management Services

Table 53. Return and Reason Codes for the IWMSEVAL Macro (continued)

Return Code Reason Code Equate Symbol Meaning and Action

4 xxxx0426 Equate Symbol: IwmRsnCodeSCHENVNotFound:

Meaning: The scheduling environment specified by
SCHENV does not exist.

Action: Check the specification of the SCHENV parameter.
If the SCHENV parameter is correct, check whether the
scheduling environment is defined in the active service
policy.

8 — IwmRetCodeInvocError: Invalid invocation environment or
parameters

8 xxxx0801 Equate Symbol: IwmRsnCodeSrbMode:

Meaning: Caller is in SRB mode.

Action: Avoid requesting this function while in SRB mode.

8 xxxx0803 Equate Symbol: IwmRsnCodeDisabled

Meaning: Caller is disabled.

Action: Avoid requesting this function while disabled.

8 xxxx0804 Equate Symbol: IwmRsnCodeLocked

Meaning: Caller is locked.

Action: Avoid requesting this function while locked.

8 xxxx080B Equate Symbol: IwmRsnCodeBadPl

Meaning: Error accessing parameter list.

Action: Check for possible storage overlay.

8 xxxx0824 Equate Symbol: IwmRsnCodeAmode24

Meaning: Caller is in 24 bit addressing mode.

Action: Request this function in 31 bit addressing mode.

8 xxxx0825 Equate Symbol: IwmRsnCodeAscModeNotPrimary

Meaning: Caller invoked service but was not in primary
ASC mode.

Action: Request this function in primary mode.

8 xxxx0827 Equate Symbol: IwmRsnCodeRsvdNot0

Meaning: Reserved field in parameter list was non-zero.

Action: Request this function with reserved fields zero.

8 xxxx0828 Equate Symbol: IwmRsnCodeBadVersion

Meaning: Version number in parameter list or version
length field is not valid.

Action: Request this function with corrent version number.

10 — Equate Symbol: IwmRetCodeCompError

Meaning: Component error.

Action: Contact your system programmer.

IWMSEVAL Macro

Chapter 52. IWMSEVAL – Scheduling Environments Validate Service 455

Example
To validate the scheduling environment name at location ENVNAME specify:

IWMSEVAL SCHENV=ENVNAME,
RETCODE=RETCODE,
RSNCODE=RSNCODE

*
* Storage areas
*
ENVNAME DS CL16 Scheduling environment name
RETCODE DS 1F Return code
RSNCODE DS 1F Reason code

IWMSEVAL Macro

456 z/OS V1R4.0 MVS Workload Management Services

Chapter 53. IWMSINF — WLM Server Manager Inform Service

The IWMSINF service should be used to obtain the number of server instances to
be started from WLM. The caller must have previously connected to WLM using the
IWMCONN service specifying SERVER_MANAGER=YES,
SERVER_TYPE=QUEUE and MANAGE_TASKS=YES.

The caller can use the service in the following ways:

1. MODE=SUSPEND

The calling task is suspended until WLM wants the caller to start additional
server instances. The caller must re-invoke the service after it starts the server
instances to wait for the next notification. The caller cannot rely upon
asynchronous exits receiving control while the task is suspended.

2. MODE=POST

The calling task is not suspended by WLM. WLM returns the number of
additional server instances to start now. WLM will post the caller’s ECB when
the number of server instances should be increased. After the ECB is posted
the caller must re-invoke IWMSINF to obtain the number of server instances to
start.

3. MODE=INFORM

The calling task is not suspended by WLM. WLM returns the number of
additional server instances to start now. This form should only be used the first
time the service is invoked immediately after connect because at this time the
service will always return a value.

4. MODE=ECBCANCEL

The calling task is not suspended by WLM. This invocation should only be used
to inform WLM that it should not post a caller’s ECB any more. The form can be
used for error recovery purposes in conjunction with MODE=POST.

WLM stops server instances by returning reason code IwmRsnCodeStopTask from
IWMSSEL.

Environment
The requirements for the caller are:

Minimum authorization: Problem state. Any PSW key

Dispatchable unit mode: Task

Cross memory mode: PASN=HASN=SASN

AMODE: 31-bit

ASC mode: Primary

Interrupt status: Enabled for I/O and external interrupts

Locks: No locks may be held.

Control parameters: Control parameters must be in the primary address space.

Programming Requirements
1. Make sure no EUT FRRs are established.
2. The macro CVT must be included to use this macro.
3. The macro IWMYCON must be included to use this macro.

© Copyright IBM Corp. 1988, 2002 457

|

|
|
|
|

4. The macro IWMPB must be in the library concatenation, since it is included by
IWMYCON.

5. Note that the high order halfword of register 0, and the reason code variable
when specified, may be non-zero and represents diagnostic data which is NOT
part of the external interface. The high order halfword should thus be excluded
from comparison with the reason code values described above. The constant,
IWMRSNCODE_MASK_CONST defined in IWMYCON, may be used for this
purpose.

Restrictions
v This macro may not be used during task/address space termination.

v Only a single invocation is allowed to be active for a given address space at any
given time.

v Before using this macro the caller must connect to WLM via IWMCONN
Server_Manager=YES, Server_Type=Queue, Manage_Tasks=Yes.

Input Register Information
Before issuing the IWMSINF macro, the caller does not have to place any
information into any register unless using it in register notation for a particular
parameter, or using it as a base register.

Output Register Information
When control returns to the caller, the GPRs contain:

Register
Contents

0 Reason code if GR15 return code is non-zero
1 Used as work registers by the system
2-13 Unchanged
14 Used as work registers by the system
15 Return code

When control returns to the caller, the ARs contain:

Register
Contents

0-1 Used as work registers by the system
2-13 Unchanged
14-15 Used as work registers by the system

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the
caller depends, the caller must save them before issuing the service, and restore
them after the system returns control.

Performance Implications
None

IWMSINF Macro

458 z/OS V1R4.0 MVS Workload Management Services

Syntax

main diagram

��
name

� IWMSINF � �

� MODE=SUSPEND ,SRVINST_TO_STRT=srvinst_to_strt
,ECB=NO_ECB

MODE=POST ,SRVINST_TO_STRT=srvinst_to_strt
,ECB=ecb

MODE=INFORM ,SRVINST_TO_STRT=srvinst_to_strt
,MODE=ECBCANCEL

�

�
,RETCODE=retcode ,RSNCODE=rsncode

,PLISTVER=IMPLIED_VERSION

,PLISTVER=MAX
,PLISTVER=0

�

�
,MF=S

,0D
,MF=(L ,list addr)

,attr
,COMPLETE

,MF=(E ,list addr)

�"

Parameters
The parameters are explained as follows:

name
An optional symbol, starting in column 1, that is the name on the IWMSINF
macro invocation. The name must conform to the rules for an ordinary
assembler language symbol.

,ECB=ecb
,ECB=NO_ECB

When MODE=POST is specified, an optional input parameter, to specify the
ECB which should be posted if WLM wants to inform the caller that the number
of server instances have changed. The caller re-invokes IWMSINF after the
ECB was posted by WLM to obtain number of server instances to start. The
default is NO_ECB. indicates that no ECB has been specified by the Caller

To code: Specify the RS-type address, or address in register (2)-(12), of a
fullword field.

,MF=S
,MF=(L,list addr)
,MF=(L,list addr,attr)
,MF=(L,list addr,0D)
,MF=(E,list addr)
,MF=(E,list addr,COMPLETE)

An optional input parameter that specifies the macro form.

IWMSINF Macro

Chapter 53. IWMSINF — WLM Server Manager Inform Service 459

Use MF=S to specify the standard form of the macro, which builds an inline
parameter list and generates the macro invocation to transfer control to the
service. MF=S is the default.

Use MF=L to specify the list form of the macro. Use the list form together with
the execute form of the macro for applications that require reentrant code. The
list form defines an area of storage that the execute form uses to store the
parameters. Only the PLISTVER parameter may be coded with the list form of
the macro.

Use MF=E to specify the execute form of the macro. Use the execute form
together with the list form of the macro for applications that require reentrant
code. The execute form of the macro stores the parameters into the storage
area defined by the list form, and generates the macro invocation to transfer
control to the service.

,list addr
The name of a storage area to contain the parameters. For MF=S and
MF=E, this can be an RS-type address or an address in register (1)-(12).

,attr
An optional 1- to 60-character input string that you use to force boundary
alignment of the parameter list. Use a value of 0F to force the parameter
list to a word boundary, or 0D to force the parameter list to a doubleword
boundary. If you do not code attr, the system provides a value of 0D.

,COMPLETE
Specifies that the system is to check for required parameters and supply
defaults for omitted optional parameters.

MODE=SUSPEND
MODE=POST
MODE=INFORM
MODE=ECBCANCEL

A required parameter that indicates how the caller uses the service

MODE=SUSPEND
indicates that the caller wants to get suspended by WLM to listen for
additional server instances to start. WLM will resume the caller if the
number of server instances should be increased.

MODE=POST
indicates that the caller wants to get posted if additional server instances
should be started. If the caller gets posted it must re-invoke IWMSINF to
obtain the value.

The caller is not suspended by WLM and WLM will also return the number
of additional server instances on this call.

MODE=INFORM
indicates that the caller wants to obtain the number of server instances
without being suspended by WLM. This form is usefull during initialization
after IWMCONN if the caller wants to use the POST form but is not able to
provide an ECB yet. It is expected that the caller will provide an ECB on the
next invocation of the service.

MODE=ECBCANCEL
indicates that a caller who passed an ECB to WLM wants to cancel the
ECB address to avoid being posted in the future by WLM.

This form is usefull during termination or recovery of server address spaces
if a previous ECB address is no longer valid.

IWMSINF Macro

460 z/OS V1R4.0 MVS Workload Management Services

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX
,PLISTVER=0

An optional input parameter that specifies the version of the macro. PLISTVER
determines which parameter list the system generates. PLISTVER is an
optional input parameter on all forms of the macro, including the list form. When
using PLISTVER, specify it on all macro forms used for a request and with the
same value on all of the macro forms. The values are:

v IMPLIED_VERSION, which is the lowest version that allows all parameters
specified on the request to be processed. If you omit the PLISTVER
parameter, IMPLIED_VERSION is the default.

v MAX, if you want the parameter list to be the largest size currently possible.
This size might grow from release to release and affect the amount of
storage that your program needs.

If you can tolerate the size change, IBM recommends that you always specify
PLISTVER=MAX on the list form of the macro. Specifying MAX ensures that
the list-form parameter list is always long enough to hold all the parameters
you might specify on the execute form, when both are assembled with the
same level of the system. In this way, MAX ensures that the parameter list
does not overwrite nearby storage.

v 0, if you use the currently available parameters.

To code: Specify one of the following:
v IMPLIED_VERSION
v MAX
v A decimal value of 0

,RETCODE=retcode
An optional output parameter into which the return code is to be copied from
GPR 15.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

,RSNCODE=rsncode
An optional output parameter into which the reason code is to be copied from
GPR 0.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

,SRVINST_TO_STRT=srvinst_to_strt
When MODE=SUSPEND is specified, a required output parameter that returns
the number of server instances to start by the caller

To code: Specify the RS-type address, or address in register (2)-(12), of a
fullword field.

,SRVINST_TO_STRT=srvinst_to_strt
When MODE=POST is specified, a required output parameter that returns the
number of server instances to start by the caller

To code: Specify the RS-type address, or address in register (2)-(12), of a
fullword field.

,SRVINST_TO_STRT=srvinst_to_strt
When MODE=INFORM is specified, a required output parameter that returns
the number of server instances to start by the caller

To code: Specify the RS-type address, or address in register (2)-(12), of a
fullword field.

IWMSINF Macro

Chapter 53. IWMSINF — WLM Server Manager Inform Service 461

ABEND Codes
None.

Return and Reason Codes
When the IWMSINF macro returns control to your program:
v GPR 15 (and retcode, when you code RETCODE) contains a return code.
v When the value in GPR 15 is not zero, GPR 0 (and rsncode, when you code

RSNCODE) contains reason code.

The following table identifies the hexadecimal return and reason codes and the
equate symbol associated with each reason code. IBM support personnel may
request the entire reason code, including the xxxx value.

Table 54. Return and Reason Codes for the IWMSINF Macro

Return Code Reason Code Equate Symbol Meaning and Action

0 — Equate Symbol: IwmRetCodeOk

Meaning: Successful completion.

Action: None required.

8 — Equate Symbol: IwmRetCodeInvocError

Meaning: Invalid invocation environment or parameters.

8 xxxx0801 Equate Symbol: IwmRsnCodeSrbMode

Meaning: Caller is in SRB mode.

Action: Avoid requesting this function while in SRB mode.

8 xxxx0803 Equate Symbol: IwmRsnCodeDisabled

Meaning: Caller is disabled.

Action: Avoid requesting this function while disabled.

8 xxxx0804 Equate Symbol: IwmRsnCodeLocked

Meaning: Caller is locked.

Action: Avoid requesting this function while locked.

8 xxxx080B Equate Symbol: IwmRsnCodeBadPl

Meaning: Error accessing parameter list.

Action: Check for possible storage overlay.

8 xxxx0824 Equate Symbol: IwmRsnCodeAmode24

Meaning: Caller invoked service but was in 24 bit
addressing mode.

Action: Request this function only when you are in 31 bit
addressing mode.

8 xxxx0825 Equate Symbol: IwmRsnCodeAscModeNotPrimary

Meaning: Caller invoked service but was not in primary
ASC mode.

Action: Avoid requesting this function in this environment.

IWMSINF Macro

462 z/OS V1R4.0 MVS Workload Management Services

Table 54. Return and Reason Codes for the IWMSINF Macro (continued)

Return Code Reason Code Equate Symbol Meaning and Action

8 xxxx0828 Equate Symbol: IwmRsnCodeBadVersion

Meaning: Version number in parameter list is not valid.

Action: Check for possible storage overlay of the parameter
list.

8 xxxx0840 Equate Symbol: IwmRsnCodeServiceNotEnabled

Meaning: Caller’s space connection is not enabled for this
service

Action: Make sure that SERVER_MANAGER=YES,
SERVER_TYPE=QUEUE and MANAGE_TASKS=YES is
specified on the IWMCONN request to enable this service.

8 xxxx0841 Equate Symbol: IwmRsnCodeXmemMode

Meaning: Caller is in cross-memory mode.

Action: Request this function only when you are not in
cross-memory mode.

8 xxxx0842 Equate Symbol: IwmRsnCodeNoWLMConnect

Meaning: Caller’s space is not connected to WLM.

Action: Invoke the IWMCONN macro before invoking this
macro.

8 xxxx084D Equate Symbol: IwmRsnCodeNotAuthConnect

Meaning: The caller must be supervisor state or have PSW
key mask 0-7 authority to use the requested WLM service.
This applies only if the caller uses the service with
MODE=POST.

Action: Avoid requesting this function in this environment.

8 xxxx087B Equate Symbol: IwmRsnCodeUnexpectedCall

Meaning: The system didn’t expected the caller to use this
service

Action: Make sure that MANAGE_TASKS=YES is specified
on the IWMCONN request.

C — Equate Symbol: IwmRetCodeEnvError

Meaning: Environmental error.

C xxxx0C14 Equate Symbol: IwmRsnCodeNoWorkShutDown

Meaning: No work selected. Caller is to shutdown.

Action: Caller must disconnect by invoking the IWMDISC
macro.

10 — Equate Symbol: IwmRetCodeCompError

Meaning: Component error.

Action: Contact your system programmer.

Example
To obtain information about the number of server instances to start from WLM.

IWMSINF Macro

Chapter 53. IWMSINF — WLM Server Manager Inform Service 463

IWMCONN WORK_MANAGER=YES,
SERVER_MANAGER=YES,
PARALLEL_EU=EUNITS,
SERVER_TYPE=QUEUE,
MANAGE_TASKS=YES,
SERVER_LIMIT=MAXTASKS,
CONNTKN=CTKN,CONNTKNKEY=PSWKEY,
RETCODE=RC,RSNCODE=RSN

IWMSINF MODE=SUSPEND,
SRVINST_TO_STRT=NUMINST,
RETCODE=RC,RSNCODE=RSN

*
* Storage areas
*
EUNITS DS F Number of Tasks which will be started
* if the application environment is not managed.
MAXTASKS DS F Maximum Number of Tasks up to which
* WLM adjusts the number of server
* instances for the server AS
CTKN DS FL4 Connect Token
NUMINSTS DS F Number of server instances to start
RC DS F Return code
RSN DS F Reason code

IWMSINF Macro

464 z/OS V1R4.0 MVS Workload Management Services

Chapter 54. IWMSLIM – Application Environment Limit Service

The IWMSLIM service should be used to tell WLM the total number of server
instances which are supported by the application. WLM will ensure that no more
server instances will be started in the system.

In addition the caller can define a minimum number of servers which should be
made available by WLM regardless of whether work is available to execute or not. If
the user defines multiple service classes to give the work of the application different
service goals, the caller can define that the minimum number of servers is spread
across these service classes to ensure that servers are available for all work
executed by the application.

The caller must have previously connected to WLM using the IWMCONN service
specifying SERVER_MANAGER=YES and SERVER_TYPE=QUEUE. It is
recommended to use the IWMSLIM service directly after IWMCONN. If any server
uses this service to define limits, the limits apply for all servers of the application
environment regardless of whether other servers use the service or not.

If a server defines new limits during execution, WLM attempts to meet the new limit
definitions as soon as possible. If the maximum limit for servers is reduced during
execution it is not predictable when WLM is able to meet the new maximum
definition. This depends highly on the execution time of the running work requests.
Therefore changing the limits during execution should be used very carefully and
primarily during times of low application utilization.

Environment
The requirements for the caller are:

Minimum authorization: Problem state. Any PSW key

Dispatchable unit mode: Task

Cross memory mode: PASN=HASN=SASN

AMODE: 31-bit

ASC mode: Primary

Interrupt status: Enabled for I/O and external interrupts

Locks: No locks may be held.

Control parameters: Control parameters must be in the primary address space.

Programming Requirements
1. Make sure no EUT FRRs are established.
2. The macro CVT must be included to use this macro.
3. The macro IWMYCON must be included to use this macro.
4. The macro IWMPB must be in the library concatenation, since it is included by

IWMYCON.
5. Note that the high order halfword of register 0, and the reason code variable

when specified, may be non-zero and represents diagnostic data which is NOT
part of the external interface. The high order halfword should thus be excluded
from comparison with the reason code values described above. The constant,
IWMRSNCODE_MASK_CONST defined in IWMYCON, may be used for this
purpose.

© Copyright IBM Corp. 1988, 2002 465

Restrictions
1. This macro may not be used during task/address space termination.
2. Only a single invocation is allowed to be active for a given address space at

any given time.
3. Before using this macro the caller must connect to WLM via IWMCONN

Server_Manager=YES, Server_Type=Queue.
4. The macro must be used directly after using IWMCONN.

Input Register Information
Before issuing the IWMSLIM macro, the caller does not have to place any
information into any register unless using it in register notation for a particular
parameter, or using it as a base register.

Output Register Information
When control returns to the caller, the GPRs contain:

Register
Contents

0 Reason code if GR15 return code is non-zero
1 Used as work registers by the system
2-13 Unchanged
14 Used as work registers by the system
15 Return code

When control returns to the caller, the ARs contain:

Register
Contents

0-1 Used as work registers by the system
2-13 Unchanged
14-15 Used as work registers by the system

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the
caller depends, the caller must save them before issuing the service, and restore
them after the system returns control.

Performance Implications
None

Syntax

main diagram

��
name

� IWMSLIM �
AE_SERVERMAX=0

AE_SERVERMAX=ae_servermax
�

IWMSLIM Macro

466 z/OS V1R4.0 MVS Workload Management Services

�
,AE_SPREADMIN=NO

,AE_SERVERMIN=0
,AE_SERVERMIN=ae_servermin ,AE_SPREADMIN=YES

�

�
,RETCODE=retcode ,RSNCODE=rsncode

,PLISTVER=IMPLIED_VERSION

,PLISTVER=MAX
,PLISTVER=0

�

�
,MF=S

,0D
,MF=(L ,list addr)

,attr
,COMPLETE

,MF=(E ,list addr)

�"

Parameters
The parameters are explained as follows:

name
An optional symbol, starting in column 1, that is the name on the IWMSLIM
macro invocation. The name must conform to the rules for an ordinary
assembler language symbol.

AE_SERVERMAX=ae_servermax
AE_SERVERMAX=0

An optional input parameter, which indicates the architectural limit for the total
number of server instances which can run concurrently across the application
environment for a given subsystem type and subsystem name.

This parameter represents a physical limit, such as the maximum number of
available connections to a back-end subsystem. WLM will not start more than
this number of server instances, even if goals cannot be met because of the
limit. This value should be an integral multiple of the PARALLEL_EU value
defined on the IWMCONN service. If AE_SERVERMAX is not an even multiple
of PARALLEL_EU, WLM will round this value down to the next integral multiple.

The maximum limit and the number of service classes to execute work requests
should be defined carefully. If the number of service classes exceeds the
quotient of AE_SERVERMAX divided by PARALLEL_EU WLM cannot start
enough server address spaces to execute the work requests for all service
classes. The default is 0, indicating that no maximum limit has been specified

To code: Specify the RS-type address of a halfword field.

,AE_SERVERMIN=ae_servermin
,AE_SERVERMIN=0

An optional input parameter, which indicates the minimum number of servers
which should be up and running at all times.

This parameter can be used to tell WLM that a certain amount of server tasks
should always be kept available to select work. This value should be an integral
multiple of the PARALLEL_EU value defined on IWMCONN service. If
AE_SERVERMIN is not an even multiple of PARALLEL_EU, WLM will round
this value down to the next integral multiple. The default is 0, indicating that no
limit has been specified

IWMSLIM Macro

Chapter 54. IWMSLIM – Application Environment Limit Service 467

To code: Specify the RS-type address of a halfword field.

,AE_SPREADMIN=NO
,AE_SPREADMIN=YES

When AE_SERVERMIN=ae_servermin is specified, an optional parameter,
which indicates whether WLM will distribute the minimum number of servers as
evenly as possible across the service classes being used to process the work
requests. The default is AE_SPREADMIN=NO.

,AE_SPREADMIN=NO
The server tasks specified in AE_SERVERMIN will be distributed to service
classes as needed in order to meet goals.

,AE_SPREADMIN=YES
The server tasks specified in AE_SERVERMIN will be distributed as evenly
as possible to all service classes being used to execute work requests.

,MF=S
,MF=(L,list addr)
,MF=(L,list addr,attr)
,MF=(L,list addr,0D)
,MF=(E,list addr)
,MF=(E,list addr,COMPLETE)

An optional input parameter that specifies the macro form.

Use MF=S to specify the standard form of the macro, which builds an inline
parameter list and generates the macro invocation to transfer control to the
service. MF=S is the default.

Use MF=L to specify the list form of the macro. Use the list form together with
the execute form of the macro for applications that require reentrant code. The
list form defines an area of storage that the execute form uses to store the
parameters. Only the PLISTVER parameter may be coded with the list form of
the macro.

Use MF=E to specify the execute form of the macro. Use the execute form
together with the list form of the macro for applications that require reentrant
code. The execute form of the macro stores the parameters into the storage
area defined by the list form, and generates the macro invocation to transfer
control to the service.

,list addr
The name of a storage area to contain the parameters. For MF=S and
MF=E, this can be an RS-type address or an address in register (1)-(12).

,attr
An optional 1- to 60-character input string that you use to force boundary
alignment of the parameter list. Use a value of 0F to force the parameter
list to a word boundary, or 0D to force the parameter list to a doubleword
boundary. If you do not code attr, the system provides a value of 0D.

,COMPLETE
Specifies that the system is to check for required parameters and supply
defaults for omitted optional parameters.

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX
,PLISTVER=0

An optional input parameter that specifies the version of the macro. PLISTVER
determines which parameter list the system generates. PLISTVER is an
optional input parameter on all forms of the macro, including the list form. When

IWMSLIM Macro

468 z/OS V1R4.0 MVS Workload Management Services

using PLISTVER, specify it on all macro forms used for a request and with the
same value on all of the macro forms. The values are:

v IMPLIED_VERSION, which is the lowest version that allows all parameters
specified on the request to be processed. If you omit the PLISTVER
parameter, IMPLIED_VERSION is the default.

v MAX, if you want the parameter list to be the largest size currently possible.
This size might grow from release to release and affect the amount of
storage that your program needs.

If you can tolerate the size change, IBM recommends that you always specify
PLISTVER=MAX on the list form of the macro. Specifying MAX ensures that
the list-form parameter list is always long enough to hold all the parameters
you might specify on the execute form, when both are assembled with the
same level of the system. In this way, MAX ensures that the parameter list
does not overwrite nearby storage.

v 0, if you use the currently available parameters.

To code: Specify one of the following:
v IMPLIED_VERSION
v MAX
v A decimal value of 0

,RETCODE=retcode
An optional output parameter into which the return code is to be copied from
GPR 15.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

,RSNCODE=rsncode
An optional output parameter into which the reason code is to be copied from
GPR 0.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

ABEND Codes
None.

Return and Reason Codes
When the IWMSLIM macro returns control to your program:
v GPR 15 (and retcode, when you code RETCODE) contains a return code.
v When the value in GPR 15 is not zero, GPR 0 (and rsncode, when you code

RSNCODE) contains reason code.

The following table identifies the hexadecimal return and reason codes and the
equate symbol associated with each reason code. IBM support personnel may
request the entire reason code, including the xxxx value.

Table 55. Return and Reason Codes for the IWMSLIM Macro

Return Code Reason Code Equate Symbol Meaning and Action

0 — Equate Symbol: IwmRetCodeOk

Meaning: Successful completion.

Action: None required.

8 — Equate Symbol: IwmRetCodeInvocError

Meaning: Invalid invocation environment or parameters.

IWMSLIM Macro

Chapter 54. IWMSLIM – Application Environment Limit Service 469

Table 55. Return and Reason Codes for the IWMSLIM Macro (continued)

Return Code Reason Code Equate Symbol Meaning and Action

8 xxxx0801 Equate Symbol: IwmRsnCodeSrbMode

Meaning: Caller is in SRB mode.

Action: Avoid requesting this function while in SRB mode.

8 xxxx0803 Equate Symbol: IwmRsnCodeDisabled

Meaning: Caller is disabled.

Action: Avoid requesting this function while disabled.

8 xxxx0804 Equate Symbol: IwmRsnCodeLocked

Meaning: Caller is locked.

Action: Avoid requesting this function while locked.

8 xxxx080B Equate Symbol: IwmRsnCodeBadPl

Meaning: Error accessing parameter list.

Action: Check for possible storage overlay.

8 xxxx0824 Equate Symbol: IwmRsnCodeAmode24

Meaning: Caller invoked service but was in 24 bit
addressing mode.

Action: Request this function only when you are in 31 bit
addressing mode.

8 xxxx0825 Equate Symbol: IwmRsnCodeAscModeNotPrimary

Meaning: Caller invoked service but was not in primary
ASC mode.

Action: Avoid requesting this function in this environment.

8 xxxx0828 Equate Symbol: IwmRsnCodeBadVersion

Meaning: Version number in parameter list is not valid.

Action: Check for possible storage overlay of the parameter
list.

8 xxxx0840 Equate Symbol: IwmRsnCodeServiceNotEnabled

Meaning: Caller’s space connection is not enabled for this
service

Action: Make sure that SERVER_MANAGER=YES and
SERVER_TYPE=QUEUE is specified on the IWMCONN
request to enable this service.

8 xxxx0841 Equate Symbol: IwmRsnCodeXmemMode

Meaning: Caller is in cross-memory mode.

Action: Request this function only when you are not in
cross-memory mode.

8 xxxx0842 Equate Symbol: IwmRsnCodeNoWLMConnect

Meaning: Caller’s space is not connected to WLM.

Action: Invoke the IWMCONN macro before invoking this
macro.

IWMSLIM Macro

470 z/OS V1R4.0 MVS Workload Management Services

Table 55. Return and Reason Codes for the IWMSLIM Macro (continued)

Return Code Reason Code Equate Symbol Meaning and Action

10 — Equate Symbol: IwmRetCodeCompError

Meaning: Component error.

Action: Contact your system programmer.

Example
To specify application limits to WLM.

IWMCONN WORK_MANAGER=YES,
SERVER_MANAGER=YES,
PARALLEL_EU=EUNITS,
SERVER_TYPE=QUEUE,
CONNTKN=CTKN,
CONNTKNKEY=PSWKEY,
RETCODE=RC,
RSNCODE=RSN

IWMSLIM AE_SERVERMAX=MAXSRVS,
AE_SERVERMIN=MINSRVS,
RETCODE=RC,
RSNCODE=RSN

*
* Storage areas
*
EUNITS DS F Number of Tasks which will be started
* per address space.
MAXSRVS DS H Maximum Number of Servers supported
* by the application.
MINSRVS DS H Minimum number of servers which should
* be up and running all time
CTKN DS FL4 Connect Token
RC DS F Return code
RSN DS F Reason code

IWMSLIM Macro

Chapter 54. IWMSLIM – Application Environment Limit Service 471

IWMSLIM Macro

472 z/OS V1R4.0 MVS Workload Management Services

Chapter 55. IWMSRDNS – Get Sysplex Routing Location List

IWMSRDNS will return a list of location names for all registered servers which have
been registered with a host name, known to the system on which the service is
invoked. Servers which have deregistered, via IWMSRDRS, may still be present in
the output list, due to the asynchronous nature of deregistration. Conversely, some
registered servers may not appear for this same reason.

Environment
The requirements for the caller are:

Minimum authorization: Problem state with any PSW key.

Dispatchable unit mode: Task

Cross memory mode: Any PASN, any HASN, any SASN

AMODE: 31-bit

ASC mode: Primary

Interrupt status: Enabled for I/O and external interrupts

Locks: No locks may be held. FRRs may be established.

Control parameters: Control parameters must be in the primary address space.

Programming Requirements
1. The macro CVT must be included to use this macro.
2. The macro IWMYCON must be included to use this macro.
3. The macro IWMPB must be in the library concatenation, since it is included by

IWMYCON.
4. Note that the high order halfword of register 0, and the reason code variable

when specified, may be non-zero and represents diagnostic data which is NOT
part of the external interface. The high order halfword should thus be excluded
from comparison with the reason code values described above. The constant,
IWMRSNCODE_MASK_CONST defined in IWMYCON, may be used for this
purpose.

5. All character data, unless otherwise specified, is assumed to be left justified and
padded with blanks on the right, as needed, to occupy the specified number of
bytes.

Restrictions
This macro may only be used on OS/390 Version 2, Release 4 or equivalent.

Input Register Information
Before issuing the IWMSRDNS macro, the caller does not have to place any
information into any register unless using it in register notation for a particular
parameter, or using it as a base register.

Output Register Information
When control returns to the caller, the GPRs contain:

© Copyright IBM Corp. 1988, 2002 473

Register
Contents

0 Reason code if GR15 return code is non-zero
1 Used as work register by the system
2-13 Unchanged
14 Used as work register by the system
15 Return code

When control returns to the caller, the ARs contain:

Register
Contents

0-1 Used as work registers by the system
2-13 Unchanged
14-15 Used as work registers by the system

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the
caller depends, the caller must save them before issuing the service, and restore
them after the system returns control.

Performance Implications
None.

Syntax

main diagram

��
name

� IWMSRDNS � LOCATION_NAMES=location_names ,ANSLEN=anslen �

�
,ENTRY_COUNT=entry_count

,QUERYLEN=querylen
,RETCODE=retcode

�

�
,RSNCODE=rsncode

,PLISTVER=IMPLIED_VERSION

,PLISTVER=MAX
,PLISTVER=0

�

�
,MF=S

,0D
,MF=(L ,list addr)

,attr
,COMPLETE

,MF=(E ,list addr)

�"

Parameters
The parameters are explained as follows:

IWMSRDNS Macro

474 z/OS V1R4.0 MVS Workload Management Services

name
An optional symbol, starting in column 1, that is the name on the IWMSRDNS
macro invocation. The name must conform to the rules for an ordinary
assembler language symbol.

,ANSLEN=anslen
A required input parameter, which contains the length of the
LOCATION_NAMES in bytes.

To code: Specify the RS-type address, or address in register (2)-(12), of a
fullword field.

,ENTRY_COUNT=entry_count
An optional output parameter, which will hold the number of location entries
returned by the service. This is the number of entries in the SYSL_INFO array
(see IWMWSYSL).

To code: Specify the RS-type address, or address in register (2)-(12), of a
fullword field.

LOCATION_NAMES=location_names
A required input parameter, which specifies the name of the area to be filled in
with the list of location names for the registered, active, LUs in the SYSPLEX
registered with a host name.

The area must be large enough to contain at least 1 entry. The format of this
area is mapped by IWMWSYSL.

To code: Specify the RS-type address, or address in register (2)-(12), of a field.

,MF=S
,MF=(L,list addr)
,MF=(L,list addr,attr)
,MF=(L,list addr,0D)
,MF=(E,list addr)
,MF=(E,list addr,COMPLETE)

An optional input parameter that specifies the macro form.

Use MF=S to specify the standard form of the macro, which builds an inline
parameter list and generates the macro invocation to transfer control to the
service. MF=S is the default.

Use MF=L to specify the list form of the macro. Use the list form together with
the execute form of the macro for applications that require reentrant code. The
list form defines an area of storage that the execute form uses to store the
parameters. Only the PLISTVER parameter may be coded with the list form of
the macro.

Use MF=E to specify the execute form of the macro. Use the execute form
together with the list form of the macro for applications that require reentrant
code. The execute form of the macro stores the parameters into the storage
area defined by the list form, and generates the macro invocation to transfer
control to the service.

,list addr
The name of a storage area to contain the parameters. For MF=S and
MF=E, this can be an RS-type address or an address in register (1)-(12).

,attr
An optional 1- to 60-character input string that you use to force boundary
alignment of the parameter list. Use a value of 0F to force the parameter

IWMSRDNS Macro

Chapter 55. IWMSRDNS – Get Sysplex Routing Location List 475

list to a word boundary, or 0D to force the parameter list to a doubleword
boundary. If you do not code attr, the system provides a value of 0D.

,COMPLETE
Specifies that the system is to check for required parameters and supply
defaults for omitted optional parameters.

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX
,PLISTVER=0

An optional input parameter that specifies the version of the macro. PLISTVER
determines which parameter list the system generates. PLISTVER is an
optional input parameter on all forms of the macro, including the list form. When
using PLISTVER, specify it on all macro forms used for a request and with the
same value on all of the macro forms. The values are:

v IMPLIED_VERSION, which is the lowest version that allows all parameters
specified on the request to be processed. If you omit the PLISTVER
parameter, IMPLIED_VERSION is the default.

v MAX, if you want the parameter list to be the largest size currently possible.
This size might grow from release to release and affect the amount of
storage that your program needs.

If you can tolerate the size change, IBM recommends that you always specify
PLISTVER=MAX on the list form of the macro. Specifying MAX ensures that
the list-form parameter list is always long enough to hold all the parameters
you might specify on the execute form; in this way, MAX ensures that the
parameter list does not overwrite nearby storage.

v 0, if you use the currently available parameters.

To code: Specify one of the following:
v IMPLIED_VERSION
v MAX
v A decimal value of 0

,QUERYLEN=querylen
A required output parameter, variable which contains the number of bytes
needed for all data requested.

To code: Specify the RS-type address, or address in register (2)-(12), of a
fullword field.

,RETCODE=retcode
An optional output parameter into which the return code is to be copied from
GPR 15.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

,RSNCODE=rsncode
An optional output parameter into which the reason code is to be copied from
GPR 0.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

ABEND Codes
None.

IWMSRDNS Macro

476 z/OS V1R4.0 MVS Workload Management Services

Return and Reason Codes
When the IWMSRDNS macro returns control to your program:
v GPR 15 (and retcode, if you coded RETCODE) contains a return code.
v When the value in GPR 15 is not zero, GPR 0 (and rsncode, if you coded

RSNCODE) contains reason code.

The following table identifies the hexadecimal return and reason codes and the
equate symbol associated with each reason code. IBM support personnel may
request the entire reason code, including the xxxx value.

Table 56. Return and Reason Codes for the IWMSRDNS Macro

Return Code Reason Code Equate Symbol Meaning and Action

0 — Equate Symbol: IwmRetCodeOk

Meaning: Successful completion.

Action: None required.

4 — Equate Symbol: IwmRetCodeWarning

Meaning: Successful completion, unusual conditions noted.

4 xxxx040A Equate Symbol: IwmRsnCodeOutputAreaTooSmall

Meaning: The output area supplied is too small to receive
all the available information.

Action: None required. If necessary, reinvoke the service
with an output area of sufficient size to receive all
information.

4 xxxx040B Equate Symbol: IwmRsnCodeNoServersRegistered

Meaning: No Servers have registered in the sysplex.

Action: None required.

8 — Equate Symbol: IwmRetCodeInvocError

Meaning: Invalid invocation environment or parameters.

8 xxxx0803 Equate Symbol: IwmRsnCodeDisabled

Meaning: Caller is disabled.

Action: Avoid requesting this function while disabled.

8 xxxx0804 Equate Symbol: IwmRsnCodeLocked

Meaning: Caller is locked.

Action: Avoid requesting this function while locked.

8 xxxx080B Equate Symbol: IwmRsnCodeBadPl

Meaning: Error accessing parameter list.

Action: Check for possible storage overlay.

8 xxxx0823 Equate Symbol: IwmRsnCodeDatoff

Meaning: Caller invoked service while DATOFF

Action: Avoid requesting this function in this environment.

IWMSRDNS Macro

Chapter 55. IWMSRDNS – Get Sysplex Routing Location List 477

Table 56. Return and Reason Codes for the IWMSRDNS Macro (continued)

Return Code Reason Code Equate Symbol Meaning and Action

8 xxxx0824 Equate Symbol: IwmRsnCodeAmode24

Meaning: Caller invoked service but was in 24 bit
addressing mode.

Action: Request this function only when you are in 31 bit
addressing mode.

8 xxxx0825 Equate Symbol: IwmRsnCodeAscModeNotPrimary

Meaning: Caller invoked service but was not DAT on
Primary ASC mode.

Action: Avoid requesting this function in this environment.

C — Equate Symbol: IwmRetCodeEnvError

Meaning: Environmental error.

C xxxx0C01 Equate Symbol: IwmRsnCodeNoStg

Meaning: Storage is not available for the request.

Action: There is a storage shortage. The function may work
successfully at a later time.

10 — Equate Symbol: IwmRetCodeCompError

Meaning: Component error.

Action: No action required. The function may be successful
if invoked again.

Example
To list all locations registered with a host name:

IWMSRDNS LOCATION_NAMES=DATA,
ANSLEN=SIZE,
ENTRY_COUNT=E,
QUERYLEN=Q,
RETCODE=RC,RSNCODE=RSN

*
* Storage areas
*
DATA DS CL200 Area to receive output
SIZEEQU EQU *-DATA Equate for size of Data
E DS F Field to receive entry count
Q DS F Field to receive query length
RC DS F Return code
RSN DS F Reason code
SIZE DC A(SIZEEQU) Field to hold size

IWMSRDNS Macro

478 z/OS V1R4.0 MVS Workload Management Services

Chapter 56. IWMSRDRS – De-register a Server for Sysplex
Routing

IWMSRDRS will deregister a server that had previously registered via IWMSRSRG,
the Sysplex Router Registration macro, for sysplex workload balancing.
Deregistration removes the specified server as a candidate from the Sysplex
Routing Selection service, IWMSRSRS. Since the propagation of the deregistration
to other systems is asynchronous, a newly deregistered triplet will continue to be
eligible for selection by other systems for a period of time after return from the
IWMSRDRS invocation. If the server was registered with a host name the caller
must provide the host name in order to deregister the server.

Important Note
With APAR OW33878 installed, new security checks are added to the module
this service invokes (as well as to the register module invoked by
IWMSRSRG). With this APAR installed, the security checks are invoked when
the caller is in Problem state, and does not own any privileged keys (i.e. has
none of the authorization key mask bits 0-7 turned on). In this case, the caller
must satisfy the following three conditions to use this service:

v The caller must not be in cross memory mode

v The caller must not have an EUT FRR established

v The caller must be authorized in the BPX.WLMSERVER profile in the
facility class.

Environment
The requirements for the caller are:

Minimum authorization: Problem state with any PSW key (see previous note).

Dispatchable unit mode: Task or SRB

Cross memory mode: Any PASN, any HASN, any SASN (see previous note).

AMODE: 31-bit

ASC mode: Primary

Interrupt status: Unlocked. FRRs may be established (see previous note).

Locks: No locks may be held.

Control parameters: Control parameters must be in the primary address space.

Programming Requirements
None.

Restrictions
1. This macro may not be used prior to the completion of WLM address space

initialization
2. All parameter areas must reside in current primary.

When control returns to the caller, the GPRs contain:

© Copyright IBM Corp. 1988, 2002 479

Register
Contents

0 Reason code if GR15 return code is non-zero
1 Used as a work register by the macro
14 Used as a work register by the macro
15 Return code

When control returns to the caller, the ARs contain:

Register
Contents

0 Used as a work register by the macro
1 Used as a work register by the macro
14 Used as a work register by the macro
15 Used as a work register by the macro

Some callers depend on register contents remaining the same before and after
using a service. If the system changes the contents of registers on which the caller
depends, the caller must save them before calling the service, and restore them
after the system returns control.

Performance Implications
None.

IWMSRDRS Macro

480 z/OS V1R4.0 MVS Workload Management Services

Syntax

main diagram

��
name

� IWMSRDRS � LOCATION=location ,NETWORK_ID=network_id �

� ,LUNAME=luname
,HOST=NO_HOST

,HOST=host ,RETCODE=retcode
�

�
,RSNCODE=rsncode

,PLISTVER=IMPLIED_VERSION

,PLISTVER=MAX
,PLISTVER=0
,PLISTVER=1

�

�
,MF=S

,0D
,MF=(L ,list addr)

,attr
,COMPLETE

,MF=(E ,list addr)

�"

Parameters
The parameters are explained as follows:

name
An optional symbol, starting in column 1, that is the name on the IWMSRDRS
macro invocation. The name must conform to the rules for an ordinary
assembler language symbol.

,HOST=host
,HOST=NO_HOST

An optional input parameter, which contains the server HOST name associated
with the address space to be deregistered. The value should be padded on the
right with blanks for any unused characters. The default is NO_HOST, which
indicates that a HOST name was not passed.

To code: Specify the RS-type address, or address in register (2)-(12), of a
64-character field.

LOCATION=location
A required input parameter, which contains the server LOCATION associated
with the registered address space.

To code: Specify the RS-type address, or address in register (2)-(12), of a
18-character field.

,LUNAME=luname
A required input parameter, which contains the server Logical Unit name
associated with the registered address space.

To code: Specify the RS-type address, or address in register (2)-(12), of an
8-character field.

,MF=S

IWMSRDRS Macro

Chapter 56. IWMSRDRS – De-register a Server for Sysplex Routing 481

,MF=(L,list addr)
,MF=(L,list addr,attr)
,MF=(L,list addr,0D)
,MF=(E,list addr)
,MF=(E,list addr,COMPLETE)

An optional input parameter that specifies the macro form.

Use MF=S to specify the standard form of the macro, which builds an inline
parameter list and generates the macro invocation to transfer control to the
service. MF=S is the default.

Use MF=L to specify the list form of the macro. Use the list form together with
the execute form of the macro for applications that require reentrant code. The
list form defines an area of storage that the execute form uses to store the
parameters. Only the PLISTVER parameter may be coded with the list form of
the macro.

Use MF=E to specify the execute form of the macro. Use the execute form
together with the list form of the macro for applications that require reentrant
code. The execute form of the macro stores the parameters into the storage
area defined by the list form, and generates the macro invocation to transfer
control to the service.

,list addr
The name of a storage area to contain the parameters. For MF=S and
MF=E, this can be an RS-type address or an address in register (1)-(12).

,attr
An optional 1- to 60-character input string that you use to force boundary
alignment of the parameter list. Use a value of 0F to force the parameter
list to a word boundary, or 0D to force the parameter list to a doubleword
boundary. If you do not code attr, the system provides a value of 0D.

,COMPLETE
Specifies that the system is to check for required parameters and supply
defaults for omitted optional parameters.

,NETWORK_ID=network_id
A required input parameter, which contains the Network ID associated with the
registered address space.

To code: Specify the RS-type address, or address in register (2)-(12), of an
8-character field.

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX
,PLISTVER=0
,PLISTVER=1

An optional input parameter that specifies the version of the macro. PLISTVER
determines which parameter list the system generates. PLISTVER is an
optional input parameter on all forms of the macro, including the list form. When
using PLISTVER, specify it on all macro forms used for a request and with the
same value on all of the macro forms. The values are:

v IMPLIED_VERSION, which is the lowest version that allows all parameters
specified on the request to be processed. If you omit the PLISTVER
parameter, IMPLIED_VERSION is the default.

v MAX, if you want the parameter list to be the largest size currently possible.
This size might grow from release to release and affect the amount of
storage that your program needs.

IWMSRDRS Macro

482 z/OS V1R4.0 MVS Workload Management Services

If you can tolerate the size change, IBM recommends that you always specify
PLISTVER=MAX on the list form of the macro. Specifying MAX ensures that
the list-form parameter list is always long enough to hold all the parameters
you might specify on the execute form; in this way, MAX ensures that the
parameter list does not overwrite nearby storage.

v 0, if you use only the following parameters:

LOCATION LUNAME NETWORK_ID

v 1, if you use any of the following parameters, and parameters from version 0,
or both:

HOST

To code: Specify one of the following:
v IMPLIED_VERSION
v MAX
v A decimal value of 0 or 1

,RETCODE=retcode
An optional output parameter into which the return code is to be copied from
GPR 15.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

,RSNCODE=rsncode
An optional output parameter into which the reason code is to be copied from
GPR 0.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

ABEND Codes
None.

Return and Reason Codes
When the IWMSRDRS macro returns control to your program:
v GPR 15 (and retcode, if you coded RETCODE) contains a return code.
v When the value in GPR 15 is not zero, GPR 0 (and rsncode, if you coded

RSNCODE) contains reason code.

The following table identifies the hexadecimal return and reason codes. IBM support
personnel may request the entire reason code, including the xxxx value.

Table 57. Return and Reason Codes for the IWMSRDRS Macro

Return Code Reason Code Equate Symbol Meaning and Action

0 — Equate Symbol: IwmRetCodeOk

Meaning: Successful completion.

4 — Equate Symbol: IwmRetCodeWarning

Meaning: Successful completion, unusual conditions noted.

4 xxxx0418 Equate Symbol: IwmRsnCodeServerNotRegistered

Meaning: Server not registered

IWMSRDRS Macro

Chapter 56. IWMSRDRS – De-register a Server for Sysplex Routing 483

Table 57. Return and Reason Codes for the IWMSRDRS Macro (continued)

Return Code Reason Code Equate Symbol Meaning and Action

8 — Equate Symbol: IwmRetCodeInvocError

Meaning: Invalid invocation environment or parameters

8 xxxx0803 Equate Symbol: IwmRsnCodeDisabled

Meaning: Caller is disabled.

8 xxxx0804 Equate Symbol: IwmRsnCodeLocked

Meaning: Caller is locked.

8 xxxx080B Equate Symbol: IwmRsnCodeBadPl

Meaning: Error accessing parameter list

8 xxxx0823 Equate Symbol: IwmRsnCodeDatoff

Meaning: Caller invoked service while DATOFF

8 xxxx0824 Equate Symbol: IwmRsnCodeAmode24

Meaning: Caller invoked service but was in 24 bit
addressing mode.

8 xxxx0825 Equate Symbol: IwmRsnCodeAscModeNotPrimary

Meaning: Caller invoked service but was not DAT on
Primary ASC mode.

8 xxxx0828 Equate Symbol: IwmRsnCodeBadVersion

Meaning: Version number in parameter list or version
length field is not valid. This reason code is only set when
the MVS release is on MVS/ESA HBB6603 or later levels.

8 xxxx0829 Equate Symbol: IwmRsnCodeBadOptions

Meaning: Parameter list omits required parameters or
supplies mutually exclusive parameters or provides data
associated with options not selected. Note that this reason
code will only occur on calls to this service through the
IWMDNDRG C language interface.

Action: Check for possible storage overlay of the parameter
list.

C — Equate Symbol: IwmRetCodeEnvError

Meaning: Environmental error.

C xxxx0C35 Equate Symbol: IwmRsnCodeNotSecAuthServReg

Meaning: The caller is not authorized by SAF to
register/deregister a server.

Action: Only supervisor state or authorized key 8 callers
can register or deregister servers. Key 8 callers must have
RACF authority to the BPX.WLMSERVER profile in the
facility class (BPX.WLMSERVER must be defined for
authorized users to execute the DNS services). The
RACROUTE command is invoked during the SAF check,
which doesn’t allow the caller to be in cross memory mode
or have an FRR established.

10 — Equate Symbol: IwmRetCodeCompError

Meaning: Component error (no reason codes)

IWMSRDRS Macro

484 z/OS V1R4.0 MVS Workload Management Services

Chapter 57. IWMSRFSV – Finding a Sysplex Routing Server

IWMSRFSV will find a server associated with the specified application environment
and return the associated server data which was passed at the time the server
connected to WLM (via IWMCONN). The only eligible servers are those that have
connected to WLM with a specification of IWMCONN
SERVER_MANAGER=YES,SERVER_TYPE=ROUTING, and whose application
environment matches the input value passed to IWMSRFSV, which implies that the
server belongs to the same subsystem type as the caller. The server chosen is
considered a best choice to run work in terms of a variety of system conditions
which are monitored.

When no eligible servers are already started, and the service policy allows MVS to
start a server, and certain other conditions apply, MVS will start a new server on
behalf of the request. Circumstances such as this imply that the program calling this
service may be suspended until the request can be resolved. When no eligible
servers exist and none can be started the caller will receive a return code to reflect
this.

Environment
The requirements for the caller are:

Minimum authorization: Supervisor state or program key mask (PKM) allowing keys
0-7.

Dispatchable unit mode: Task

Cross memory mode: PASN=HASN=SASN

AMODE: 31-bit

ASC mode: Primary

Interrupt status: Enabled for I/O and external interrupts

Locks: No locks may be held.

Control parameters: Control parameters must be in the primary address space.

Programming Requirements
1. The macro IWMYCON must be included to use this macro.
2. The macro IWMPB must be in the library concatenation, since it is included by

IWMYCON.
3. Note that the high order halfword of register 0, and the reason code variable

when specified, may be non-zero and represents diagnostic data which is NOT
part of the external interface. The high order halfword should thus be excluded
from comparison with the reason code values described above. The constant,
IWMRSNCODE_MASK_CONST defined in IWMYCON, may be used for this
purpose.

4. All character inputs are assumed to be padded on the right with blanks, when
needed to fill out the entire length.

Restrictions
1. This macro may not be used during task/address space termination.
2. NO FRRs may be established.

© Copyright IBM Corp. 1988, 2002 485

3. The Connect token from the input parameter list must be owned by the current
home address space.

4. The address space from which this service is invoked must have previously
connected to WLM, using IWMCONN Router=Yes. The input application
environment must be associated in the current service policy with the
subsystem type specified through IWMCONN.

Input Register Information
Before issuing the IWMSRFSV macro, the caller does not have to place any
information into any register unless using it in register notation for a particular
parameter, or using it as a base register.

Output Register Information
When control returns to the caller, the GPRs contain:

Register
Contents

0 Reason code if GR15 return code is non-zero
1 Used as work registers by the system
2-13 Unchanged
14 Used as work registers by the system
15 Return code

When control returns to the caller, the ARs contain:

Register
Contents

0-1 Used as work registers by the system
2-13 Unchanged
14-15 Used as work registers by the system

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the
caller depends, the caller must save them before issuing the service, and restore
them after the system returns control.

Performance Implications
The task issuing this service may be suspended while a new server address space
is being started, possibly on another MVS image.

IWMSRFSV Macro

486 z/OS V1R4.0 MVS Workload Management Services

Syntax

main diagram

��
name

� IWMSRFSV � CONNTKN=conntkn ,APPLENV=applenv �

� ,SERVER_DATA=server_data
,RETCODE=retcode ,RSNCODE=rsncode

�

�
,PLISTVER=IMPLIED_VERSION

,PLISTVER=MAX
,PLISTVER=0

,MF=S

,0D
,MF=(L ,list addr)

,attr
,COMPLETE

,MF=(E ,list addr)

�"

Parameters
The parameters are explained as follows:

name
An optional symbol, starting in column 1, that is the name on the IWMSRFSV
macro invocation. The name must conform to the rules for an ordinary
assembler language symbol.

,APPLENV=applenv
A required input parameter, which contains the application environment under
which work requests are to be served.

To code: Specify the RS-type address, or address in register (2)-(12), of a
32-character field.

CONNTKN=conntkn
A required input parameter, which contains the connect token for the current
home space.

To code: Specify the RS-type address, or address in register (2)-(12), of a 32
bit field.

,MF=S
,MF=(L,list addr)
,MF=(L,list addr,attr)
,MF=(L,list addr,0D)
,MF=(E,list addr)
,MF=(E,list addr,COMPLETE)

An optional input parameter that specifies the macro form.

Use MF=S to specify the standard form of the macro, which builds an inline
parameter list and generates the macro invocation to transfer control to the
service. MF=S is the default.

Use MF=L to specify the list form of the macro. Use the list form together with
the execute form of the macro for applications that require reentrant code. The
list form defines an area of storage that the execute form uses to store the
parameters. Only the PLISTVER parameter may be coded with the list form of
the macro.

IWMSRFSV Macro

Chapter 57. IWMSRFSV – Finding a Sysplex Routing Server 487

Use MF=E to specify the execute form of the macro. Use the execute form
together with the list form of the macro for applications that require reentrant
code. The execute form of the macro stores the parameters into the storage
area defined by the list form, and generates the macro invocation to transfer
control to the service.

,list addr
The name of a storage area to contain the parameters. For MF=S and
MF=E, this can be an RS-type address or an address in register (1)-(12).

,attr
An optional 1- to 60-character input string that you use to force boundary
alignment of the parameter list. Use a value of 0F to force the parameter
list to a word boundary, or 0D to force the parameter list to a doubleword
boundary. If you do not code attr, the system provides a value of 0D.

,COMPLETE
Specifies that the system is to check for required parameters and supply
defaults for omitted optional parameters.

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX
,PLISTVER=0

An optional input parameter that specifies the version of the macro. PLISTVER
determines which parameter list the system generates. PLISTVER is an
optional input parameter on all forms of the macro, including the list form. When
using PLISTVER, specify it on all macro forms used for a request and with the
same value on all of the macro forms. The values are:

v IMPLIED_VERSION, which is the lowest version that allows all parameters
specified on the request to be processed. If you omit the PLISTVER
parameter, IMPLIED_VERSION is the default.

v MAX, if you want the parameter list to be the largest size currently possible.
This size might grow from release to release and affect the amount of
storage that your program needs.

If you can tolerate the size change, IBM recommends that you always specify
PLISTVER=MAX on the list form of the macro. Specifying MAX ensures that
the list-form parameter list is always long enough to hold all the parameters
you might specify on the execute form; in this way, MAX ensures that the
parameter list does not overwrite nearby storage.

v 0, if you use the currently available parameters.

To code: Specify one of the following:
v IMPLIED_VERSION
v MAX
v A decimal value of 0

,RETCODE=retcode
An optional output parameter into which the return code is to be copied from
GPR 15.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

,RSNCODE=rsncode
An optional output parameter into which the reason code is to be copied from
GPR 0.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

IWMSRFSV Macro

488 z/OS V1R4.0 MVS Workload Management Services

,SERVER_DATA=server_data
A required output parameter, which contains the data needed to uniquely
identify the chosen server. The structure of this data is undefined to MVS, and
is the same data passed when the server connected using IWMCONN
SERVER_MANAGER=YES, SERVER_TYPE=ROUTING, SERVER_DATA=...

To code: Specify the RS-type address, or address in register (2)-(12), of a
32-character field.

ABEND Codes
None.

Return and Reason Codes
When the IWMSRFSV macro returns control to your program:
v GPR 15 (and retcode, if you coded RETCODE) contains a return code.
v When the value in GPR 15 is not zero, GPR 0 (and rsncode, if you coded

RSNCODE) contains reason code.

The following table identifies the hexadecimal return and reason codes and the
equate symbol associated with each reason code. IBM support personnel may
request the entire reason code, including the xxxx value.

Table 58. Return and Reason Codes for the IWMSRFSV Macro

Return Code Reason Code Equate Symbol Meaning and Action

0 — Equate Symbol: IwmRetCodeOk

Meaning: Successful completion.

Action: None required.

8 — Equate Symbol: IwmRetCodeInvocError

Meaning: Invalid invocation environment or parameters.

8 xxxx0801 Equate Symbol: IwmRsnCodeSRBMode

Meaning: Caller is in SRB mode.

Action: Avoid requesting this function in SRB mode.

8 xxxx0803 Equate Symbol: IwmRsnCodeDisabled

Meaning: Caller is disabled.

Action: Avoid requesting this function while disabled.

8 xxxx0804 Equate Symbol: IwmRsnCodeLocked

Meaning: Caller is locked.

Action: Avoid requesting this function while locked.

8 xxxx080B Equate Symbol: IwmRsnCodeBadPl

Meaning: Error accessing parameter list.

Action: Check for possible storage overlay.

8 xxxx0810 Equate Symbol: IwmRsnCodeEutFrr

Meaning: Caller has EUT FRR established.

Action: Avoid requesting this function with an EUT FRR.

IWMSRFSV Macro

Chapter 57. IWMSRFSV – Finding a Sysplex Routing Server 489

Table 58. Return and Reason Codes for the IWMSRFSV Macro (continued)

Return Code Reason Code Equate Symbol Meaning and Action

8 xxxx0823 Equate Symbol: IwmRsnCodeDatoff

Meaning: Caller invoked service while DATOFF

Action: Avoid requesting this function in this environment.

8 xxxx0824 Equate Symbol: IwmRsnCodeAmode24

Meaning: Caller invoked service but was in 24 bit
addressing mode.

Action: Request this function only when you are in 31 bit
addressing mode.

8 xxxx0825 Equate Symbol: IwmRsnCodeAscModeNotPrimary

Meaning: Caller invoked service but was not DAT on
Primary ASC mode.

Action: Avoid requesting this function in this environment.

8 xxxx0826 Equate Symbol: IwmRsnCodeTaskTerm

Meaning: Caller invoked service while task termination is in
progress for the current task.

Action: Avoid requesting this function in this environment.

8 xxxx0828 Equate Symbol: IwmRsnCodeBadVersion

Meaning: Version number or version length field in
parameter list is not valid.

Action: Check for possible overlay of the parameter list.

8 xxxx083B Equate Symbol: IwmRsnCodeHomeNotOwnConn

Meaning: Home address space does not own the connect
token from the input parameter list.

Action: Invoke the function with the correct home address
space.

8 xxxx0840 Equate Symbol: IwmRsnCodeServiceNotEnabled

Meaning: Caller’s space connection is not enabled for this
service.

Action: Avoid requesting this function under the input
connection. IWMCONN options must be specified previously
to enable this service.

8 xxxx0841 Equate Symbol: IwmRsnCodeXmemMode

Meaning: Caller invoked service but was in cross-memory
mode.

Action: Avoid requesting this function in cross-memory
mode.

8 xxxx0842 Equate Symbol: IwmRsnCodeNoWLMConnect

Meaning: Caller’s space is not connected to WLM.

Action: Issue IWMCONN with the necessary options prior
to invoking this service.

C — Equate Symbol: IwmRetCodeEnvError

Meaning: Environmental error.

IWMSRFSV Macro

490 z/OS V1R4.0 MVS Workload Management Services

Table 58. Return and Reason Codes for the IWMSRFSV Macro (continued)

Return Code Reason Code Equate Symbol Meaning and Action

C xxxx0C01 Equate Symbol: IwmRsnCodeNoStg

Meaning: Storage is not available for the request.

Action: There is a storage shortage. The function may work
successfully at a later time.

C xxxx0C1A Equate Symbol: IwmRsnCodeApplNotDefined

Meaning: The application environment name is not defined
in the active WLM policy.

Action: Check whether the correct application environment
name is being used. If so, a service administrator must
define the application environment in the WLM service
definition.

C xxxx0C1B Equate Symbol: IwmRsnCodeApplNotSST

Meaning: The application environment name is defined for
use by a different subsystem type in the active WLM policy.

Action: Check whether the correct application environment
name being used. If so, a service administrator must
change the application environment in the WLM service
definition to specify the correct subsystem type.

C xxxx0C1C Equate Symbol: IwmRsnCodeServerNotStarted

Meaning: No server exists for the specified application
environment and no server could be started.

Action: No action required. The function may be successful
if invoked again.

C xxxx0C22 Equate Symbol: IwmRsnCodeApplEnvQuiesced

Meaning: The specified application environment has been
quiesced, server cannot be started for the request.

Action: Restart the application environment and then retry
the request.

C xxxx0C23 Equate Symbol: IwmRsnCodeIndLocalSystem

Meaning: Local system is not running with the current WLM
policy, new server cannot be started for the request.

Action: Avoid requesting this function while the local
system is not running with the current WLM policy.

C xxxx0C24 Equate Symbol: IwmRsncodeProcNameBlank

Meaning: Server procname is blank, server cannot be
started for the request.

Action: Check the server procname, fix it, and then retry
the request.

C xxxx0C25 Equate Symbol: IwmRsnCodeApplEnvStopped

Meaning: WLM has given up trying to start a server
because of failures. The associated application environment
has been internally stopped.

Action: Restart the application environment and then retry
the request.

IWMSRFSV Macro

Chapter 57. IWMSRFSV – Finding a Sysplex Routing Server 491

Table 58. Return and Reason Codes for the IWMSRFSV Macro (continued)

Return Code Reason Code Equate Symbol Meaning and Action

C xxxx0C26 Equate Symbol: IwmRsnCodeRouterNotActive

Meaning: Either there is no router exists for the requested
server or the router exists but not active. No server can be
selected/started on this system.

Action: Re-connect the router for the requested application
environment to WLM and then retry the request.

C xxxx0C27 Equate Symbol: IwmRsnCodeFsvReqInCompat

Meaning: Reserved.

10 — Equate Symbol: IwmRetCodeCompError

Meaning: Component error.

Action: No action required. The function may be successful
if invoked again.

Example
To determine a best server to which to route work:

IWMSRFSV CONNTKN=CTKN, X
APPLENV=AENAME, X
SERVER_DATA=SVRDATA, X
RETCODE=RC,RSNCODE=RSN

*
* Storage areas
*
CTKN DS F Contains the connect token for
* the current home space
AENAME DS CL32 Contains the application
* environment name
SVRDATA DS CL32 Contains the output server data
RC DS F Return code
RSN DS F Reason code

IWMSRFSV Macro

492 z/OS V1R4.0 MVS Workload Management Services

|||

|

Chapter 58. IWMSRSRG – Register a Server for Sysplex
Routing

IWMSRSRG will register a server that wishes to participate in sysplex workload
balancing. The service allows the caller to identify an address space to be
associated with a triplet, corresponding to location name, network id and LU name.
This triplet is expected to be unique across all registered spaces in the sysplex, and
in fact should be unique across all networks. The caller can additionally associate
the triplet with a host name. Host name is optional and if not coded will be set to
blanks by the system. A list of eligible servers is made available to IWMSRSRS.
These work requests include enclaves owned by the space as well as the address
space’s activity itself.

If this macro is issued to register a LOCATION.NETWORK_ID.LUNAME that
already exists on the issuing MVS image, the second registration will be ignored
(IWMSRDRS should first be used to deregister the triplet). This condition will be
identified through a unique return and reason code. Due to timing considerations,
sysplex-wide uniqueness is not enforced, and so is the responsibility of the caller.

After a server registers by issuing this macro, the Sysplex Routing Service
IWMSRSRS can be issued to return a weighted list of registered servers in the
sysplex to which work could be directed. Alternatively, IWMSRSRS can be used to
obtain a complete list of servers associated with a given location when invoked on a
system at OS/390 R3 or later. IWMSRSRS can be used to obtain the userdata
associated with each server when invoked on a system at OS/390 R3 or later,
though servers resident on an earlier release will be associated with userdata which
is binary zeroes. Since the propagation of the registration to other systems is
asynchronous, a newly registered triplet will not be immediately visible to other
systems.

A server will be automatically deregistered during job termination or memory
termination.

Important Note
With APAR OW33878 installed, new security checks are added to the module
this service invokes (as well as to the deregister module invoked by
IWMSRDRS). With this APAR installed, the security checks are invoked when
the caller is in Problem state, and does not own any privileged keys (i.e. has
none of the authorization key mask bits 0-7 turned on). In this case, the caller
must satisfy the following three conditions to use this service:

v The caller must not be in cross memory mode

v The caller must not have an EUT FRR established

v The caller must be authorized in the BPX.WLMSERVER profile in the
facility class.

Environment
The requirements for the caller are:

Minimum authorization: Problem state with any PSW key (see previous note)

Dispatchable unit mode: Task or SRB

© Copyright IBM Corp. 1988, 2002 493

Cross memory mode: Any PASN, any HASN, any SASN (see previous note)

AMODE: 31-bit

ASC mode: Primary

Interrupt status: Enabled for I/O and external interrupts

Locks: No locks may be held. FRRs may be established (see
previous note).

Control parameters: Control parameters must be in the primary address space.

Programming Requirements
1. The macro CVT must be included to use this macro.
2. The macro IWMYCON must be included to use this macro.
3. The macro IWMPB must be in the library concatenation, since it is included by

IWMYCON.
4. Note that the high order halfword of register 0, and the reason code variable

when specified, may be non-zero and represents diagnostic data which is NOT
part of the external interface. The high order halfword should thus be excluded
from comparison with the reason code values described above. The constant,
IWMRSNCODE_MASK_CONST defined in IWMYCON, may be used for this
purpose.

5. All character data, unless otherwise specified, is assumed to be left justified and
padded with blanks on the right, as needed, to occupy the specified number of
bytes.

Restrictions
This macro may only be used on MVS/ESA SP5.2 or later levels. User data may
only be passed when running on OS/390 R3 or later - when passed to lower level
systems the data will be ignored and no return code set to reflect this condition.

Input Register Information
Before issuing the IWMSRSRG macro, the caller does not have to place any
information into any register unless using it in register notation for a particular
parameter, or using it as a base register.

Output Register Information
When control returns to the caller, the GPRs contain:

Register
Contents

0 Reason code if GR15 return code is non-zero
1 Used as work register by the system
2-13 Unchanged
14 Used as work register by the system
15 Return code

When control returns to the caller, the ARs contain:

Register
Contents

0-1 Used as work registers by the system
2-13 Unchanged

IWMSRSRG Macro

494 z/OS V1R4.0 MVS Workload Management Services

14-15 Used as work registers by the system

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the
caller depends, the caller must save them before issuing the service, and restore
them after the system returns control.

Performance Implications
None.

Syntax

main diagram

��
name

� IWMSRSRG � LOCATION=location ,NETWORK_ID=network_id �

� ,LUNAME=luname ,STOKEN=stoken
,USERDATA=NO_USERDATA

,USERDATA=userdata

,HOST=NO_HOST

,HOST=host
�

�
,RETCODE=retcode ,RSNCODE=rsncode

,PLISTVER=IMPLIED_VERSION

,PLISTVER=MAX
,PLISTVER=0
,PLISTVER=1
,PLISTVER=2

�

�
,MF=S

,0D
,MF=(L ,list addr)

,attr
,COMPLETE

,MF=(E ,list addr)

�"

Parameters
The parameters are explained as follows:

name
An optional symbol, starting in column 1, that is the name on the IWMSRSRG
macro invocation. The name must conform to the rules for an ordinary
assembler language symbol.

,HOST=host
,HOST=NO_HOST

An optional input parameter, which contains the host name associated with the
address space to be registered. The value should be padded on the right with
blanks for any unused characters. The default is NO_HOST, which indicates
that a host name was not passed.

To code: Specify the RS-type address, or address in register (2)-(12), of a
64-character field.

IWMSRSRG Macro

Chapter 58. IWMSRSRG – Register a Server for Sysplex Routing 495

LOCATION=location
A required input parameter, which contains the server LOCATION associated
with the address space to be registered. The value should be padded on the
right with blanks for any unused characters.

To code: Specify the RS-type address, or address in register (2)-(12), of a
18-character field.

,LUNAME=luname
A required input parameter, which contains the server Logical Unit name
associated with the address space to be registered.

To code: Specify the RS-type address, or address in register (2)-(12), of an
8-character field.

,MF=S
,MF=(L,list addr)
,MF=(L,list addr,attr)
,MF=(L,list addr,0D)
,MF=(E,list addr)
,MF=(E,list addr,COMPLETE)

An optional input parameter that specifies the macro form.

Use MF=S to specify the standard form of the macro, which builds an inline
parameter list and generates the macro invocation to transfer control to the
service. MF=S is the default.

Use MF=L to specify the list form of the macro. Use the list form together with
the execute form of the macro for applications that require reentrant code. The
list form defines an area of storage that the execute form uses to store the
parameters. Only the PLISTVER parameter may be coded with the list form of
the macro.

Use MF=E to specify the execute form of the macro. Use the execute form
together with the list form of the macro for applications that require reentrant
code. The execute form of the macro stores the parameters into the storage
area defined by the list form, and generates the macro invocation to transfer
control to the service.

,list addr
The name of a storage area to contain the parameters. For MF=S and
MF=E, this can be an RS-type address or an address in register (1)-(12).

,attr
An optional 1- to 60-character input string that you use to force boundary
alignment of the parameter list. Use a value of 0F to force the parameter
list to a word boundary, or 0D to force the parameter list to a doubleword
boundary. If you do not code attr, the system provides a value of 0D.

,COMPLETE
Specifies that the system is to check for required parameters and supply
defaults for omitted optional parameters.

,NETWORK_ID=network_id
A required input parameter, which contains the Network ID associated with the
address space to be registered.

To code: Specify the RS-type address, or address in register (2)-(12), of an
8-character field.

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX

IWMSRSRG Macro

496 z/OS V1R4.0 MVS Workload Management Services

,PLISTVER=0
,PLISTVER=1
,PLISTVER=2

An optional input parameter that specifies the version of the macro. PLISTVER
determines which parameter list the system generates. PLISTVER is an
optional input parameter on all forms of the macro, including the list form. When
using PLISTVER, specify it on all macro forms used for a request and with the
same value on all of the macro forms. The values are:

v IMPLIED_VERSION, which is the lowest version that allows all parameters
specified on the request to be processed. If you omit the PLISTVER
parameter, IMPLIED_VERSION is the default.

v MAX, if you want the parameter list to be the largest size currently possible.
This size might grow from release to release and affect the amount of
storage that your program needs.

If you can tolerate the size change, IBM recommends that you always specify
PLISTVER=MAX on the list form of the macro. Specifying MAX ensures that
the list-form parameter list is always long enough to hold all the parameters
you might specify on the execute form; in this way, MAX ensures that the
parameter list does not overwrite nearby storage.

v 0, if you use only the following parameters:

LOCATION NETWORK_ID

LUNAME STOKEN

v 1, if you use any of the following parameters, and parameters from version 0,
or both:

USERDATA

v 2, if you use any of the following parameters, and parameters from version 0
or 1, or both:

HOST

To code: Specify one of the following:
v IMPLIED_VERSION
v MAX
v A decimal value of 0,1 or 2

,RETCODE=retcode
An optional output parameter into which the return code is to be copied from
GPR 15.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

,RSNCODE=rsncode
An optional output parameter into which the reason code is to be copied from
GPR 0.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

,STOKEN=stoken
A required input parameter, which contains the Space Token of the server to be
registered.

To code: Specify the RS-type address, or address in register (2)-(12), of a 64
bit field.

IWMSRSRG Macro

Chapter 58. IWMSRSRG – Register a Server for Sysplex Routing 497

,USERDATA=userdata
,USERDATA=NO_USERDATA

An optional input parameter, which contains data meaningful to the user of this
service. This user data is available to callers of the IWMSRSRS service when
invoked on a system running OS/390 R3 or later.

Userdata may only be passed via IWMSRSRG when running on OS/390 R3 or
later - when passed to lower level systems the data will be ignored and no
return code set to reflect this condition. The format is undefined to MVS. The
default is NO_USERDATA, which indicates that no user data was passed.

To code: Specify the RS-type address, or address in register (2)-(12), of a
64-character field.

ABEND Codes
None.

Return and Reason Codes
When the IWMSRSRG macro returns control to your program:
v GPR 15 (and retcode, if you coded RETCODE) contains a return code.
v When the value in GPR 15 is not zero, GPR 0 (and rsncode, if you coded

RSNCODE) contains reason code.

The following table identifies the hexadecimal return and reason codes and the
equate symbol associated with each reason code. IBM support personnel may
request the entire reason code, including the xxxx value.

Table 59. Return and Reason Codes for the IWMSRSRG Macro

Return Code Reason Code Equate Symbol Meaning and Action

0 — Equate Symbol: IwmRetCodeOk

Meaning: Successful completion.

Action: None required.

4 — Equate Symbol: IwmRetCodeWarning

Meaning: Successful completion, unusual conditions noted.

4 xxxx0419 Equate Symbol: IwmRsnCodeServerAlreadyReg

Meaning: Server already registered.

Action: None required.

8 — Equate Symbol: IwmRetCodeInvocError

Meaning: Invalid invocation environment or parameters.

8 xxxx0803 Equate Symbol: IwmRsnCodeDisabled

Meaning: Caller is disabled.

Action: Avoid requesting this function while disabled.

8 xxxx0804 Equate Symbol: IwmRsnCodeLocked

Meaning: Caller is locked.

Action: Avoid requesting this function while locked.

IWMSRSRG Macro

498 z/OS V1R4.0 MVS Workload Management Services

Table 59. Return and Reason Codes for the IWMSRSRG Macro (continued)

Return Code Reason Code Equate Symbol Meaning and Action

8 xxxx0807 Equate Symbol: IwmRsnCodeBadSTOKEN

Meaning: Bad STOKEN passed.

Action: Check for possible storage overlay.

8 xxxx080B Equate Symbol: IwmRsnCodeBadPl

Meaning: Error accessing parameter list.

Action: Check for possible storage overlay.

8 xxxx0823 Equate Symbol: IwmRsnCodeDatoff

Meaning: Caller invoked service while DATOFF

Action: Avoid requesting this function in this environment.

8 xxxx0824 Equate Symbol: IwmRsnCodeAmode24

Meaning: Caller invoked service but was in 24 bit
addressing mode.

Action: Request this function only when you are in 31 bit
addressing mode.

8 xxxx0825 Equate Symbol: IwmRsnCodeAscModeNotPrimary

Meaning: Caller invoked service but was not DAT on
Primary ASC mode.

Action: Avoid requesting this function in this environment.

8 xxxx0828 Equate Symbol: IwmRsnCodeBadVersion

Meaning: Version number in parameter list or version
length field is not valid. This reason code is only set when
the MVS release is on MVS/ESA HBB6603 or later levels.

Action: Check for possible storage overlay of the parameter
list.

8 xxxx0829 Equate Symbol: IwmRsnCodeBadOptions

Meaning: Parameter list omits required parameters or
supplies mutually exclusive parameters or provides data
associated with options not selected. Note that this reason
code will only occur on calls to this service through the
IWMDNREG C language interface.

Action: Check for possible storage overlay of the parameter
list.

C — Equate Symbol: IwmRetCodeEnvError

Meaning: Environmental error.

C xxxx0C01 Equate Symbol: IwmRsnCodeNoStg

Meaning: Storage is not available for the request.

Action: There is a storage shortage. The function may work
successfully at a later time.

IWMSRSRG Macro

Chapter 58. IWMSRSRG – Register a Server for Sysplex Routing 499

Table 59. Return and Reason Codes for the IWMSRSRG Macro (continued)

Return Code Reason Code Equate Symbol Meaning and Action

C xxxx0C35 Equate Symbol: IwmRsnCodeNotSecAuthServReg

Meaning: The caller is not authorized by SAF to
register/deregister a server.

Action: Only supervisor state or authorized key 8 callers
can register or deregister servers. Key 8 callers must have
RACF authority to the BPX.WLMSERVER profile in the
facility class (BPX.WLMSERVER must be defined for
authorized users to execute the DNS services). The
RACROUTE command is invoked during the SAF check,
which doesn’t allow the caller to be in cross memory mode
or have an FRR established.

10 — IwmRetCodeCompError: Component error (no reason
codes)

Example
To register an instance of a given location:

IWMSRSRG LOCATION=LOC,NETWORK_ID=NET,LUNAME=LU,
STOKEN=STKN,HOST=HST,
USERDATA=DATA,RETCODE=RC,RSNCODE=RSN

*
* Storage areas
*
LOC DS CL18 Contains the Location
* associated with the server
* instance
NET DS CL8 Contains the Network id
* associated with the server
* instance
LU DS CL8 Contains the LU name
* associated with the server
* instance
STKN DS CL8 Contains the STOKEN
* associated with the server
* instance
DATA DS CL64 Contains the user data
* associated with the server
* instance
HST DS CL64 Contains the Host name
* associated with the server
* instance
RC DS F Return code
RSN DS F Reason code

IWMSRSRG Macro

500 z/OS V1R4.0 MVS Workload Management Services

Chapter 59. IWMSRSRS – Determine Where to Route Work

IWMSRSRS provides two functions: Select and Query. Both return a list of
registered servers known to the system on which the service is invoked. Servers
which have deregistered, via IWMSRDRS, may still be present in the output list,
due to the asynchronous nature of deregistration. Conversely, some registered
servers may not appear for this same reason.

When the Select function is chosen, IWMSRSRS will return a list of servers in the
sysplex which are associated with the input Location name along with a relative
weighting for each server. These servers are identified by their Network id and LU
name, which were previously registered using the Sysplex Router Register macro,
IWMSRSRG. Note that some servers may not appear in the output list due to
balancing decisions, so this service should not be used as a general query service
to find all currently registered servers for the input location.

Next to each server in the list will be a weight which tells the caller the relative
number of requests to send to each entry. For example, the caller might send the
indicated number of requests to each LU in the list before routing to the next LU in
the list.
Server Weight
------ ------
NETIDA.LUNAME1 4
NETIDB.LUNAME2 7
NETIDC.LUNAME3 1
NETIDD.LUNAME43 4
NETID4.LUNAME2 2

The requestor could then choose to send the first 4 requests to NETIDA.LUNAME1,
the next 7 requests to NETIDB.LUNAME2, the next request to NETIDC.LUNAME3,
and so forth. When the list is exhausted, the requestor could invoke this macro
again and get a whole new list or could rotate through the list again. It is expected
that the requestor would invoke this macro frequently to get current system views
for work balancing. For example, it would be appropriate for the caller to invoke this
service approximately every 1 to 3 minutes, so that the list will remain current with
changing system conditions and server availability.

The Query function is only available on systems running OS/390 R3 or later. When
the Query function is requested, IWMSRSRS will return the list of all servers in the
sysplex which are associated with the input Location name along with a fixed
weight of one for each server. The format of the output is the same as for Select.

The Sysplex Routing Service (IWMSRSRS) can be used to obtain the userdata
associated with each server when invoked on a system at OS/390 R3 or later,
though servers resident on an earlier release will be associated with userdata which
is binary zeroes.

Environment
The requirements for the caller are:

Minimum authorization: Supervisor state or program key mask (PKM) allowing keys
0-7.

Dispatchable unit mode: Task or SRB

Cross memory mode: Any PASN, any HASN, any SASN

© Copyright IBM Corp. 1988, 2002 501

AMODE: 31-bit

ASC mode: Primary

Interrupt status: Enabled for I/O and external interrupts

Locks: No locks may be held. FRRs may be established.

Control parameters: Control parameters must be in the primary address space.

Programming Requirements
1. The macro CVT must be included to use this macro.
2. The macro IWMYCON must be included to use this macro.
3. The macro IWMPB must be in the library concatenation, since it is included by

IWMYCON.
4. Note that the high order halfword of register 0, and the reason code variable

when specified, may be non-zero and represents diagnostic data which is NOT
part of the external interface. The high order halfword should thus be excluded
from comparison with the reason code values described above. The constant,
IWMRSNCODE_MASK_CONST defined in IWMYCON, may be used for this
purpose.

5. All character data, unless otherwise specified, is assumed to be left justified and
padded with blanks on the right, as needed, to occupy the specified number of
bytes.

Restrictions
1. This macro may only be used on MVS/ESA SP5.2 or later levels. Extended data

may only be returned when running on OS/390 R3 or later, and server instances
residing on prior releases will be assigned userdata values consisting of all
binary zeroes.

Input Register Information
Before issuing the IWMSRSRS macro, the caller does not have to place any
information into any register unless using it in register notation for a particular
parameter, or using it as a base register.

Output Register Information
When control returns to the caller, the GPRs contain:

Register
Contents

0 Reason code if GR15 return code is non-zero
1 Used as work register by the system
2-13 Unchanged
14 Used as work register by the system
15 Return code

When control returns to the caller, the ARs contain:

Register
Contents

0-1 Used as work registers by the system
2-13 Unchanged
14-15 Used as work registers by the system

IWMSRSRS Macro

502 z/OS V1R4.0 MVS Workload Management Services

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the
caller depends, the caller must save them before issuing the service, and restore
them after the system returns control.

Performance Implications
None.

Syntax

main diagram

��
name

� IWMSRSRS � SYSINFO_BLOCK=sysinfo_block �

�
,EXTENDED_DATA=NO

,EXTENDED_DATA=YES
,ANSLEN=anslen

,ENTRY_COUNT=entry_count
�

� ,QUERYLEN=querylen ,LOCATION=location
,FUNCTION=SELECT

,FUNCTION=QUERY
�

�
,RETCODE=retcode ,RSNCODE=rsncode

,PLISTVER=IMPLIED_VERSION

,PLISTVER=MAX
,PLISTVER=0
,PLISTVER=1

�

�
,MF=S

,0D
,MF=(L ,list addr)

,attr
,COMPLETE

,MF=(E ,list addr)

�"

Parameters
The parameters are explained as follows:

name
An optional symbol, starting in column 1, that is the name on the IWMSRSRS
macro invocation. The name must conform to the rules for an ordinary
assembler language symbol.

,ANSLEN=anslen
A required input parameter, which contains the length of the SYSINFO_BLOCK
in bytes.

To code: Specify the RS-type address, or address in register (2)-(12), of a
fullword field.

,ENTRY_COUNT=entry_count
An optional output parameter, which will hold the number of server entries
returned by the service. This is the number of entries in the SYSR_INFO array

IWMSRSRS Macro

Chapter 59. IWMSRSRS – Determine Where to Route Work 503

(see IWMWSYSR). ENTRY_COUNT may only be specified when running on
OS/390 R3 or later. On earlier releases this request is ignored and the variable
is zeroed. No return code is given that this has happened.

To code: Specify the RS-type address, or address in register (2)-(12), of a
fullword field.

,EXTENDED_DATA=NO
,EXTENDED_DATA=YES

An optional parameter, which describes whether the format of the output area
named by SYSINFO_BLOCK includes the extended section or not (see
IWMWSYSR). The default is EXTENDED_DATA=NO.

,EXTENDED_DATA=NO
indicates that the format of the output area named by SYSINFO_BLOCK
includes only the standard information mapped by the SYSR, which
consists of an array of entries described by SYSR_INFO.

,EXTENDED_DATA=YES
indicates that the format of the output area given by SYSINFO_BLOCK
includes first the standard information mapped by the SYSR, which consists
of an array of entries described by SYSR_INFO, followed immediately by
the header for the extension section and any other data described by the
header.

EXTENDED_DATA is only available to callers of the IWMSRSRS service
when invoked on a system running OS/390 R3 or later. The
EXTENDED_DATA returned by OS/390 R3 includes the header and
associated userdata. Data associated with entries on MVS images not
supporting a particular type of data will be set as binary zeroes - for
example servers on MVS SP5.2 will have userdata which is all zeroes. No
special indication will be given for this condition. In particular no special
return or reason codes are given.

On releases prior to OS/390 R3, EXTENDED_DATA(YES) is processed as
though EXTENDED_DATA(NO) was specified. No return code is given that
this has happened.

,FUNCTION=SELECT
,FUNCTION=QUERY

An optional parameter, which describes which set of servers are of interest to
the caller. The default is FUNCTION=SELECT.

,FUNCTION=SELECT
indicates that the servers best suited to receive work are to be returned.

,FUNCTION=QUERY
indicates that all servers associated with the input LOCATION are to be
returned. QUERY may only be specified when running on OS/390 R3 or
later. On earlier releases this request is processed as a SELECT request.
No return code is given that this has happened.

,LOCATION=location
A required input parameter, which contains the LOCATION associated with the
registered address spaces which are candidates to receive work.

To code: Specify the RS-type address, or address in register (2)-(12), of a
18-character field.

,MF=S
,MF=(L,list addr)
,MF=(L,list addr,attr)

IWMSRSRS Macro

504 z/OS V1R4.0 MVS Workload Management Services

,MF=(L,list addr,0D)
,MF=(E,list addr)
,MF=(E,list addr,COMPLETE)

An optional input parameter that specifies the macro form.

Use MF=S to specify the standard form of the macro, which builds an inline
parameter list and generates the macro invocation to transfer control to the
service. MF=S is the default.

Use MF=L to specify the list form of the macro. Use the list form together with
the execute form of the macro for applications that require reentrant code. The
list form defines an area of storage that the execute form uses to store the
parameters. Only the PLISTVER parameter may be coded with the list form of
the macro.

Use MF=E to specify the execute form of the macro. Use the execute form
together with the list form of the macro for applications that require reentrant
code. The execute form of the macro stores the parameters into the storage
area defined by the list form, and generates the macro invocation to transfer
control to the service.

,list addr
The name of a storage area to contain the parameters. For MF=S and
MF=E, this can be an RS-type address or an address in register (1)-(12).

,attr
An optional 1- to 60-character input string that you use to force boundary
alignment of the parameter list. Use a value of 0F to force the parameter
list to a word boundary, or 0D to force the parameter list to a doubleword
boundary. If you do not code attr, the system provides a value of 0D.

,COMPLETE
Specifies that the system is to check for required parameters and supply
defaults for omitted optional parameters.

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX
,PLISTVER=0
,PLISTVER=1

An optional input parameter that specifies the version of the macro. PLISTVER
determines which parameter list the system generates. PLISTVER is an
optional input parameter on all forms of the macro, including the list form. When
using PLISTVER, specify it on all macro forms used for a request and with the
same value on all of the macro forms. The values are:

v IMPLIED_VERSION, which is the lowest version that allows all parameters
specified on the request to be processed. If you omit the PLISTVER
parameter, IMPLIED_VERSION is the default.

v MAX, if you want the parameter list to be the largest size currently possible.
This size might grow from release to release and affect the amount of
storage that your program needs.

If you can tolerate the size change, IBM recommends that you always specify
PLISTVER=MAX on the list form of the macro. Specifying MAX ensures that
the list-form parameter list is always long enough to hold all the parameters
you might specify on the execute form; in this way, MAX ensures that the
parameter list does not overwrite nearby storage.

v 0, if you use only the following parameters:

ANSLEN QUERYLEN

IWMSRSRS Macro

Chapter 59. IWMSRSRS – Determine Where to Route Work 505

LOCATION SYSINFO_BLOCK

v 1, if you use any of the following parameters, and parameters from version 0,
or both:

ENTRY_COUNT EXTENDED_DATA FUNCTION

To code: Specify one of the following:
v IMPLIED_VERSION
v MAX
v A decimal value of 0 or 1

,QUERYLEN=querylen
A required output parameter, variable which contains the number of bytes
needed for all data requested, taking into account the format specified via the
EXTENDED_DATA keyword.

To code: Specify the RS-type address, or address in register (2)-(12), of a
fullword field.

,RETCODE=retcode
An optional output parameter into which the return code is to be copied from
GPR 15.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

,RSNCODE=rsncode
An optional output parameter into which the reason code is to be copied from
GPR 0.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

SYSINFO_BLOCK=sysinfo_block
A required input parameter, which specifies the name of the area to be filled in
with the system information for the registered, active, LUs in the SYSPLEX
associated with the input location.

The area must be large enough to contain at least 1 entry. The format of this
area is mapped by IWMWSYSR. The EXTENDED_DATA keyword describes the
desired format. The FUNCTION keyword describes which servers are
candidates for inclusion.

To code: Specify the RS-type address, or address in register (2)-(12), of a field.

ABEND Codes
None.

Return and Reason Codes
When the IWMSRSRS macro returns control to your program:
v GPR 15 (and retcode, if you coded RETCODE) contains a return code.
v When the value in GPR 15 is not zero, GPR 0 (and rsncode, if you coded

RSNCODE) contains reason code.

The following table identifies the hexadecimal return and reason codes and the
equate symbol associated with each reason code. IBM support personnel may
request the entire reason code, including the xxxx value.

IWMSRSRS Macro

506 z/OS V1R4.0 MVS Workload Management Services

Table 60. Return and Reason Codes for the IWMSRSRS Macro

Return Code Reason Code Equate Symbol Meaning and Action

0 — Equate Symbol: IwmRetCodeOk

Meaning: Successful completion.

Action: None required.

4 — Equate Symbol: IwmRetCodeWarning

Meaning: Successful completion, unusual conditions noted.

4 xxxx040A Equate Symbol: IwmRsnCodeOutputAreaTooSmall

Meaning: The output area supplied is too small to receive
all the available information.

Action: None required. If necessary, reinvoke the service
with an output area of sufficient size to receive all
information.

4 xxxx040B Equate Symbol: IwmRsnCodeNoServersRegistered

Meaning: No Servers have registered in the sysplex.

Action: None required.

8 — Equate Symbol: IwmRetCodeInvocError

Meaning: Invalid invocation environment or parameters.

8 xxxx0803 Equate Symbol: IwmRsnCodeDisabled

Meaning: Caller is disabled.

Action: Avoid requesting this function while disabled.

8 xxxx0804 Equate Symbol: IwmRsnCodeLocked

Meaning: Caller is locked.

Action: Avoid requesting this function while locked.

8 xxxx080B Equate Symbol: IwmRsnCodeBadPl

Meaning: Error accessing parameter list.

Action: Check for possible storage overlay.

8 xxxx0823 Equate Symbol: IwmRsnCodeDatoff

Meaning: Caller invoked service while DATOFF

Action: Avoid requesting this function in this environment.

8 xxxx0824 Equate Symbol: IwmRsnCodeAmode24

Meaning: Caller invoked service but was in 24 bit
addressing mode.

Action: Request this function only when you are in 31 bit
addressing mode.

8 xxxx0825 Equate Symbol: IwmRsnCodeAscModeNotPrimary

Meaning: Caller invoked service but was not DAT on
Primary ASC mode.

Action: Avoid requesting this function in this environment.

IWMSRSRS Macro

Chapter 59. IWMSRSRS – Determine Where to Route Work 507

Table 60. Return and Reason Codes for the IWMSRSRS Macro (continued)

Return Code Reason Code Equate Symbol Meaning and Action

8 xxxx0828 Equate Symbol: IwmRsnCodeBadVersion

Meaning: Version number in parameter list or version
length field is not valid. This reason code is only set when
the MVS release is on MVS/ESA HBB6603 or later levels.

Action: Check for possible storage overlay of the parameter
list.

8 xxxx0829 Equate Symbol: IwmRsnCodeBadOptions

Meaning: Parameter list omits required parameters or
supplies mutually exclusive parameters or provides data
associated with options not selected. Note that this reason
code will only occur on calls to this service through the
IWMDNSRV C language interface.

Action: Check for possible storage overlay of the parameter
list.

C — Equate Symbol: IwmRetCodeEnvError

Meaning: Environmental error.

C xxxx0C01 Equate Symbol: IwmRsnCodeNoStg

Meaning: Storage is not available for the request.

Action: There is a storage shortage. The function may work
successfully at a later time.

10 — Equate Symbol: IwmRetCodeCompError

Meaning: Component error.

Action: No action required. The function may be successful
if invoked again.

IWMSRSRS Macro

508 z/OS V1R4.0 MVS Workload Management Services

Example
To register an instance of a given location:

IWMSRSRS SYSINFO_BLOCK=DATA,
EXTENDED_DATA=YES,
ANSLEN=SIZE,
ENTRY_COUNT=E,
QUERYLEN=Q,
LOCATION=LOC,
FUNCTION=QUERY,RETCODE=RC,RSNCODE=RSN

*
* Storage areas
*
DATA DS CL200 Area to receive output
SIZEEQU EQU *-DATA Equate for size of Data
E DS F Field to receive entry count
Q DS F Field to receive query length
LOC DS CL18 Contains the Location
* associated with the server
* instance
RC DS F Return code
RSN DS F Reason code
SIZE DC A(SIZEEQU) Field to hold size

IWMSRSRS Macro

Chapter 59. IWMSRSRS – Determine Where to Route Work 509

IWMSRSRS Macro

510 z/OS V1R4.0 MVS Workload Management Services

Chapter 60. IWMSSEL – Selecting a Request from a Caller’s
Work Manager Queue

The IWMSSEL service selects the next work request from the queue associated
with the caller’s application environment. The caller must have previously connected
to WLM using the IWMCONN service specifying SERVER_MANAGER=YES.

If there are no queued work requests waiting for selection the calling task will be
suspended, pending arrival of work to do. The caller cannot rely upon asynchronous
exits receiving control while the task is suspended.

After a work request is selected, the caller uses the IWMSTBGN and IWMSTEND
services to indicate the start and end of processing of the request.

Environment
The requirements for the caller are:

Minimum authorization: Problem state. Any PSW key

Dispatchable unit mode: Task

Cross memory mode: PASN=HASN=SASN

AMODE: 31-bit

ASC mode: Primary

Interrupt status: Enabled for I/O and external interrupts

Locks: No locks may be held.

Control parameters: Control parameters must be in the primary address space.

Programming Requirements
1. The macro CVT must be included to use this macro.
2. The macro IWMYCON must be included to use this macro.
3. The macro IWMPB must be in the library concatenation, since it is included by

IWMYCON.
4. Note that the high order halfword of register 0, and the reason code variable

when specified, may be non-zero and represents diagnostic data which is NOT
part of the external interface. The high order halfword should thus be excluded
from comparison with the reason code values described above. The constant,
IWMRSNCODE_MASK_CONST defined in IWMYCON, may be used for this
purpose.

Restrictions
This macro supports multiple versions. Some keywords are unique to certain
versions. See the PLISTVER parameter description.

Input Register Information
Before issuing the IWMSSEL macro, the caller does not have to place any
information into any register unless using it in register notation for a particular
parameter, or using it as a base register.

© Copyright IBM Corp. 1988, 2002 511

Output Register Information
When control returns to the caller, the GPRs contain:

Register
Contents

0 Reason code if GR15 return code is non-zero
1 Used as work registers by the system
2-13 Unchanged
14 Used as work registers by the system
15 Return code

When control returns to the caller, the ARs contain:

Register
Contents

0-1 Used as work registers by the system
2-13 Unchanged
14-15 Used as work registers by the system

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the
caller depends, the caller must save them before issuing the service, and restore
them after the system returns control.

Performance Implications
None.

Syntax

main diagram

��
name

� IWMSSEL � USERDATA=userdata ,WLMEUTKN=wlmeutkn �

�
,SERVER_TOKEN=server_token ,REGION_TOKEN=region_token

�

�
,RETCODE=retcode ,RSNCODE=rsncode

,PLISTVER=IMPLIED_VERSION

,PLISTVER=MAX
,PLISTVER=0
,PLISTVER=1

�

�
,MF=S

,0D
,MF=(L ,list addr)

,attr
,COMPLETE

,MF=(E ,list addr)

�"

IWMSSEL Macro

512 z/OS V1R4.0 MVS Workload Management Services

Parameters
The parameters are explained as follows:

name
An optional symbol, starting in column 1, that is the name on the IWMSSEL
macro invocation. The name must conform to the rules for an ordinary
assembler language symbol.

,MF=S
,MF=(L,list addr)
,MF=(L,list addr,attr)
,MF=(L,list addr,0D)
,MF=(E,list addr)
,MF=(E,list addr,COMPLETE)

An optional input parameter that specifies the macro form.

Use MF=S to specify the standard form of the macro, which builds an inline
parameter list and generates the macro invocation to transfer control to the
service. MF=S is the default.

Use MF=L to specify the list form of the macro. Use the list form together with
the execute form of the macro for applications that require reentrant code. The
list form defines an area of storage that the execute form uses to store the
parameters. Only the PLISTVER parameter may be coded with the list form of
the macro.

Use MF=E to specify the execute form of the macro. Use the execute form
together with the list form of the macro for applications that require reentrant
code. The execute form of the macro stores the parameters into the storage
area defined by the list form, and generates the macro invocation to transfer
control to the service.

,list addr
The name of a storage area to contain the parameters. For MF=S and
MF=E, this can be an RS-type address or an address in register (1)-(12).

,attr
An optional 1- to 60-character input string that you use to force boundary
alignment of the parameter list. Use a value of 0F to force the parameter
list to a word boundary, or 0D to force the parameter list to a doubleword
boundary. If you do not code attr, the system provides a value of 0D.

,COMPLETE
Specifies that the system is to check for required parameters and supply
defaults for omitted optional parameters.

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX
,PLISTVER=0
,PLISTVER=1

An optional input parameter that specifies the version of the macro. PLISTVER
determines which parameter list the system generates. PLISTVER is an
optional input parameter on all forms of the macro, including the list form. When
using PLISTVER, specify it on all macro forms used for a request and with the
same value on all of the macro forms. The values are:

v IMPLIED_VERSION, which is the lowest version that allows all parameters
specified on the request to be processed. If you omit the PLISTVER
parameter, IMPLIED_VERSION is the default.

IWMSSEL Macro

Chapter 60. IWMSSEL – Selecting a Request from a Caller’s Work Manager Queue 513

v MAX, if you want the parameter list to be the largest size currently possible.
This size might grow from release to release and affect the amount of
storage that your program needs.

If you can tolerate the size change, IBM recommends that you always specify
PLISTVER=MAX on the list form of the macro. Specifying MAX ensures that
the list-form parameter list is always long enough to hold all the parameters
you might specify on the execute form, when both are assembled with the
same level of the system. In this way, MAX ensures that the parameter list
does not overwrite nearby storage.

v 0, which supports all parameters except those specifically referenced in
higher versions.

v 1, which supports both the following parameters and those from version 0:

SERVER_TOKEN

To code: Specify one of the following:
v IMPLIED_VERSION
v MAX
v A decimal value of 0 or 1

,REGION_TOKEN=region_token
An optional output parameter, which contains a region token. A queueing
manager can use the region token to queue work requests to a specific server
region. These work requests are considered to belong to a set of work requests
all needing access to same status information which exists only in the vitual
storage of the server region. They are selected using the IWMSSEL macro. It is
assumed that the application uses the service IWMTAFF to tell WLM when the
temporary affinity to the defined server region begins and ends.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

,RETCODE=retcode
An optional output parameter into which the return code is to be copied from
GPR 15.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

,RSNCODE=rsncode
An optional output parameter into which the reason code is to be copied from
GPR 0.

To code: Specify the RS-type address of a

,SERVER_TOKEN=server_token
An optional output parameter, which contains a server token. A queueing
manager can use the server token to queue secondary work requests to this
server task. Secondary work requests are considered to be extensions of the
work request selected by IWMSSEL. They are selected using the IWMSSEM
macro. See the IWMSSEM macro for more information.

To code: Specify the RS-type address, or address in register (2)-(12), of a
32-character field.

USERDATA=userdata
A required output parameter, which contains the user data previously passed to
WLM via IWMQINS.

To code: Specify the RS-type address, or address in register (2)-(12), of a
16-character field.

IWMSSEL Macro

514 z/OS V1R4.0 MVS Workload Management Services

,WLMEUTKN=wlmeutkn
A required output parameter, which will receive the execution unit token. This
token must be passed on subsequent IWMSTBGN and IWMSTEND requests.

To code: Specify the RS-type address, or address in register (2)-(12), of an
8-character field.

ABEND Codes
None.

Return and Reason Codes
When the IWMSSEL macro returns control to your program:
v GPR 15 (and retcode, when you code RETCODE) contains a return code.
v When the value in GPR 15 is not zero, GPR 0 (and rsncode, when you code

RSNCODE) contains reason code.

The following table identifies the hexadecimal return and reason codes and the
equate symbol associated with each reason code. IBM support personnel may
request the entire reason code, including the xxxx value.

Table 61. Return and Reason Codes for the IWMSSEL Macro

Return Code Reason Code Equate Symbol Meaning and Action

0 — Equate Symbol: IwmRetCodeOk

Meaning: Successful completion.

Action: None required.

8 — Equate Symbol: IwmRetCodeInvocError

Meaning: Invalid invocation environment or parameters.

8 xxxx0801 Equate Symbol: IwmRsnCodeSrbMode

Meaning: Caller is in SRB mode.

Action: Avoid requesting this function while in SRB mode.

8 xxxx0803 Equate Symbol: IwmRsnCodeDisabled

Meaning: Caller is disabled.

Action: Avoid requesting this function while disabled.

8 xxxx0804 Equate Symbol: IwmRsnCodeLocked

Meaning: Caller is locked.

Action: Avoid requesting this function while locked.

8 xxxx080B Equate Symbol: IwmRsnCodeBadPl

Meaning: Error accessing parameter list.

Action: Check for possible storage overlay.

8 xxxx0823 Equate Symbol: IwmRsnCodeDatoff

Meaning: Caller invoked service while DATOFF

Action: Avoid requesting this function in this environment.

IWMSSEL Macro

Chapter 60. IWMSSEL – Selecting a Request from a Caller’s Work Manager Queue 515

Table 61. Return and Reason Codes for the IWMSSEL Macro (continued)

Return Code Reason Code Equate Symbol Meaning and Action

8 xxxx0824 Equate Symbol: IwmRsnCodeAmode24

Meaning: Caller invoked service but was in 24 bit
addressing mode.

Action: Request this function only when you are in 31 bit
addressing mode.

8 xxxx0825 Equate Symbol: IwmRsnCodeAscModeNotPrimary

Meaning: Caller invoked service but was not in primary
ASC mode.

Action: Avoid requesting this function in this environment.

8 xxxx0827 Equate Symbol: IwmRsnCodeRsvdNot0

Meaning: Reserved field in parameter list was non-zero.

Action: Check for possible storage overlay of the parameter
list.

8 xxxx0828 Equate Symbol: IwmRsnCodeBadVersion

Meaning: Version number in parameter list is not valid.

Action: Check for possible storage overlay of the parameter
list.

8 xxxx0840 Equate Symbol: IwmRsnCodeServiceNotEnabled

Meaning: Caller’s space connection is not enabled for this
service

Action: Make sure that SERVER_MANAGER=YES is
specified on the IWMCONN request to enable this service.

8 xxxx0841 Equate Symbol: IwmRsnCodeXmemMode

Meaning: Caller is in cross-memory mode.

Action: Request this function only when you are not in
cross-memory mode.

8 xxxx0842 Equate Symbol: IwmRsnCodeNoWLMConnect

Meaning: Caller’s space is not connected to WLM.

Action: Invoke the IWMCONN macro before invoking this
macro.

8 xxxx0854 Equate Symbol: IwmRsnCodeTooManySelect

Meaning: The caller is attempting to select more work units
than it has tasks to execute the work.

Action: Wait until an execution task has issued IWMSTEND
before attempting to select more work units.

8 xxxx0864 Equate Symbol: IwmRsnCodeSecondaryWorkExists

Meaning: There are secondary work requests queued to
this server task. The caller was expected to process them
using IWMSSEM before calling IWMSSEL.

Action: Select all secondary work requests before issuing
IWMSSEL.

C — Equate Symbol: IwmRetCodeEnvError

Meaning: Environmental error.

IWMSSEL Macro

516 z/OS V1R4.0 MVS Workload Management Services

Table 61. Return and Reason Codes for the IWMSSEL Macro (continued)

Return Code Reason Code Equate Symbol Meaning and Action

C xxxx0C01 Equate Symbol: IwmRsnCodeNoStg

Meaning: Storage is not available for the request.

Action: Caller must disconnect by invoking the IWMDISC
macro.

C xxxx0C14 Equate Symbol: IwmRsnCodeNoWorkShutDown

Meaning: No work selected. Caller is to shutdown.

Action: Caller must disconnect by invoking the IWMDISC
macro.

C xxxx0C3B Equate Symbol: IwmRsnCodeStopTask

Meaning: WLM decided to stop the server instance.

Action: Calling task must shutdown, but server address
space must remain active.

10 — Equate Symbol: IwmRetCodeCompError

Meaning: Component error.

Action: Contact your system programmer.

Example
To select a work request from the WLM queue manager queues:

IWMSSEL USERDATA=USERDATA, X
WLMEUTKN=WLMEUTKN,RETCODE=RC,RSNCODE=RSN

*
* Storage areas
*
USERDATA DS CL16 Contains the user-defined data
* that was passed to IWMQINS
WLMEUTKN DS CL8 Work unit token that must be
* passed to IWMSTBGN and IWMSTEND
RC DS F Return code
RSN DS F Reason code

IWMSSEL Macro

Chapter 60. IWMSSEL – Selecting a Request from a Caller’s Work Manager Queue 517

IWMSSEL Macro

518 z/OS V1R4.0 MVS Workload Management Services

Chapter 61. IWMSSEM – WLM Server Select Secondary
Service

The IWMSSEM service selects the next secondary work request from the queue
associated with the caller’s server task.

If there are no queued secondary work requests waiting for selection the calling
task will be suspended, pending arrival of work to do. The caller cannot rely upon
asynchronous exits receiving control while the task is suspended.

Secondary work requests are considered to be extensions of an original work
request selected using IWMSSEL. The caller must invoke WLM services in the
following sequence:

v The caller invokes the IWMSSEL macro to select an initial work request.
IWMSSEL returns a token identifying the server task. The caller is responsible for
passing the server token to the queueing manager so that it can insert secondary
work requests.

v The caller invokes the IWMSTBGN macro to establish an environment for
processing the work request selected using IWMSSEL. This environment also
covers all secondary work requests.

v The caller invokes the IWMSSEM macro to select each secondary work request.
The queueing manager is responsible for indicating the last secondary work
request so that the server task knows when not to try to select another one.

v After the last secondary work request has been processed, the caller invokes the
IWMSTEND macro to remove the environment created by IWMSTBGN.

v The caller invokes IWMSSEL to select a new primary work request, and repeats
the above flow.

In the above flow, IWMSSEL, IWMSTBGN, IWMSSEM, and IWMSTEND must be
invoked from the same task.

Environment
The requirements for the caller are:

Minimum authorization: Problem state. Any PSW key

Dispatchable unit mode: Task

Cross memory mode: PASN=HASN=SASN

AMODE: 31-bit

ASC mode: Primary

Interrupt status: Enabled for I/O and external interrupts

Locks: No locks may be held.

Control parameters: Control parameters must be in the primary address space.

Programming Requirements
1. The macro CVT must be included to use this macro.
2. The macro IWMYCON must be included to use this macro.
3. The macro IWMPB must be in the library concatenation, since it is included by

IWMYCON.

© Copyright IBM Corp. 1988, 2002 519

4. Note that the high order halfword of register 0, and the reason code variable
when specified, may be non-zero and represents diagnostic data which is NOT
part of the external interface. The high order halfword should thus be excluded
from comparison with the reason code values described above. The constant,
IWMRSNCODE_MASK_CONST defined in IWMYCON, may be used for this
purpose.

Restrictions
None.

Input Register Information
Before issuing the IWMSSEM macro, the caller does not have to place any
information into any register unless using it in register notation for a particular
parameter, or using it as a base register.

Output Register Information
When control returns to the caller, the GPRs contain:

Register
Contents

0 Reason code if GR15 return code is non-zero
1 Used as work registers by the system
2-13 Unchanged
14 Used as work registers by the system
15 Return code

When control returns to the caller, the ARs contain:

Register
Contents

0-1 Used as work registers by the system
2-13 Unchanged
14-15 Used as work registers by the system

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the
caller depends, the caller must save them before issuing the service, and restore
them after the system returns control.

Performance Implications
None.

IWMSSEM Macro

520 z/OS V1R4.0 MVS Workload Management Services

Syntax

main diagram

��
name

� IWMSSEM � USERDATA=userdata
,RETCODE=retcode

�

�
,RSNCODE=rsncode

,PLISTVER=IMPLIED_VERSION

,PLISTVER=MAX
,PLISTVER=0

�

�
,MF=S

,0D
,MF=(L ,list addr)

,attr
,COMPLETE

,MF=(E ,list addr)

�"

Parameters
The parameters are explained as follows:

name
An optional symbol, starting in column 1, that is the name on the IWMSSEM
macro invocation. The name must conform to the rules for an ordinary
assembler language symbol.

,MF=S
,MF=(L,list addr)
,MF=(L,list addr,attr)
,MF=(L,list addr,0D)
,MF=(E,list addr)
,MF=(E,list addr,COMPLETE)

An optional input parameter that specifies the macro form.

Use MF=S to specify the standard form of the macro, which builds an inline
parameter list and generates the macro invocation to transfer control to the
service. MF=S is the default.

Use MF=L to specify the list form of the macro. Use the list form together with
the execute form of the macro for applications that require reentrant code. The
list form defines an area of storage that the execute form uses to store the
parameters. Only the PLISTVER parameter may be coded with the list form of
the macro.

Use MF=E to specify the execute form of the macro. Use the execute form
together with the list form of the macro for applications that require reentrant
code. The execute form of the macro stores the parameters into the storage
area defined by the list form, and generates the macro invocation to transfer
control to the service.

,list addr
The name of a storage area to contain the parameters. For MF=S and
MF=E, this can be an RS-type address or an address in register (1)-(12).

IWMSSEM Macro

Chapter 61. IWMSSEM – WLM Server Select Secondary Service 521

,attr
An optional 1- to 60-character input string that you use to force boundary
alignment of the parameter list. Use a value of 0F to force the parameter
list to a word boundary, or 0D to force the parameter list to a doubleword
boundary. If you do not code attr, the system provides a value of 0D.

,COMPLETE
Specifies that the system is to check for required parameters and supply
defaults for omitted optional parameters.

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX
,PLISTVER=0

An optional input parameter that specifies the version of the macro. PLISTVER
determines which parameter list the system generates. PLISTVER is an
optional input parameter on all forms of the macro, including the list form. When
using PLISTVER, specify it on all macro forms used for a request and with the
same value on all of the macro forms. The values are:

v IMPLIED_VERSION, which is the lowest version that allows all parameters
specified on the request to be processed. If you omit the PLISTVER
parameter, IMPLIED_VERSION is the default.

v MAX, if you want the parameter list to be the largest size currently possible.
This size might grow from release to release and affect the amount of
storage that your program needs.

If you can tolerate the size change, IBM recommends that you always specify
PLISTVER=MAX on the list form of the macro. Specifying MAX ensures that
the list-form parameter list is always long enough to hold all the parameters
you might specify on the execute form, when both are assembled with the
same level of the system. In this way, MAX ensures that the parameter list
does not overwrite nearby storage.

v 0, if you use the currently available parameters.

To code: Specify one of the following:
v IMPLIED_VERSION
v MAX
v A decimal value of 0

,RETCODE=retcode
An optional output parameter into which the return code is to be copied from
GPR 15.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

,RSNCODE=rsncode
An optional output parameter into which the reason code is to be copied from
GPR 0.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

USERDATA=userdata
A required output parameter, which contains the user data previously passed to
WLM via IWMQINS.

To code: Specify the RS-type address, or address in register (2)-(12), of a
16-character field.

ABEND Codes
None.

IWMSSEM Macro

522 z/OS V1R4.0 MVS Workload Management Services

Return and Reason Codes
When the IWMSSEM macro returns control to your program:
v GPR 15 (and retcode, when you code RETCODE) contains a return code.
v When the value in GPR 15 is not zero, GPR 0 (and rsncode, when you code

RSNCODE) contains reason code.

The following table identifies the hexadecimal return and reason codes and the
equate symbol associated with each reason code. IBM support personnel may
request the entire reason code, including the xxxx value.

Table 62. Return and Reason Codes for the IWMSSEM Macro

Return Code Reason Code Equate Symbol Meaning and Action

0 — Equate Symbol: IwmRetCodeOk

Meaning: Successful completion.

Action: None required.

8 — Equate Symbol: IwmRetCodeInvocError

Meaning: Invalid invocation environment or parameters.

8 xxxx0801 Equate Symbol: IwmRsnCodeSrbMode

Meaning: Caller is in SRB mode.

Action: Avoid requesting this function while in SRB mode.

8 xxxx0803 Equate Symbol: IwmRsnCodeDisabled

Meaning: Caller is disabled.

Action: Avoid requesting this function while disabled.

8 xxxx0804 Equate Symbol: IwmRsnCodeLocked

Meaning: Caller is locked.

Action: Avoid requesting this function while locked.

8 xxxx080B Equate Symbol: IwmRsnCodeBadPl

Meaning: Error accessing parameter list.

Action: Check for possible storage overlay.

8 xxxx0824 Equate Symbol: IwmRsnCodeAmode24

Meaning: Caller invoked service but was in 24 bit
addressing mode.

Action: Request this function only when you are in 31 bit
addressing mode.

8 xxxx0825 Equate Symbol: IwmRsnCodeAscModeNotPrimary

Meaning: Caller invoked service but was not in primary
ASC mode.

Action: Avoid requesting this function in this environment.

8 xxxx0828 Equate Symbol: IwmRsnCodeBadVersion

Meaning: Version number in parameter list is not valid.

Action: Check for possible storage overlay of the parameter
list.

IWMSSEM Macro

Chapter 61. IWMSSEM – WLM Server Select Secondary Service 523

Table 62. Return and Reason Codes for the IWMSSEM Macro (continued)

Return Code Reason Code Equate Symbol Meaning and Action

8 xxxx0840 Equate Symbol: IwmRsnCodeServiceNotEnabled

Meaning: Caller’s space connection is not enabled for this
service

Action: Make sure that SERVER_MANAGER=YES is
specified on the IWMCONN request to enable this service.

8 xxxx0841 Equate Symbol: IwmRsnCodeXmemMode

Meaning: Caller is in cross-memory mode.

Action: Request this function only when you are not in
cross-memory mode.

8 xxxx0842 Equate Symbol: IwmRsnCodeNoWLMConnect

Meaning: Caller’s space is not connected to WLM.

Action: Invoke the IWMCONN macro before invoking this
macro.

8 xxxx0862 Equate Symbol: IwmRsnCodeNoPriorSelect

Meaning: The caller has not previously selected work using
the IWMSSEL macro.

Action: Invoke the IWMSSEL macro before invoking this
macro.

8 xxxx0863 Equate Symbol: IwmRsnCodeNoExecEnv

Meaning: The caller has not established an execution
environment using IWMSTBGN.

Action: Invoke the IWMSTBGN macro before invoking this
macro.

C — Equate Symbol: IwmRetCodeEnvError

Meaning: Environmental error.

C xxxx0C14 Equate Symbol: IwmRsnCodeNoWorkShutDown

Meaning: No work selected. Caller is to shutdown.

Action: Caller must disconnect by invoking the IW DISC
macro.

10 — Equate Symbol: IwmRetCodeCompError

Meaning: Component error.

Action: Contact your system programmer.

IWMSSEM Macro

524 z/OS V1R4.0 MVS Workload Management Services

Example
To select a secondary work request from the WLM queue manager queues:

IWMSSEM USERDATA=USERDATA,RETCODE=RC,RSNCODE=RSN
*
* Storage areas
*
USERDATA DS CL16 Contains the user-defined data
* that was passed to IWMQINS
RC DS F Return code
RSN DS F Reason code

IWMSSEM Macro

Chapter 61. IWMSSEM – WLM Server Select Secondary Service 525

IWMSSEM Macro

526 z/OS V1R4.0 MVS Workload Management Services

Chapter 62. IWMSTBGN – Beginning a Request from a Caller’s
Work Manager Queue

IWMSTBGN establishes the environment to process a work request that was
previously selected using IWMSSEL. The caller must invoke IWMSTBGN from the
task in the server address space that will process the request. IWMSTBGN
establishes a business unit-of-work relationship by joining the caller’s task to the
enclave associated with the request. IWMSTBGN creates a security environment if
there is a userid associated with the request previously selected.

Use IWMSTBGN together with IWMSTEND to begin and end the processing of a
work request. A task can process only one work request at a time.

Note that a task may only join an Enclave if it is not already part of an Enclave. In
particular, a subtask which inherited the Enclave attribute from its mother task
(which may happen either as a result of the mother task issuing IWMEJOIN or
IWMSTBGN) is not allowed to use IWMEJOIN to explicitly join an Enclave. This
restriction is independent of whether the specified Enclave is the same Enclave as
it is in, or a different Enclave from the one it is in. Such a subtask which inherited
the Enclave attribute is also not allowed to use IWMELEAV to explicitly leave the
Enclave. The subtask would only leave the Enclave upon its own (task) termination
or when the Enclave is deleted (IWMEDELE). Also, a task which successfully
establishes a Begin environment (IWMSTBGN) may not invoke Enclave Join, nor is
the task allowed to use Enclave Leave while this Begin environment exists.

Environment
The requirements for the caller are:

Minimum authorization: Problem state. Any PSW key

Dispatchable unit mode: Task

Cross memory mode: PASN=HASN=SASN

AMODE: 31-bit

ASC mode: Primary

Interrupt status: Enabled for I/O and external interrupts

Locks: No locks may be held.

Control parameters: Control parameters must be in the primary address space.

Programming Requirements
1. The macro CVT must be included to use this macro.
2. The macro IWMYCON must be included to use this macro.
3. The macro IWMPB must be in the library concatenation, since it is included by

IWMYCON.
4. Note that the high order halfword of register 0, and the reason code variable

when specified, may be non-zero and represents diagnostic data which is NOT
part of the external interface. The high order halfword should thus be excluded
from comparison with the reason code values described above. The constant,
IWMRSNCODE_MASK_CONST defined in IWMYCON, may be used for this
purpose.

© Copyright IBM Corp. 1988, 2002 527

Restrictions
1. The caller cannot have an EUT FRR established.
2. This macro supports multiple versions. Some keywords are unique to certain

versions. See the PLISTVER parameter description.

Input Register Information
Before issuing the IWMSTBGN macro, the caller does not have to place any
information into any register unless using it in register notation for a particular
parameter, or using it as a base register.

Output Register Information
When control returns to the caller, the GPRs contain:

Register
Contents

0 Reason code if GR15 return code is non-zero
1 Used as work register by the system
2-13 Unchanged
14 Used as work registers by the system
15 Return code

When control returns to the caller, the ARs contain:

Register
Contents

0-1 Used as work registers by the system
2-13 Unchanged
14-15 Used as work registers by the system

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the
caller depends, the caller must save them before issuing the service, and restore
them after the system returns control.

Performance Implications
None.

IWMSTBGN Macro

528 z/OS V1R4.0 MVS Workload Management Services

Syntax

main diagram

��
name

� IWMSTBGN � WLMEUTKN=wlmeutkn
,ETOKEN=etoken

�

�
,RETCODE=retcode ,RSNCODE=rsncode

,PLISTVER=IMPLIED_VERSION

,PLISTVER=MAX
,PLISTVER=0
,PLISTVER=1

�

�
,MF=S

,0D
,MF=(L ,list addr)

,attr
,COMPLETE

,MF=(E ,list addr)

�"

Parameters
The parameters are explained as follows:

name
An optional symbol, starting in column 1, that is the name on the IWMSTBGN
macro invocation. The name must conform to the rules for an ordinary
assembler language symbol.

,ETOKEN=etoken
An optional output parameter, which will receive the Enclave token.

To code: Specify the RS-type address, or register (2)-(12), of an 8-character
field.

,MF=S
,MF=(L,list addr)
,MF=(L,list addr,attr)
,MF=(L,list addr,0D)
,MF=(E,list addr)
,MF=(E,list addr,COMPLETE)

An optional input parameter that specifies the macro form.

Use MF=S to specify the standard form of the macro, which builds an inline
parameter list and generates the macro invocation to transfer control to the
service. MF=S is the default.

Use MF=L to specify the list form of the macro. Use the list form together with
the execute form of the macro for applications that require reentrant code. The
list form defines an area of storage that the execute form uses to store the
parameters. Only the PLISTVER parameter may be coded with the list form of
the macro.

Use MF=E to specify the execute form of the macro. Use the execute form
together with the list form of the macro for applications that require reentrant

IWMSTBGN Macro

Chapter 62. IWMSTBGN – Beginning a Request from a Caller’s Work Manager Queue 529

code. The execute form of the macro stores the parameters into the storage
area defined by the list form, and generates the macro invocation to transfer
control to the service.

,list addr
The name of a storage area to contain the parameters. For MF=S and
MF=E, this can be an RS-type address or an address in register (1)-(12).

,attr
An optional 1- to 60-character input string that you use to force boundary
alignment of the parameter list. Use a value of 0F to force the parameter
list to a word boundary, or 0D to force the parameter list to a doubleword
boundary. If you do not code attr, the system provides a value of 0D.

,COMPLETE
Specifies that the system is to check for required parameters and supply
defaults for omitted optional parameters.

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX
,PLISTVER=0
,PLISTVER=1

An optional input parameter that specifies the version of the macro. PLISTVER
determines which parameter list the system generates. PLISTVER is an
optional input parameter on all forms of the macro, including the list form. When
using PLISTVER, specify it on all macro forms used for a request and with the
same value on all of the macro forms. The values are:

v IMPLIED_VERSION, which is the lowest version that allows all parameters
specified on the request to be processed. If you omit the PLISTVER
parameter, IMPLIED_VERSION is the default.

v MAX, if you want the parameter list to be the largest size currently possible.
This size might grow from release to release and affect the amount of
storage that your program needs.

If you can tolerate the size change, IBM recommends that you always specify
PLISTVER=MAX on the list form of the macro. Specifying MAX ensures that
the list-form parameter list is always long enough to hold all the parameters
you might specify on the execute form; in this way, MAX ensures that the
parameter list does not overwrite nearby storage.

v 0, if you use the currently available parameters.

v 1, which supports both the following parameters and those from version 0:

ETOKEN

To code: Specify one of the following:
v IMPLIED_VERSION
v MAX
v A decimal value of 0

,RETCODE=retcode
An optional output parameter into which the return code is to be copied from
GPR 15.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

,RSNCODE=rsncode
An optional output parameter into which the reason code is to be copied from
GPR 0.

IWMSTBGN Macro

530 z/OS V1R4.0 MVS Workload Management Services

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

WLMEUTKN=wlmeutkn
A required input parameter, execution unit token that was returned by a prior
invocation of IWMSSEL.

To code: Specify the RS-type address, or address in register (2)-(12), of an
8-character field.

ABEND Codes
None.

Return and Reason Codes
When the IWMSTBGN macro returns control to your program:
v GPR 15 (and retcode, if you coded RETCODE) contains a return code.
v When the value in GPR 15 is not zero, GPR 0 (and rsncode, if you coded

RSNCODE) contains reason code.

The following table identifies the hexadecimal return and reason codes and the
equate symbol associated with each reason code. IBM support personnel may
request the entire reason code, including the xxxx value.

Table 63. Return and Reason Codes for the IWMSTBGN Macro

Return Code Reason Code Equate Symbol Meaning and Action

0 — Equate Symbol: IwmRetCodeOk

Meaning: Successful completion.

Action: None required.

4 — Equate Symbol: IwmRetCodeWarning

Meaning: Successful completion, unusual conditions noted.

4 xxxx041F Equate Symbol: IwmRsnCodeExecEnvChanged

Meaning: The execution environment has changed while
the requested function is in progress.

Action: None required.

8 — Equate Symbol: IwmRetCodeInvocError

Meaning: Invalid invocation environment or parameters.

8 xxxx0801 Equate Symbol: IwmRsnCodeSrbMode

Meaning: Caller is in SRB mode.

Action: Avoid requesting this function while in SRB mode.

8 xxxx0803 Equate Symbol: IwmRsnCodeDisabled

Meaning: Caller is disabled.

Action: Avoid requesting this function while disabled.

8 xxxx0804 Equate Symbol: IwmRsnCodeLocked

Meaning: Caller is locked.

Action: Avoid requesting this function while locked.

IWMSTBGN Macro

Chapter 62. IWMSTBGN – Beginning a Request from a Caller’s Work Manager Queue 531

Table 63. Return and Reason Codes for the IWMSTBGN Macro (continued)

Return Code Reason Code Equate Symbol Meaning and Action

8 xxxx080B Equate Symbol: IwmRsnCodeBadPl

Meaning: Error accessing parameter list.

Action: Check for possible storage overlay.

8 xxxx0810 Equate Symbol: IwmRsnCodeEutFrr

Meaning: Caller has EUT FRR established.

Action: Avoid requesting this function with an EUT FRR set.

8 xxxx0823 Equate Symbol: IwmRsnCodeDatoff

Meaning: Caller invoked service while DATOFF

Action: Avoid requesting this function in this environment.

8 xxxx0824 Equate Symbol: IwmRsnCodeAmode24

Meaning: Caller invoked service but was in 24 bit
addressing mode.

Action: Request this function only when you are in 31 bit
addressing mode.

8 xxxx0825 Equate Symbol: IwmRsnCodeAscModeNotPrimary

Meaning: Caller invoked service but was not DAT on
Primary ASC mode.

Action: Avoid requesting this function in this environment.

8 xxxx0826 Equate Symbol: IwmRsnCodeTaskTerm

Meaning: Caller invoked service while task termination is in
progress for the task associated with the owner.

Action: Avoid requesting this function while task termination
is in progress.

8 xxxx0828 Equate Symbol: IwmRsnCodeBadVersion

Meaning: Version number in parameter list is not valid or
version length field is not valid.

Action: Check for possible storage overlay of the parameter
list.

8 xxxx083A Equate Symbol: IwmRsnCodeBadEnclave

Meaning: Enclave token does not pass verification.

Action: Check for possible storage overlay of the Enclave
token, or asynchronous events which may have deleted the
Enclave.

8 xxxx0840 Equate Symbol: IwmRsnCodeServiceNotEnabled

Meaning: Caller’s space connection is not enabled for this
service

Action: Make sure that SERVER_MANAGER=YES is
specified on the IWMCONN request to enable this service.

8 xxxx0841 Equate Symbol: IwmRsnCodeXmemMode

Meaning: Caller is in cross-memory mode.

Action: Request this function only when you are not in
cross-memory mode.

IWMSTBGN Macro

532 z/OS V1R4.0 MVS Workload Management Services

Table 63. Return and Reason Codes for the IWMSTBGN Macro (continued)

Return Code Reason Code Equate Symbol Meaning and Action

8 xxxx0842 Equate Symbol: IwmRsnCodeNoWLMConnect

Meaning: Caller’s space is not connected to WLM.

Action: Invoke the IWMCONN macro before invoking this
macro.

8 xxxx0850 Equate Symbol: IwmRsnCodeBeginEnvOutstanding

Meaning: Caller is already operating under an outstanding
Begin environment.

Action: Avoid requesting this function in this environment.

8 xxxx0851 Equate Symbol: IwmRsnCodeSecEnvOutstanding

Meaning: Caller is already operating under an outstanding
security environment.

Action: Avoid requesting this function while there is a task
level security environment outstanding.

8 xxxx0852 Equate Symbol: IwmRsnCodeExecTokenNotCorrect

Meaning: The execution unit token does not identify a
previously selected work unit.

Action: Verify that you have coded the WLMEUTKN
parameter correctly.

8 xxxx0857 Equate Symbol: IwmRsnCodeAlreadyInEnclave

Meaning: Current dispatchable workunit is already in an
Enclave.

Action: Avoid requesting this function while the caller is
already in an Enclave.

8 xxxx085A Equate Symbol: IwmRsnCodeSelectedWorkActive

Meaning: The selected work element associated with the
input execution unit token is already in execution.

Action: You may have invoked IWMSTBGN from multiple
tasks in the server address space passing the same
WLMEUTKN. Avoid requesting this function in this
environment.

C — Equate Symbol: IwmRetCodeEnvError

Meaning: Environmental error.

C xxxx0C17 Equate Symbol: IwmRsnCodeSecEnvCreateFailed

Meaning: A user security environment cannot be created.

Action: Verify that the userid is defined to RACF or check
the SAF installation exit routine to enable the function.

10 — Equate Symbol: IwmRetCodeCompError

Meaning: Component error.

Action: Contact your system programmer.

IWMSTBGN Macro

Chapter 62. IWMSTBGN – Beginning a Request from a Caller’s Work Manager Queue 533

Example
Suppose a work request was selected using IWMSSEL and the execution unit token
returned by IWMSSEL is WLMEUTKN.

To establish the environment to process the work request:
IWMSTBGN WLMEUTKN=WLMEUTKN,RETCODE=RC,RSNCODE=RSN

*
* Storage areas
*
WLMEUTKN DS CL8 Contains the execution unit
* token that was returned by
* IWMSSEL
RC DS F Return code
RSN DS F Reason code

IWMSTBGN Macro

534 z/OS V1R4.0 MVS Workload Management Services

Chapter 63. IWMSTEND – End a Request from a Caller’s Work
Manager Queue

IWMSTEND removes the environment which was previously established using
IWMSTBGN to process a work request. The caller must invoke IWMSTEND from
the same task that invoked IWMSTBGN. IWMSTEND removes the caller’s task
from the enclave associated with the request. IWMSTEND deletes the security
environment if one was previously established by IWMSTBGN.

Environment
The requirements for the caller are:

Minimum authorization: Problem state. Any PSW key

Dispatchable unit mode: Task

Cross memory mode: PASN=HASN=SASN

AMODE: 31-bit

ASC mode: Primary

Interrupt status: Enabled for I/O and external interrupts

Locks: No locks may be held.

Control parameters: Control parameters must be in the primary address space.

Programming Requirements
1. The macro CVT must be included to use this macro.
2. The macro IWMYCON must be included to use this macro.
3. The macro IWMPB must be in the library concatenation, since it is included by

IWMYCON.
4. Note that the high order halfword of register 0, and the reason code variable

when specified, may be non-zero and represents diagnostic data which is NOT
part of the external interface. The high order halfword should thus be excluded
from comparison with the reason code values described above. The constant,
IWMRSNCODE_MASK_CONST defined in IWMYCON, may be used for this
purpose.

Restrictions
The caller cannot have an EUT FRR established.

Input Register Information
Before issuing the IWMSTEND macro, the caller does not have to place any
information into any register unless using it in register notation for a particular
parameter, or using it as a base register.

Output Register Information
When control returns to the caller, the GPRs contain:

Register
Contents

0 Reason code if GR15 return code is non-zero

© Copyright IBM Corp. 1988, 2002 535

1 Used as work register by the system
2-13 Unchanged
14 Used as work registers by the system
15 Return code

When control returns to the caller, the ARs contain:

Register
Contents

0-1 Used as work registers by the system
2-13 Unchanged
14-15 Used as work registers by the system

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the
caller depends, the caller must save them before issuing the service, and restore
them after the system returns control.

Performance Implications
None.

Syntax

main diagram

��
name

� IWMSTEND � WLMEUTKN=wlmeutkn
,RETCODE=retcode

�

�
,RSNCODE=rsncode

,PLISTVER=IMPLIED_VERSION

,PLISTVER=MAX
,PLISTVER=0

�

�
,MF=S

,0D
,MF=(L ,list addr)

,attr
,COMPLETE

,MF=(E ,list addr)

�"

Parameters
The parameters are explained as follows:

name
An optional symbol, starting in column 1, that is the name on the IWMSTEND
macro invocation. The name must conform to the rules for an ordinary
assembler language symbol.

,MF=S
,MF=(L,list addr)
,MF=(L,list addr,attr)
,MF=(L,list addr,0D)
,MF=(E,list addr)

IWMSTEND Macro

536 z/OS V1R4.0 MVS Workload Management Services

,MF=(E,list addr,COMPLETE)
An optional input parameter that specifies the macro form.

Use MF=S to specify the standard form of the macro, which builds an inline
parameter list and generates the macro invocation to transfer control to the
service. MF=S is the default.

Use MF=L to specify the list form of the macro. Use the list form together with
the execute form of the macro for applications that require reentrant code. The
list form defines an area of storage that the execute form uses to store the
parameters. Only the PLISTVER parameter may be coded with the list form of
the macro.

Use MF=E to specify the execute form of the macro. Use the execute form
together with the list form of the macro for applications that require reentrant
code. The execute form of the macro stores the parameters into the storage
area defined by the list form, and generates the macro invocation to transfer
control to the service.

,list addr
The name of a storage area to contain the parameters. For MF=S and
MF=E, this can be an RS-type address or an address in register (1)-(12).

,attr
An optional 1- to 60-character input string that you use to force boundary
alignment of the parameter list. Use a value of 0F to force the parameter
list to a word boundary, or 0D to force the parameter list to a doubleword
boundary. If you do not code attr, the system provides a value of 0D.

,COMPLETE
Specifies that the system is to check for required parameters and supply
defaults for omitted optional parameters.

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX
,PLISTVER=0

An optional input parameter that specifies the version of the macro. PLISTVER
determines which parameter list the system generates. PLISTVER is an
optional input parameter on all forms of the macro, including the list form. When
using PLISTVER, specify it on all macro forms used for a request and with the
same value on all of the macro forms. The values are:

v IMPLIED_VERSION, which is the lowest version that allows all parameters
specified on the request to be processed. If you omit the PLISTVER
parameter, IMPLIED_VERSION is the default.

v MAX, if you want the parameter list to be the largest size currently possible.
This size might grow from release to release and affect the amount of
storage that your program needs.

If you can tolerate the size change, IBM recommends that you always specify
PLISTVER=MAX on the list form of the macro. Specifying MAX ensures that
the list-form parameter list is always long enough to hold all the parameters
you might specify on the execute form; in this way, MAX ensures that the
parameter list does not overwrite nearby storage.

v 0, if you use the currently available parameters.

To code: Specify one of the following:
v IMPLIED_VERSION
v MAX
v A decimal value of 0

IWMSTEND Macro

Chapter 63. IWMSTEND – End a Request from a Caller’s Work Manager Queue 537

,RETCODE=retcode
An optional output parameter into which the return code is to be copied from
GPR 15.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

,RSNCODE=rsncode
An optional output parameter into which the reason code is to be copied from
GPR 0.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

WLMEUTKN=wlmeutkn
A required input parameter, execution unit token that was specified on the prior
invocation of IWMSTBGN.

To code: Specify the RS-type address, or address in register (2)-(12), of an
8-character field.

ABEND Codes
None.

Return and Reason Codes
When the IWMSTEND macro returns control to your program:
v GPR 15 (and retcode, if you coded RETCODE) contains a return code.
v When the value in GPR 15 is not zero, GPR 0 (and rsncode, if you coded

RSNCODE) contains reason code.

The following table identifies the hexadecimal return and reason codes and the
equate symbol associated with each reason code. IBM support personnel may
request the entire reason code, including the xxxx value.

Table 64. Return and Reason Codes for the IWMSTEND Macro

Return Code Reason Code Equate Symbol Meaning and Action

0 — Equate Symbol: IwmRetCodeOk

Meaning: Successful completion.

Action: None required.

4 — Equate Symbol: IwmRetCodeWarning

Meaning: Successful completion, unusual conditions noted.

4 xxxx041C Equate Symbol: IwmRsnCodeNotEnclave

Meaning: The current dispatchable workunit is not
associated with an Enclave.

Action: None required.

4 xxxx041F Equate Symbol: IwmRsnCodeExecEnvChanged

Meaning: The execution environment has changed while
the requested function is in progress.

Action: None required.

IWMSTEND Macro

538 z/OS V1R4.0 MVS Workload Management Services

Table 64. Return and Reason Codes for the IWMSTEND Macro (continued)

Return Code Reason Code Equate Symbol Meaning and Action

4 xxxx042F Equate Symbol: IwmRsnCodeSecondaryWorkDeleted

Meaning: There were secondary work requests queued to
this server task. The caller was expected to process them
using IWMSSEM before calling IWMSTEND. The secondary
work requests were deleted.

Action: Select all secondary work requests before issuing
IWMSTEND

8 — Equate Symbol: IwmRetCodeInvocError

Meaning: Invalid invocation environment or parameters.

8 xxxx0801 Equate Symbol: IwmRsnCodeSrbMode

Meaning: Caller is in SRB mode.

Action: Avoid requesting this function while in SRB mode.

8 xxxx0803 Equate Symbol: IwmRsnCodeDisabled

Meaning: Caller is disabled.

Action: Avoid requesting this function while disabled.

8 xxxx0804 Equate Symbol: IwmRsnCodeLocked

Meaning: Caller is locked.

Action: Avoid requesting this function while locked.

8 xxxx080B Equate Symbol: IwmRsnCodeBadPl

Meaning: Error accessing parameter list.

Action: Check for possible storage overlay.

8 xxxx0810 Equate Symbol: IwmRsnCodeEutFrr

Meaning: Caller has EUT FRR established.

Action: Avoid requesting this function with an EUT FRR set.

8 xxxx0823 Equate Symbol: IwmRsnCodeDatoff

Meaning: Caller invoked service while DATOFF

Action: Avoid requesting this function in this environment.

8 xxxx0824 Equate Symbol: IwmRsnCodeAmode24

Meaning: Caller invoked service but was in 24 bit
addressing mode.

Action: Request this function only when you are in 31 bit
addressing mode.

8 xxxx0825 Equate Symbol: IwmRsnCodeAscModeNotPrimary

Meaning: Caller invoked service but was not DAT on
Primary ASC mode.

Action: Avoid requesting this function in this environment.

8 xxxx0828 Equate Symbol: IwmRsnCodeBadVersion

Meaning: Version number in parameter list is not valid or
version length field is not valid.

Action: Check for possible storage overlay of the parameter
list.

IWMSTEND Macro

Chapter 63. IWMSTEND – End a Request from a Caller’s Work Manager Queue 539

Table 64. Return and Reason Codes for the IWMSTEND Macro (continued)

Return Code Reason Code Equate Symbol Meaning and Action

8 xxxx0841 Equate Symbol: IwmRsnCodeXmemMode

Meaning: Caller invoked service but was in cross-memory
mode.

Action: Avoid requesting this function in cross-memory
mode.

8 xxxx084F Equate Symbol: IwmRsnCodeWrongExecToken

Meaning: Current dispatchable workunit is not associated
with the input execution unit token.

Action: Check for possible storage overlay of the execution
unit token.

8 xxxx0859 Equate Symbol: IwmRsnCodeEnclaveSubTaskExists

Meaning: The current dispatchable workunit has residual
subtasks propagated to the Enclave which are still
associated with the Enclave.

Action: Avoid requesting this function in this environment.

10 — Equate Symbol: IwmRetCodeCompError

Meaning: Component error.

Action: Contact your system programmer.

Example
To remove the environment which was previously established using IWMSTBGN:

IWMSTEND WLMEUTKN=WLMEUTKN,RETCODE=RC,RSNCODE=RSN
*
* Storage areas
*
WLMEUTKN DS CL8 Contains the execution unit
* token that was specified on
* the prior invocation of
* IWMSTBGN
RC DS F Return code
RSN DS F Reason code

IWMSTEND Macro

540 z/OS V1R4.0 MVS Workload Management Services

Chapter 64. IWMTAFF — WLM Temporal Affinity Service

The IWMTAFF service should be used to inform WLM when a temporal affinity for a
specific server region starts and when it ends. WLM will ensure that server regions
will not be terminated as long as temporal affinities exist.

The caller must have previously connected to WLM using the IWMCONN as server
or as queue manager.

Environment
The requirements for the caller are:

Minimum authorization: Problem state. Any PSW key

Dispatchable unit mode: Task

Cross memory mode: PASN=HASN=SASN

AMODE: 31-bit

ASC mode: Primary

Interrupt status: Enabled for I/O and external interrupts

Locks: No locks may be held.

Control parameters: Control parameters must be in the primary address space.

Programming Requirements
1. Make sure no EUT FRRs are established.
2. The macro CVT must be included to use this macro.
3. The macro IWMYCON must be included to use this macro.
4. The macro IWMPB must be in the library concatenation, since it is included by

IWMYCON.
5. Note that the high order halfword of register 0, and the reason code variable

when specified, may be non-zero and represents diagnostic data which is NOT
part of the external interface. The high order halfword should thus be excluded
from comparison with the reason code values described above. The constant,
IWMRSNCODE_MASK_CONST defined in IWMYCON, may be used for this
purpose.

Restrictions
v This macro may not be used during task/address space termination.

v Before using this macro the caller must connect to WLM via IWMCONN
Server_Manager=YES, Server_Type=Queue or IWMCONN
Queue_Manager=YES.

Input Register Information
Before issuing the IWMTAFF macro, the caller does not have to place any
information into any register unless using it in register notation for a particular
parameter, or using it as a base register.

Output Register Information
When control returns to the caller, the GPRs contain:

© Copyright IBM Corp. 1988, 2002 541

Register
Contents

0 Reason code if GR15 return code is non-zero
1 Used as work registers by the system
2-13 Unchanged
14 Used as work registers by the system
15 Return code

When control returns to the caller, the ARs contain:

Register
Contents

0-1 Used as work registers by the system
2-13 Unchanged
14-15 Used as work registers by the system

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the
caller depends, the caller must save them before issuing the service, and restore
them after the system returns control.

Performance Implications
None

Syntax

main diagram

��
name

� IWMTAFF � AFFINITY=YES
AFFINITY=NO

,REGION_TOKEN=0

,REGION_TOKEN=region_token
�

�
,RETCODE=retcode ,RSNCODE=rsncode

,PLISTVER=IMPLIED_VERSION

,PLISTVER=MAX
,PLISTVER=0

�

�
,MF=S

,0D
,MF=(L ,list addr)

,attr
,COMPLETE

,MF=(E ,list addr)

�"

Parameters
The parameters are explained as follows:

name
An optional symbol, starting in column 1, that is the name on the IWMTAFF
macro invocation. The name must conform to the rules for an ordinary
assembler language symbol.

AFFINITY=YES

IWMTAFF Macro

542 z/OS V1R4.0 MVS Workload Management Services

AFFINITY=NO
A required parameter indicating whether a temporal affinity begins or ends

AFFINITY=YES
A new temporal affinity for the server region begins. WLM will ensure that
the server regions is not terminated before all temporal affinity have ended.

AFFINITY=NO
A temporal affinity for the server region has ended. WLM will start to
terminate server regions if all temporal affinities have ended.

,MF=S
,MF=(L,list addr)
,MF=(L,list addr,attr)
,MF=(L,list addr,0D)
,MF=(E,list addr)
,MF=(E,list addr,COMPLETE)

An optional input parameter that specifies the macro form.

Use MF=S to specify the standard form of the macro, which builds an inline
parameter list and generates the macro invocation to transfer control to the
service. MF=S is the default.

Use MF=L to specify the list form of the macro. Use the list form together with
the execute form of the macro for applications that require reentrant code. The
list form defines an area of storage that the execute form uses to store the
parameters. Only the PLISTVER parameter may be coded with the list form of
the macro.

Use MF=E to specify the execute form of the macro. Use the execute form
together with the list form of the macro for applications that require reentrant
code. The execute form of the macro stores the parameters into the storage
area defined by the list form, and generates the macro invocation to transfer
control to the service.

,list addr
The name of a storage area to contain the parameters. For MF=S and
MF=E, this can be an RS-type address or an address in register (1)-(12).

,attr
An optional 1- to 60-character input string that you use to force boundary
alignment of the parameter list. Use a value of 0F to force the parameter
list to a word boundary, or 0D to force the parameter list to a doubleword
boundary. If you do not code attr, the system provides a value of 0D.

,COMPLETE
Specifies that the system is to check for required parameters and supply
defaults for omitted optional parameters.

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX
,PLISTVER=0

An optional input parameter that specifies the version of the macro. PLISTVER
determines which parameter list the system generates. PLISTVER is an
optional input parameter on all forms of the macro, including the list form. When
using PLISTVER, specify it on all macro forms used for a request and with the
same value on all of the macro forms. The values are:

v IMPLIED_VERSION, which is the lowest version that allows all parameters
specified on the request to be processed. If you omit the PLISTVER
parameter, IMPLIED_VERSION is the default.

IWMTAFF Macro

Chapter 64. IWMTAFF — WLM Temporal Affinity Service 543

v MAX, if you want the parameter list to be the largest size currently possible.
This size might grow from release to release and affect the amount of
storage that your program needs.

If you can tolerate the size change, IBM recommends that you always specify
PLISTVER=MAX on the list form of the macro. Specifying MAX ensures that
the list-form parameter list is always long enough to hold all the parameters
you might specify on the execute form, when both are assembled with the
same level of the system. In this way, MAX ensures that the parameter list
does not overwrite nearby storage.

v 0, if you use the currently available parameters.

To code: Specify one of the following:
v IMPLIED_VERSION
v MAX
v A decimal value of 0

,REGION_TOKEN=region_token
,REGION_TOKEN=0

An optional input parameter, which contains the region token. The region token
is not required if the macro is invoked from the server region for which the
temporal affinity should be started or stopped. The region token must be used if
the services is used from the queueing manager. The region token is returned
by the IWMSSEL macro.

The caller must be supervisor state or have PSW key mask 0-7 authority to use
this service with the REGION_TOKEN parameter.

Coding REGION_TOKEN=0 is equivalent to omitting the REGION_TOKEN
keyword. The default is 0.

To code: Specify the RS-type address, or address in register (2)-(12), of a
16-character field.

,RETCODE=retcode
An optional output parameter into which the return code is to be copied from
GPR 15.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

,RSNCODE=rsncode
An optional output parameter into which the reason code is to be copied from
GPR 0.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

ABEND Codes
None.

Return and Reason Codes
When the IWMTAFF macro returns control to your program:
v GPR 15 (and retcode, when you code RETCODE) contains a return code.
v When the value in GPR 15 is not zero, GPR 0 (and rsncode, when you code

RSNCODE) contains reason code.

The following table identifies the hexadecimal return and reason codes and the
equate symbol associated with each reason code. IBM support personnel may
request the entire reason code, including the xxxx value.

IWMTAFF Macro

544 z/OS V1R4.0 MVS Workload Management Services

Table 65. Return and Reason Codes for the IWMTAFF Macro

Return Code Reason Code Equate Symbol Meaning and Action

0 — Equate Symbol: IwmRetCodeOk

Meaning: Successful completion.

Action: None required.

4 — Equate Symbol: IwmRetCodeWarning

Meaning: Successful completion, unusual conditions noted.

Action: None required.

4 xxxx0439 Equate Symbol: IwmRsnCodeNoAffinityFound

Meaning: The service has been invoked to tell WLM that an
existing server region affinity has been terminated but WLM
has no affinity defined for this server region.

Action: If region token was not specified make sure to use
the service properly at the beginning and end of each
affinity. If the region token has been defined make sure that
it is used for the correct server region.

4 xxxx043A Equate Symbol: IwmRsnCodeRegionNotFound

Meaning: The region token does not identify a valid server
region.

Action: Please specify the correct region token.

8 — Equate Symbol: IwmRetCodeInvocError

Meaning: Invalid invocation environment or parameters.

8 xxxx0801 Equate Symbol: IwmRsnCodeSrbMode

Meaning: Caller is in SRB mode.

Action: Avoid requesting this function while in SRB mode.

8 xxxx0803 Equate Symbol: IwmRsnCodeDisabled

Meaning: Caller is disabled.

Action: Avoid requesting this function while disabled.

8 xxxx0804 Equate Symbol: IwmRsnCodeLocked

Meaning: Caller is locked.

Action: Avoid requesting this function while locked.

8 xxxx080B Equate Symbol: IwmRsnCodeBadPl

Meaning: Error accessing parameter list.

Action: Check for possible storage overlay.

8 xxxx0824 Equate Symbol: IwmRsnCodeAmode24

Meaning: Caller invoked service but was in 24 bit
addressing mode.

Action: Request this function only when you are in 31 bit
addressing mode.

8 xxxx0825 Equate Symbol: IwmRsnCodeAscModeNotPrimary

Meaning: Caller invoked service but was not in primary
ASC mode.

Action: Avoid requesting this function in this environment.

IWMTAFF Macro

Chapter 64. IWMTAFF — WLM Temporal Affinity Service 545

Table 65. Return and Reason Codes for the IWMTAFF Macro (continued)

Return Code Reason Code Equate Symbol Meaning and Action

8 xxxx0828 Equate Symbol: IwmRsnCodeBadVersion

Meaning: Version number in parameter list is not valid.

Action: Check for possible storage overlay of the parameter
list.

8 xxxx0840 Equate Symbol: IwmRsnCodeServiceNotEnabled

Meaning: Caller’s space connection is not enabled for this
service

Action: Make sure that SERVER_MANAGER=YES and
SERVER_TYPE=QUEUE is specified on the IWMCONN
request to enable this service.

8 xxxx0841 Equate Symbol: IwmRsnCodeXmemMode

Meaning: Caller is in cross-memory mode.

Action: Request this function only when you are not in
cross-memory mode.

8 xxxx0842 Equate Symbol: IwmRsnCodeNoWLMConnect

Meaning: Caller’s space is not connected to WLM.

Action: Invoke the IWMCONN macro before invoking this
macro.

8 xxxx084D Equate Symbol: IwmRsnCodeNotAuthConnect

Meaning: The caller must be supervisor state or have PSW
key mask 0-7 authority to use the requested WLM service.
This applies only if the caller provides a region token for a
server address space for which it wants to set the affinity.

Action: Avoid requesting this function in this environment.

10 — Equate Symbol: IwmRetCodeCompError

Meaning: Component error.

Action: Contact your system programmer.

IWMTAFF Macro

546 z/OS V1R4.0 MVS Workload Management Services

Example
To start a temporal affinity from the server region

IWMTAFF AFFINITY=YES
RETCODE=RC,
RSNCODE=RSN

*
* Storage areas
*
RC DS F Return code
RSN DS F Reason code

IWMTAFF Macro

Chapter 64. IWMTAFF — WLM Temporal Affinity Service 547

IWMTAFF Macro

548 z/OS V1R4.0 MVS Workload Management Services

Chapter 65. IWMUEXPT – WLM Undo Export Service

The IWMUEXPT macro undoes an earlier request to export an enclave via the
IWMEXPT macro.

The caller is expected to invoke IWMUEXPT after all importing systems have
invoked IWMUIMPT. If IWMUEXPT is invoked while other systems have imported
the enclave, WLM loses the ability to manage the multisystem enclave as a unit.
Also the enclave owner’s SMF 30 record will not contain all of the CPU time used
by the enclaves on the other systems.

Environment
The requirements for the caller are:

Minimum authorization: Supervisor state or program key mask (PKM) allowing keys
0-7.

Dispatchable unit mode: Task or SRB

Cross memory mode: Any HASN, any SASN. PASN must be the address space
which connected to WLM.

AMODE: 31-bit

ASC mode: Primary

Interrupt status: Enabled for I/O and external interrupts

Locks: No locks may be held.

Control parameters: Control parameters must be in the primary address space.

Programming Requirements
1. The macro CVT must be included to use this macro.
2. The macro IWMYCON must be included to use this macro.
3. The macro IWMPB must be in the library concatenation, since it is included by

IWMYCON.
4. Note that the high order halfword of register 0, and the reason code variable

when specified, may be non-zero and represents diagnostic data which is NOT
part of the external interface. The high order halfword should thus be excluded
from comparison with the reason code values described above. The constant,
IWMRSNCODE_MASK_CONST defined in IWMYCON, may be used for this
purpose.

Restrictions
None

Input Register Information
Before issuing the IWMUEXPT macro, the caller does not have to place any
information into any register unless using it in register notation for a particular
parameter, or using it as a base register.

Output Register Information
When control returns to the caller, the GPRs contain:

© Copyright IBM Corp. 1988, 2002 549

Register
Contents

0 Reason code if GR15 return code is non-zero
1 Used as work registers by the system
2-13 Unchanged
14 Used as work registers by the system
15 Return code

When control returns to the caller, the ARs contain:

Register
Contents

0-1 Used as work registers by the system
2-13 Unchanged
14-15 Used as work registers by the system

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the
caller depends, the caller must save them before issuing the service, and restore
them after the system returns control.

Performance Implications
None

Syntax

main diagram

��
name

�IWMUEXPT� XTOKEN=xtoken ,CONNTKN=conntkn �

�
,RETCODE=retcode ,RSNCODE=rsncode

,PLISTVER=IMPLIED_VERSION

,PLISTVER=MAX
,PLISTVER=0

�

�
,MF=S

,0D
,MF=(L ,list addr)

,attr
,COMPLETE

,MF=(E ,list addr)

�"

Parameters
The parameters are explained as follows:

name
An optional symbol, starting in column 1, that is the name on the IWMUEXPT
macro invocation. The name must conform to the rules for an ordinary
assembler language symbol.

IWMUEXPT Macro

550 z/OS V1R4.0 MVS Workload Management Services

,CONNTKN=conntkn
A required input parameter that contains the connect token for the primary
address space’s connection to WLM.

To code: Specify the RS-type address, or address in register (2)-(12), of a 32
bit field.

,MF=S
,MF=(L,list addr)
,MF=(L,list addr,attr)
,MF=(L,list addr,0D)
,MF=(E,list addr)
,MF=(E,list addr,COMPLETE)

An optional input parameter that specifies the macro form.

Use MF=S to specify the standard form of the macro, which builds an inline
parameter list and generates the macro invocation to transfer control to the
service. MF=S is the default.

Use MF=L to specify the list form of the macro. Use the list form together with
the execute form of the macro for applications that require reentrant code. The
list form defines an area of storage that the execute form uses to store the
parameters. Only the PLISTVER parameter may be coded with the list form of
the macro.

Use MF=E to specify the execute form of the macro. Use the execute form
together with the list form of the macro for applications that require reentrant
code. The execute form of the macro stores the parameters into the storage
area defined by the list form, and generates the macro invocation to transfer
control to the service.

,list addr
The name of a storage area to contain the parameters. For MF=S and
MF=E, this can be an RS-type address or an address in register (1)-(12).

,attr
An optional 1- to 60-character input string that you use to force boundary
alignment of the parameter list. Use a value of 0F to force the parameter
list to a word boundary, or 0D to force the parameter list to a doubleword
boundary. If you do not code attr, the system provides a value of 0D.

,COMPLETE
Specifies that the system is to check for required parameters and supply
defaults for omitted optional parameters.

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX
,PLISTVER=0

An optional input parameter that specifies the version of the macro. PLISTVER
determines which parameter list the system generates. PLISTVER is an
optional input parameter on all forms of the macro, including the list form. When
using PLISTVER, specify it on all macro forms used for a request and with the
same value on all of the macro forms. The values are:

v IMPLIED_VERSION, which is the lowest version that allows all parameters
specified on the request to be processed. If you omit the PLISTVER
parameter, IMPLIED_VERSION is the default.

v MAX, if you want the parameter list to be the largest size currently possible.
This size might grow from release to release and affect the amount of
storage that your program needs.

IWMUEXPT Macro

Chapter 65. IWMUEXPT – WLM Undo Export Service 551

If you can tolerate the size change, IBM recommends that you always specify
PLISTVER=MAX on the list form of the macro. Specifying MAX ensures that
the list-form parameter list is always long enough to hold all the parameters
you might specify on the execute form, when both are assembled with the
same level of the system. In this way, MAX ensures that the parameter list
does not overwrite nearby storage.

v 0, if you use the currently available parameters.

To code: Specify one of the following:
v IMPLIED_VERSION
v MAX
v A decimal value of 0

,RETCODE=retcode
An optional output parameter into which the return code is to be copied from
GPR 15.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

,RSNCODE=rsncode
An optional output parameter into which the reason code is to be copied from
GPR 0.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

XTOKEN=xtoken
A required input parameter that contains the export token which identifies the
exported enclave.

To code: Specify the RS-type address, or address in register (2)-(12), of a
32-character field.

ABEND Codes
None.

Return and Reason Codes
When the IWMUEXPT macro returns control to your program:
v GPR 15 (and retcode, when you code RETCODE) contains a return code.
v When the value in GPR 15 is not zero, GPR 0 (and rsncode, when you code

RSNCODE) contains reason code.

The following table identifies the hexadecimal return and reason codes and the
equate symbol associated with each reason code. IBM support personnel may
request the entire reason code, including the xxxx value.

Table 66. Return and Reason Codes for the IWMUEXPT Macro

Return Code Reason Code Equate Symbol Meaning and Action

0 — Equate Symbol: IwmRetCodeOk

Meaning: Successful completion.

Action: None required.

4 — Equate Symbol: IwmRetCodeWarning

Meaning: Successful completion, unusual conditions noted.

IWMUEXPT Macro

552 z/OS V1R4.0 MVS Workload Management Services

Table 66. Return and Reason Codes for the IWMUEXPT Macro (continued)

Return Code Reason Code Equate Symbol Meaning and Action

4 xxxx0432 Equate Symbol: IwmRsnCodeUnknownExportToken

Meaning: No enclave matching the export token was found.
The enclave may have been unexported or deleted, or the
WLM coupling facility structure may have been lost.

Action: None.

8 — Equate Symbol: IwmRetCodeInvocError

Meaning: Invalid invocation environment or parameters.

8 xxxx0803 Equate Symbol: IwmRsnCodeDisabled

Meaning: Caller is disabled.

Action: Avoid requesting this function while disabled.

8 xxxx0804 Equate Symbol: IwmRsnCodeLocked

Meaning: Caller is locked.

Action: Avoid requesting this function while locked.

8 xxxx080B Equate Symbol: IwmRsnCodeBadPl

Meaning: Error accessing parameter list.

Action: Check for possible storage overlay.

8 xxxx0821 Equate Symbol: IwmRsnCodeBadConn

Meaning: Input connect token does not pass validity
checking.

Action: Make sure the primary address space connected to
WLM using the IWMCONN service. Make sure the connect
token returned by IWMCONN is passed correctly.

8 xxxx0824 Equate Symbol: IwmRsnCodeAmode24

Meaning: Caller invoked service but was in 24 bit
addressing mode.

Action: Request this function only when you are in 31 bit
addressing mode.

8 xxxx0825 Equate Symbol: IwmRsnCodeAscModeNotPrimary

Meaning: Caller invoked service but was not in primary
ASC mode.

Action: Avoid requesting this function in this environment.

8 xxxx0827 Equate Symbol: IwmRsnCodeRsvdNot0

Meaning: Reserved field in parameter list was non-zero.

Action: Check for use of keywords that are not supported
by the MVS release on which the program is running.

8 xxxx0828 Equate Symbol: IwmRsnCodeBadVersion

Meaning: Version number in parameter list is not valid.

Action: Check for possible storage overlay of the parameter
list.

IWMUEXPT Macro

Chapter 65. IWMUEXPT – WLM Undo Export Service 553

Table 66. Return and Reason Codes for the IWMUEXPT Macro (continued)

Return Code Reason Code Equate Symbol Meaning and Action

8 xxxx0840 Equate Symbol: IwmRsnCodeServiceNotEnabled

Meaning: Caller’s connection is not enabled for this service.

Action: Make sure that EXPTIMPT=YES is specified on the
IWMCONN macro invocation.

8 xxxx0842 Equate Symbol: IwmRsnCodeNoWLMConnect

Meaning: Caller’s primary address space is not connected
to WLM.

Action: Invoke the IWMCONN macro before invoking this
macro.

8 xxxx0870 Equate Symbol: IwmRsnCodeBadExportToken

Meaning: The export token is not validly formatted.

Action: Check for possible storage overlay of the export
token.

8 xxxx0871 Equate Symbol: IwmRsnCodeDidNotExportOrImport

Meaning: The primary address space did not export the
enclave.

Action: Invoke IWMUEXPT from the correct address space.

C — Equate Symbol: IwmRetCodeEnvError

Meaning: Environmental error.

10 — Equate Symbol: IwmRetCodeCompError

Meaning: Component error.

Action: Contact your system programmer.

Example
IWMUEXPT XTOKEN=EXPORTT,CONNTKN=CONNECTT

*
* Storage areas
*
EXPORTT DS CL32 Export token
CONNECTT DS CL4 Connect token

IWMUEXPT Macro

554 z/OS V1R4.0 MVS Workload Management Services

Chapter 66. IWMUIMPT – WLM Undo Import Service

The IWMUIMPT macro undoes an earlier request to import an enclave via the
IWMIMPT macro.

Environment
The requirements for the caller are:

Minimum authorization: Supervisor state or program key mask (PKM) allowing keys
0-7.

Dispatchable unit mode: Task or SRB

Cross memory mode: Any HASN, any SASN. PASN must be the address space
which connected to WLM.

AMODE: 31-bit

ASC mode: Primary

Interrupt status: Enabled for I/O and external interrupts

Locks: No locks may be held.

Control parameters: Control parameters must be in the primary address space.

Programming Requirements
1. The macro CVT must be included to use this macro.
2. The macro IWMYCON must be included to use this macro.
3. The macro IWMPB must be in the library concatenation, since it is included by

IWMYCON.
4. Note that the high order halfword of register 0, and the reason code variable

when specified, may be non-zero and represents diagnostic data which is NOT
part of the external interface. The high order halfword should thus be excluded
from comparison with the reason code values described above. The constant,
IWMRSNCODE_MASK_CONST defined in IWMYCON, may be used for this
purpose.

Restrictions
None

Input Register Information
Before issuing the IWMUIMPT macro, the caller does not have to place any
information into any register unless using it in register notation for a particular
parameter, or using it as a base register.

Output Register Information
When control returns to the caller, the GPRs contain:

Register
Contents

0 Reason code if GR15 return code is non-zero
1 Used as work registers by the system
2-13 Unchanged

© Copyright IBM Corp. 1988, 2002 555

14 Used as work registers by the system
15 Return code

When control returns to the caller, the ARs contain:

Register
Contents

0-1 Used as work registers by the system
2-13 Unchanged
14-15 Used as work registers by the system

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the
caller depends, the caller must save them before issuing the service, and restore
them after the system returns control.

Performance Implications
None

Syntax

main diagram

��
name

�IWMUIMPT� XTOKEN=xtoken ,CONNTKN=conntkn �

�
,RETCODE=retcode ,RSNCODE=rsncode

,PLISTVER=IMPLIED_VERSION

,PLISTVER=MAX
,PLISTVER=0

�

�
,MF=S

,0D
,MF=(L ,list addr)

,attr
,COMPLETE

,MF=(E ,list addr)

�"

Parameters
The parameters are explained as follows:

name
An optional symbol, starting in column 1, that is the name on the IWMUIMPT
macro invocation. The name must conform to the rules for an ordinary
assembler language symbol.

,CONNTKN=conntkn
A required input parameter that contains the connect token for the primary
address space’s connection to WLM.

To code: Specify the RS-type address, or address in register (2)-(12), of a 32
bit field.

,MF=S

556 z/OS V1R4.0 MVS Workload Management Services

,MF=(L,list addr)
,MF=(L,list addr,attr)
,MF=(L,list addr,0D)
,MF=(E,list addr)
,MF=(E,list addr,COMPLETE)

An optional input parameter that specifies the macro form.

Use MF=S to specify the standard form of the macro, which builds an inline
parameter list and generates the macro invocation to transfer control to the
service. MF=S is the default.

Use MF=L to specify the list form of the macro. Use the list form together with
the execute form of the macro for applications that require reentrant code. The
list form defines an area of storage that the execute form uses to store the
parameters. Only the PLISTVER parameter may be coded with the list form of
the macro.

Use MF=E to specify the execute form of the macro. Use the execute form
together with the list form of the macro for applications that require reentrant
code. The execute form of the macro stores the parameters into the storage
area defined by the list form, and generates the macro invocation to transfer
control to the service.

,list addr
The name of a storage area to contain the parameters. For MF=S and
MF=E, this can be an RS-type address or an address in register (1)-(12).

,attr
An optional 1- to 60-character input string that you use to force boundary
alignment of the parameter list. Use a value of 0F to force the parameter
list to a word boundary, or 0D to force the parameter list to a doubleword
boundary. If you do not code attr, the system provides a value of 0D.

,COMPLETE
Specifies that the system is to check for required parameters and supply
defaults for omitted optional parameters.

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX
,PLISTVER=0

An optional input parameter that specifies the version of the macro. PLISTVER
determines which parameter list the system generates. PLISTVER is an
optional input parameter on all forms of the macro, including the list form. When
using PLISTVER, specify it on all macro forms used for a request and with the
same value on all of the macro forms. The values are:

v IMPLIED_VERSION, which is the lowest version that allows all parameters
specified on the request to be processed. If you omit the PLISTVER
parameter, IMPLIED_VERSION is the default.

v MAX, if you want the parameter list to be the largest size currently possible.
This size might grow from release to release and affect the amount of
storage that your program needs.

If you can tolerate the size change, IBM recommends that you always specify
PLISTVER=MAX on the list form of the macro. Specifying MAX ensures that
the list-form parameter list is always long enough to hold all the parameters
you might specify on the execute form, when both are assembled with the
same level of the system. In this way, MAX ensures that the parameter list
does not overwrite nearby storage.

v 0, if you use the currently available parameters.

Chapter 66. IWMUIMPT – WLM Undo Import Service 557

To code: Specify one of the following:
v IMPLIED_VERSION
v MAX
v A decimal value of 0

,RETCODE=retcode
An optional output parameter into which the return code is to be copied from
GPR 15.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

,RSNCODE=rsncode
An optional output parameter into which the reason code is to be copied from
GPR 0.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

XTOKEN=xtoken
A required input parameter that contains the export token which identifies the
exported enclave.

To code: Specify the RS-type address, or address in register (2)-(12), of a
32-character field.

ABEND Codes
None.

Return and Reason Codes
When the IWMUIMPT macro returns control to your program:
v GPR 15 (and retcode, when you code RETCODE) contains a return code.
v When the value in GPR 15 is not zero, GPR 0 (and rsncode, when you code

RSNCODE) contains reason code.

The following table identifies the hexadecimal return and reason codes and the
equate symbol associated with each reason code. IBM support personnel may
request the entire reason code, including the xxxx value.

Table 67. Return and Reason Codes for the IWMUIMPT Macro

Return Code Reason Code Equate Symbol Meaning and Action

0 — Equate Symbol: IwmRetCodeOk

Meaning: Successful completion.

Action: None required.

4 — Equate Symbol: IwmRetCodeWarning

Meaning: Successful completion, unusual conditions noted.

4 xxxx0432 Equate Symbol: IwmRsnCodeUnknownExportToken

Meaning: No enclave matching the export token was found.
The enclave may have been unexported or deleted, or the
WLM coupling facility structure may have been lost.

Action: None.

8 — Equate Symbol: IwmRetCodeInvocError

Meaning: Invalid invocation environment or parameters.

558 z/OS V1R4.0 MVS Workload Management Services

Table 67. Return and Reason Codes for the IWMUIMPT Macro (continued)

Return Code Reason Code Equate Symbol Meaning and Action

8 xxxx0803 Equate Symbol: IwmRsnCodeDisabled

Meaning: Caller is disabled.

Action: Avoid requesting this function while disabled.

8 xxxx0804 Equate Symbol: IwmRsnCodeLocked

Meaning: Caller is locked.

Action: Avoid requesting this function while locked.

8 xxxx080B Equate Symbol: IwmRsnCodeBadPl

Meaning: Error accessing parameter list.

Action: Check for possible storage overlay.

8 xxxx0821 Equate Symbol: IwmRsnCodeBadConn

Meaning: Input connect token does not pass validity
checking.

Action: Make sure the primary address space connected to
WLM using the IWMCONN service. Make sure the connect
token returned by IWMCONN is passed correctly.

8 xxxx0824 Equate Symbol: IwmRsnCodeAmode24

Meaning: Caller invoked service but was in 24 bit
addressing mode.

Action: Request this function only when you are in 31 bit
addressing mode.

8 xxxx0825 Equate Symbol: IwmRsnCodeAscModeNotPrimary

Meaning: Caller invoked service but was not in primary
ASC mode.

Action: Avoid requesting this function in this environment.

8 xxxx0827 Equate Symbol: IwmRsnCodeRsvdNot0

Meaning: Reserved field in parameter list was non-zero.

Action: Check for use of keywords that are not supported
by the MVS release on which the program is running.

8 xxxx0828 Equate Symbol: IwmRsnCodeBadVersion

Meaning: Version number in parameter list is not valid.

Action: Check for possible storage overlay of the parameter
list.

8 xxxx0840 Equate Symbol: IwmRsnCodeServiceNotEnabled

Meaning: Caller’s connection is not enabled for this service.

Action: Make sure that EXPTIMPT=YES is specified, or
used by default, on the IWMCONN macro invocation.

8 xxxx0842 Equate Symbol: IwmRsnCodeNoWLMConnect

Meaning: Caller’s primary address space is not connected
to WLM.

Action: Invoke the IWMCONN macro before invoking this
macro.

Chapter 66. IWMUIMPT – WLM Undo Import Service 559

Table 67. Return and Reason Codes for the IWMUIMPT Macro (continued)

Return Code Reason Code Equate Symbol Meaning and Action

8 xxxx0870 Equate Symbol: IwmRsnCodeBadExportToken

Meaning: The export token is not validly formatted.

Action: Check for possible storage overlay of the export
token.

8 xxxx0871 Equate Symbol: IwmRsnCodeDidNotExportOrImport

Meaning: The primary address space did not import the
enclave.

Action: Invoke IWMUIMPT from the correct address space.

C — Equate Symbol: IwmRetCodeEnvError

Meaning: Environmental error.

10 — Equate Symbol: IwmRetCodeCompError

Meaning: Component error.

Action: Contact your system programmer.

Example
IWMUIMPT XTOKEN=EXPORTT,CONNTKN=CONNECTT

*
* Storage areas
*
EXPORTT DS CL32 Export token
CONNECTT DS CL4 Connect token

560 z/OS V1R4.0 MVS Workload Management Services

Chapter 67. IWMWMBCL — Build Classification Structures

The purpose of this service is to call IWMWMBCL to initialize the classification
structures needed to represent the input policy.

The Build Classification Structures macro is provided in list, execute, and standard
form. The list form accepts no variable parameters and is used only to reserve
space for the parameter list. The standard form is provided for use with routines
which do not require reentrant code. The execute form is provided for use with the
list format for reentrant routines.

The Build Classification Structures macro is provided ONLY in PL/AS format.

The parameter list must be in the caller’s primary address space.

Environment
The requirements for the caller are:

Minimum authorization: Supervisor state. Zero PSW key

Dispatchable unit mode: Task

Cross memory mode: Any PASN, any HASN, any SASN

AMODE: 31-bit

ASC mode: Primary Primary, Secondary, Home address spaces must all
be the WLM address space.

Interrupt status: Enabled for I/O and external interrupts

Locks: No locks may be held.

Control parameters: Control parameters must be in the primary address space.

Programming Requirements
None.

Restrictions
1. This macro may not be used prior to the loading of IWMW2BCL.
2. All parameter areas must reside in current primary.

Register
Contents

0 Reserved
1 Reserved
14 Reserved
15 Reserved

Register
Contents

0 Reserved
1 Reserved
14 Reserved
15 Reserved

When control returns to the caller, the GPRs contain:

© Copyright IBM Corp. 1988, 2002 561

Register
Contents

0 Used as a work register by the macro
1 Used as a work register by the macro
14 Used as a work register by the macro
15 Used as a work register by the macro

When control returns to the caller, the ARs contain:

Register
Contents

0 Used as a work register by the macro
1 Used as a work register by the macro
14 Used as a work register by the macro
15 Used as a work register by the macro

Some callers depend on register contents remaining the same before and after
using a service. If the system changes the contents of registers on which the caller
depends, the caller must save them before calling the service, and restore them
after the system returns control.

Performance Implications
None

Syntax

main diagram

��
name

� IWMWMBCL � SVPOLPTR=svpolptr ,SVPCRPTR=svpcrptr �

� ,APPC_CONNTKN=appc_conntkn ,JES_CONNTKN=jes_conntkn �

� ,OMVS_CONNTKN=omvs_conntkn ,STC_CONNTKN=stc_conntkn �

� ,SYSH_CONNTKN=sysh_conntkn ,TSO_CONNTKN=tso_conntkn �

� ,REPORT_CONNTKN=report_conntkn ,DFLTSTC_SCLNUM=dfltstc_sclnum �

� ,SYS_ACCTINFO=sys_acctinfo ,SYSSTC_WLMSCI=sysstc_wlmsci �

� ,SYSTEM_WLMSCI=system_wlmsci ,CSTR=cstr
,RETCODE=retcode

�

�
,RSNCODE=rsncode

�

�
,PLISTVER=IMPLIED_VERSION

,PLISTVER=MAX
,PLISTVER=0

,MF=S

,0D
,MF=(L ,list addr)

,attr
,COMPLETE

,MF=(E ,list addr)

�"

IWMWMBCL Macro

562 z/OS V1R4.0 MVS Workload Management Services

Parameters
The parameters are explained as follows:

name
An optional symbol, starting in column 1, that is the name on the IWMWMBCL
macro invocation. The name must conform to the rules for an ordinary
assembler language symbol.

,APPC_CONNTKN=appc_conntkn
A required output parameter, which will receive the Connect token for APPC
work.

To code: Specify the RS-type address, or address in register (2)-(12), of a 32
bit field.

,CSTR=cstr
A required output parameter that is to contain the address of the new
classification structure.

To code: Specify the RS-type address, or address in register (2)-(12), of a
pointer field.

,DFLTSTC_SCLNUM=dfltstc_sclnum
A required output parameter, which will receive the default service class number
for the STC subsystem type. This value represents the position (number with
one origin) of the default service class name for STC within the list of service
classes found in SVPOL.

To code: Specify the RS-type address, or address in register (2)-(12), of a
fullword field.

,JES_CONNTKN=jes_conntkn
A required output parameter, which will receive the Connect token for JES work.

To code: Specify the RS-type address, or address in register (2)-(12), of a 32
bit field.

,MF=S
,MF=(L,list addr)
,MF=(L,list addr,attr)
,MF=(L,list addr,0D)
,MF=(E,list addr)
,MF=(E,list addr,COMPLETE)

An optional input parameter that specifies the macro form.

Use MF=S to specify the standard form of the macro, which builds an inline
parameter list and generates the macro invocation to transfer control to the
service. MF=S is the default.

Use MF=L to specify the list form of the macro. Use the list form together with
the execute form of the macro for applications that require reentrant code. The
list form defines an area of storage that the execute form uses to store the
parameters. Only the PLISTVER parameter may be coded with the list form of
the macro.

Use MF=E to specify the execute form of the macro. Use the execute form
together with the list form of the macro for applications that require reentrant
code. The execute form of the macro stores the parameters into the storage
area defined by the list form, and generates the macro invocation to transfer
control to the service.

IWMWMBCL Macro

Chapter 67. IWMWMBCL — Build Classification Structures 563

,list addr
The name of a storage area to contain the parameters. For MF=S and
MF=E, this can be an RS-type address or an address in register (1)-(12).

,attr
An optional 1- to 60-character input string that you use to force boundary
alignment of the parameter list. Use a value of 0F to force the parameter
list to a word boundary, or 0D to force the parameter list to a doubleword
boundary. If you do not code attr, the system provides a value of 0D.

,COMPLETE
Specifies that the system is to check for required parameters and supply
defaults for omitted optional parameters.

,OMVS_CONNTKN=omvs_conntkn
A required output parameter, which will receive the Connect token for OMVS
work.

To code: Specify the RS-type address, or address in register (2)-(12), of a 32
bit field.

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX
,PLISTVER=0

An optional input parameter that specifies the version of the macro. PLISTVER
determines which parameter list the system generates. PLISTVER is an
optional input parameter on all forms of the macro, including the list form. When
using PLISTVER, specify it on all macro forms used for a request and with the
same value on all of the macro forms. The values are:

v IMPLIED_VERSION, which is the lowest version that allows all parameters
specified on the request to be processed. If you omit the PLISTVER
parameter, IMPLIED_VERSION is the default.

v MAX, if you want the parameter list to be the largest size currently possible.
This size might grow from release to release and affect the amount of
storage that your program needs.

If you can tolerate the size change, IBM recommends that you always specify
PLISTVER=MAX on the list form of the macro. Specifying MAX ensures that
the list-form parameter list is always long enough to hold all the parameters
you might specify on the execute form, when both are assembled with the
same level of the system. In this way, MAX ensures that the parameter list
does not overwrite nearby storage.

v 0, if you use the currently available parameters.

To code: Specify one of the following:
v IMPLIED_VERSION
v MAX
v A decimal value of 0

,REPORT_CONNTKN=report_conntkn
A required output parameter, which will receive the Connect token for Reporting
SYSEVENTs.

To code: Specify the RS-type address, or address in register (2)-(12), of a 32
bit field.

,RETCODE=retcode
An optional output parameter into which the return code is to be copied from
GPR 15.

IWMWMBCL Macro

564 z/OS V1R4.0 MVS Workload Management Services

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

,RSNCODE=rsncode
An optional output parameter into which the reason code is to be copied from
GPR 0.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

,STC_CONNTKN=stc_conntkn
A required output parameter, which will receive the Connect token for STC
work.

To code: Specify the RS-type address, or address in register (2)-(12), of a 32
bit field.

,SVPCRPTR=svpcrptr
A required input parameter that contains the address of the SVPCR for the
classification rules and related information associated with the policy to be
activated.

To code: Specify the RS-type address, or address in register (2)-(12), of a
pointer field.

SVPOLPTR=svpolptr
A required input parameter that contains the address of the SVPOL for the
policy to be activated.

To code: Specify the RS-type address, or address in register (2)-(12), of a
pointer field.

,SYS_ACCTINFO=sys_acctinfo
A required output parameter, which will receive the accounting information
indicators. To map the output, mapping macro IWMAIFL should be used.

To code: Specify the RS-type address, or address in register (2)-(12), of a 16
bit field.

,SYSH_CONNTKN=sysh_conntkn
A required output parameter, which will receive the Connect token for SYSH
work.

To code: Specify the RS-type address, or address in register (2)-(12), of a 32
bit field.

,SYSSTC_WLMSCI=sysstc_wlmsci
A required output parameter, which will receive the service class index used by
WLM to build CRBs referencing service class SYSSTC.

To code: Specify the RS-type address, or address in register (2)-(12), of a 16
bit field.

,SYSTEM_WLMSCI=system_wlmsci
A required output parameter, which will receive the service class index used by
WLM to build CRBs referencing service class SYSTEM.

To code: Specify the RS-type address, or address in register (2)-(12), of a 16
bit field.

,TSO_CONNTKN=tso_conntkn
A required output parameter, which will receive the Connect token for TSO
work.

To code: Specify the RS-type address, or address in register (2)-(12), of a 32
bit field.

IWMWMBCL Macro

Chapter 67. IWMWMBCL — Build Classification Structures 565

ABEND Codes
Reason Code (Hex)

Explanation

03xx0001
Pending classification structure already exists for a policy different from the
input policy.

03xx0002
Service class name in classification rule was not found among the service
class entries.

03xx0003
Report class name in classification rule was not found among the report
class entries.

03xx0004
Classification rule entry has level=0, OR was built by the same MVS
release system, but exceeds the allowed level of nesting.

03xx0005
Classification rule entry cannot be processed. This may be due to an
unknown qualifier type or to a qualifier type which should not be associated
with a group. In either case, the classification rule was built by the same
MVS release system.

03xx0006
Classification rule skips a level from the previous rule which is a parent
rule.

03xx0007
A rule references a group whose calculated group entry index exceeds the
maximum allowed value.

03xx0008
A rule references a group whose group hash table entry indicates no hash
table is present.

IWMWMBCL Macro

566 z/OS V1R4.0 MVS Workload Management Services

Return and Reason Codes
When the IWMWMBCL macro returns control to your program:
v GPR 15 (and retcode, when you code RETCODE) contains a return code.
v When the value in GPR 15 is not zero, GPR 0 (and rsncode, when you code

RSNCODE) contains reason code.

The following table identifies the hexadecimal return and reason codes. IBM support
personnel may request the entire reason code, including the xxxx value.

Table 68. Return and Reason Codes for the IWMWMBCL Macro

Return Code Reason Code Equate Symbol Meaning and Action

0 — IwmRetCodeOk: Successful completion.

4 — IwmRetCodeWarning: Successful completion, unusual
conditions noted. Hex Reason Meaning Code
xxxxF401

IwmRsnCodeFcnNotNeeded: Input policy had a
pending classification structure built on entry.

C — IwmRetCodeEnvError: Environmental error Hex Reason
Meaning Code
xxxx0C01

IwmRsnCodeNoStg: Storage is not available for
the request.

IWMWMBCL Macro

Chapter 67. IWMWMBCL — Build Classification Structures 567

IWMWMBCL Macro

568 z/OS V1R4.0 MVS Workload Management Services

Chapter 68. IWMWMCON – Modify Connect Information

The purpose of this service is to modify a particular connection to WLM with respect
to the associated subsystem type and/or name for Work Manager services,
described below, and so could replace the use of the pair of services Disconnect
(IWMDISC) and Connect (IWMCONN) for the new values of subsystem type and/or
name. This change only affects Work Manager related services, and does not affect
the subsystem identify for Queue Manager or Server Manager services. For this
reason, the caller must be connected to the WLM work management services, i.e.
IWMCONN WORK_MANAGER=YES must be specified. Queue Manager and/or
Server Manager may also be specified at Connect, but are not affected by use of
IWMWMCON. The PSW key and topology list associated with the connect may not
be changed via this service.

Use of this service needs to be coordinated with the use of other Work Manager
services which depend on the Connect token and the associated subsystem related
information to ensure that the desired results are obtained. Among these services
are Classify (IWMCLSFY), Report (IWMRPT), Notify (IWMMNTFY) where it is an
optional input, and Enclave Create (IWMECREA). Note that use of IWMWMCON is
not appropriate prior to creation of Enclaves with TYPE(Dependent) or
TYPE(Montkn).

Environment
The requirements for the caller are:

Minimum authorization: Supervisor state or program key mask (PKM) allowing keys
0-7.

Dispatchable unit mode: Task or SRB

Cross memory mode: Any P,S. Current Home address space must be the same as
Home when the corresponding Connect was invoked.

AMODE: 31-bit

ASC mode: Primary

Interrupt status: Enabled for I/O and external interrupts

Locks: No locks may be held.

Control parameters: Control parameters must be in the primary address space.

Programming Requirements
1. The macro CVT must be included to use this macro.
2. The macro IWMYCON must be included to use this macro.
3. The macro IWMPB must be in the library concatenation, since it is included by

IWMYCON.
4. Note that the high order halfword of register 0, and the reason code variable

when specified, may be non-zero and represents diagnostic data which is NOT
part of the external interface. The high order halfword should thus be excluded
from comparison with the reason code values described above. The constant,
IWMRSNCODE_MASK_CONST defined in IWMYCON, may be used for this
purpose.

© Copyright IBM Corp. 1988, 2002 569

Restrictions
1. If the key specified on IWMCONN was a user key (8-F), then the following must

ALL be true:
v caller must be in non-cross-memory mode (P=S=H). This implies that the

current primary must match the primary at the time that IWMCONN was
invoked. Running in a subspace is not supported.

v must be in task mode (not SRB)
v current task must match the task at the time that IWMCONN was invoked.

2. It is the caller’s responsibility to serialize use of this service with use of
IWMCLSFY and other services using the connect token. Failure to do so may
result in classification to a service and/or report class which is other than the
intended one.

3. This service should not be invoked while in a RTM termination routine (resource
manager) for the task owning the connect token since MVS will have its own
resource cleanup routine and unpredictable results would occur. It is legitimate
to use this service while in a recovery routine, however, or in mainline
processing.

Input Register Information
Before issuing the IWMWMCON macro, the caller does not have to place any
information into any register unless using it in register notation for a particular
parameter, or using it as a base register.

Output Register Information
When control returns to the caller, the GPRs contain:

Register
Contents

0 Reason code if GR15 return code is non-zero
1 Used as work registers by the system
2-13 Unchanged
14 Used as work registers by the system
15 Return code

When control returns to the caller, the ARs contain:

Register
Contents

0-1 Used as work registers by the system
2-13 Unchanged
14-15 Used as work registers by the system

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the
caller depends, the caller must save them before issuing the service, and restore
them after the system returns control.

Performance Implications
None.

IWMWMCON Macro

570 z/OS V1R4.0 MVS Workload Management Services

Syntax

main diagram

��
name

� IWMWMCON � CONNTKN=conntkn ,SUBSYS=subsys �

� ,SUBSYSNM=subsysnm
,RETCODE=retcode ,RSNCODE=rsncode

�

�
,PLISTVER=IMPLIED_VERSION

,PLISTVER=MAX
,PLISTVER=0

,MF=S

,0D
,MF=(L ,list addr)

,attr
,COMPLETE

,MF=(E ,list addr)

�"

Parameters
The parameters are explained as follows:

name
An optional symbol, starting in column 1, that is the name on the IWMWMCON
macro invocation. The name must conform to the rules for an ordinary
assembler language symbol.

CONNTKN=conntkn
A required input parameter, which contains the connect token for the
environment to be modified.

To code: Specify the RS-type address, or address in register (2)-(12), of a 32
bit field.

,MF=S
,MF=(L,list addr)
,MF=(L,list addr,attr)
,MF=(L,list addr,0D)
,MF=(E,list addr)
,MF=(E,list addr,COMPLETE)

An optional input parameter that specifies the macro form.

Use MF=S to specify the standard form of the macro, which builds an inline
parameter list and generates the macro invocation to transfer control to the
service. MF=S is the default.

Use MF=L to specify the list form of the macro. Use the list form together with
the execute form of the macro for applications that require reentrant code. The
list form defines an area of storage that the execute form uses to store the
parameters. Only the PLISTVER parameter may be coded with the list form of
the macro.

Use MF=E to specify the execute form of the macro. Use the execute form
together with the list form of the macro for applications that require reentrant
code. The execute form of the macro stores the parameters into the storage
area defined by the list form, and generates the macro invocation to transfer
control to the service.

IWMWMCON Macro

Chapter 68. IWMWMCON – Modify Connect Information 571

,list addr
The name of a storage area to contain the parameters. For MF=S and
MF=E, this can be an RS-type address or an address in register (1)-(12).

,attr
An optional 1- to 60-character input string that you use to force boundary
alignment of the parameter list. Use a value of 0F to force the parameter
list to a word boundary, or 0D to force the parameter list to a doubleword
boundary. If you do not code attr, the system provides a value of 0D.

,COMPLETE
Specifies that the system is to check for required parameters and supply
defaults for omitted optional parameters.

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX
,PLISTVER=0

An optional input parameter that specifies the version of the macro. PLISTVER
determines which parameter list the system generates. PLISTVER is an
optional input parameter on all forms of the macro, including the list form. When
using PLISTVER, specify it on all macro forms used for a request and with the
same value on all of the macro forms. The values are:

v IMPLIED_VERSION, which is the lowest version that allows all parameters
specified on the request to be processed. If you omit the PLISTVER
parameter, IMPLIED_VERSION is the default.

v MAX, if you want the parameter list to be the largest size currently possible.
This size might grow from release to release and affect the amount of
storage that your program needs.

If you can tolerate the size change, IBM recommends that you always specify
PLISTVER=MAX on the list form of the macro. Specifying MAX ensures that
the list-form parameter list is always long enough to hold all the parameters
you might specify on the execute form; in this way, MAX ensures that the
parameter list does not overwrite nearby storage.

v 0, if you use the currently available parameters.

To code: Specify one of the following:
v IMPLIED_VERSION
v MAX
v A decimal value of 0

,RETCODE=retcode
An optional output parameter into which the return code is to be copied from
GPR 15.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

,RSNCODE=rsncode
An optional output parameter into which the reason code is to be copied from
GPR 0.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

,SUBSYS=subsys
A required input parameter, which contains the generic subsystem type (e.g.
IMS, CICS, etc.).

To code: Specify the RS-type address, or address in register (2)-(12), of a
4-character field.

IWMWMCON Macro

572 z/OS V1R4.0 MVS Workload Management Services

,SUBSYSNM=subsysnm
A required input parameter, which contains the name of the specific subsystem
instance

To code: Specify the RS-type address, or address in register (2)-(12), of an
8-character field.

ABEND Codes
None.

Return and Reason Codes
When the IWMWMCON macro returns control to your program:
v GPR 15 (and retcode, if you coded RETCODE) contains a return code.
v When the value in GPR 15 is not zero, GPR 0 (and rsncode, if you coded

RSNCODE) contains reason code.

The following table identifies the hexadecimal return and reason codes and the
equate symbol associated with each reason code. IBM support personnel may
request the entire reason code, including the xxxx value.

Table 69. Return and Reason Codes for the IWMWMCON Macro

Return Code Reason Code Equate Symbol Meaning and Action

0 — Equate Symbol: IwmRetCodeOk

Meaning: Successful completion.

Action: None required.

4 — Equate Symbol: IwmRetCodeWarning

Meaning: Successful completion, unusual conditions noted.

4 xxxx0409 Equate Symbol: IwmRsnCodeNoConn

Meaning: Input connection token does not reflect an active
connection to WLM.

Action: None required.

8 — Equate Symbol: IwmRetCodeInvocError

Meaning: Invalid invocation environment or parameters.

8 xxxx0802 Equate Symbol: IwmRsnCodeXmemUserKeyTkn

Meaning: Caller is in cross-memory mode while the token
was requested in user key.

Action: Avoid requesting this function while in
cross-memory mode.

8 xxxx0803 Equate Symbol: IwmRsnCodeDisabled

Meaning: Caller is disabled.

Action: Avoid requesting this function while disabled.

8 xxxx0804 Equate Symbol: IwmRsnCodeLocked

Meaning: Caller is locked.

Action: Avoid requesting this function while locked.

IWMWMCON Macro

Chapter 68. IWMWMCON – Modify Connect Information 573

Table 69. Return and Reason Codes for the IWMWMCON Macro (continued)

Return Code Reason Code Equate Symbol Meaning and Action

8 xxxx0809 Equate Symbol: IwmRsnCodeSrbUserKeyTkn

Meaning: Caller is in SRB mode, while the token was
obtained in a user key (8-F).

Action: Avoid requesting this function in SRB mode for
tokens associated with user key.

8 xxxx080A Equate Symbol: IwmRsnCodeTcbNotOwnerUserKeyTkn

Meaning: Current task is not the owner, while the token
was obtained in a user key (8-F).

Action: Avoid requesting this function under a task other
than the owner for a token associated with user key.

8 xxxx080B Equate Symbol: IwmRsnCodeBadPl

Meaning: Error accessing parameter list.

Action: Check for possible storage overlay.

8 xxxx0823 Equate Symbol: IwmRsnCodeDatoff

Meaning: Caller invoked service while DATOFF

Action: Avoid requesting this function in this environment.

8 xxxx0824 Equate Symbol: IwmRsnCodeAmode24

Meaning: Caller invoked service but was in 24 bit
addressing mode.

Action: Request this function only when you are in 31 bit
addressing mode.

8 xxxx0825 Equate Symbol: IwmRsnCodeAscModeNotPrimary

Meaning: Caller invoked service but was not DAT on
Primary ASC mode.

Action: Avoid requesting this function in this environment.

8 xxxx0826 Equate Symbol: IwmRsnCodeTaskTerm

Meaning: Caller invoked service while task termination is in
progress for the task associated with the owner.

Action: Avoid requesting this function in this environment.

8 xxxx0827 Equate Symbol: IwmRsnCodeRsvdNot0

Meaning: Reserved field in parameter list was non-zero.

Action: Check for possible storage overlay of the parameter
list.

8 xxxx0828 Equate Symbol: IwmRsnCodeBadVersion

Meaning: Version number in parameter list is not valid.

Action: Check for possible storage overlay of the parameter
list.

8 xxxx082F Equate Symbol: IwmRsnCodeWrongHome

Meaning: Caller invoked the service from the wrong home
address space.

Action: Invoke the function with the correct home address
space.

IWMWMCON Macro

574 z/OS V1R4.0 MVS Workload Management Services

Table 69. Return and Reason Codes for the IWMWMCON Macro (continued)

Return Code Reason Code Equate Symbol Meaning and Action

8 xxxx0840 Equate Symbol: IwmRsnCodeServiceNotEnabled

Meaning: Caller’s space connection is not enabled for this
service. The caller is not connected to the WLM work
management services.

Action: Avoid requesting this function under the input
connection. IWMCONN options must be specified previously
to enable this service. Check the specification of the
WORK_MANAGER keyword on the IWMCONN macro
invocation.

10 — Equate Symbol: IwmRetCodeCompError

Meaning: Component error.

Action: No action required. The function may be successful
if invoked again.

Examples
To override the subsystem name and subsystem type provided on a previous call to
IWMCONN, specify:
IWMWMCON SUBSYS=GENSUB,SUBSYSNM=SUBNAME,

CONNTKN=CONNTOKEN,RETCODE=RC,RSNCODE=RSN,

Where the following are declared:
GENSUB DS CL4 Generic subsystem type
SUBNAME DS CL8 Subsystem name
CONNTOKEN DS FL4 Connect token

IWMWMCON Macro

Chapter 68. IWMWMCON – Modify Connect Information 575

IWMWMCON Macro

576 z/OS V1R4.0 MVS Workload Management Services

Chapter 69. IWMWQRY – Query Service

IWMWQRY provides information to help the subsystem work manager make work
routing and scheduling decisions. IWMWQRY allows the caller to obtain the service
class goals and importance for a service class by performance period.

The caller must provide an area of storage in the ANSAREA=ansarea and the
length of that area in the ANSLEN=anslen for IWMWQRY to place the service class
goal and importance information. IWMWQRY returns the actual length of the
information in the QUERYLEN=querylen parameter.

The answer area is mapped by the IWMSVPOL and IWMSVPCD data areas. The
data areas are described in z/OS MVS Data Areas, Vol 3 (IVT-RCWK)

The first time the caller invokes this macro, you should specify QUERYLEN. The
service returns the length required for the service class information

The information returned is not serialized upon return to the caller, and so may be
out of date due to a change in service policy.

Environment
The requirements for the caller are:

Minimum authorization: Supervisor state, or problem state. Any PSW key.

Dispatchable unit mode: Task

Cross memory mode: Any PASN, any HASN, any SASN

AMODE: 31-bit

ASC mode: Primary or Access Register (AR) mode.

Interrupt status: Enabled

Locks: Unlocked

Control parameters: Control parameters must be in the primary address space.

Programming Requirements
v Make sure no EUT FRRs are established.

v If you are in AR mode, you must specify SYSSTATE ASCENV=AR before
invoking IWMWQRY.

v You must include the CVT and the IWMYCON mapping macros in the calling
program.

Restrictions
None.

Input Register Information
Before issuing the IWMWQRY macro, the caller does not have to place any
information into any register unless using it in register notation for a particular
parameter, or using it as a base register.

© Copyright IBM Corp. 1988, 2002 577

Output Register Information
When control returns to the caller, the GPRs contain:

Register
Contents

0 Reason code if the return code in GPR 15 is not 0, otherwise, used as a
work register by the system.

1 Used as a work register by the system.
2 - 13 Unchanged
14 Used as a work register by the system.
15 Return code

When control returns to the caller, the ARs contain:

Register
Contents

0 - 1 Used as a work register by the system.
2 - 13 Unchanged
14 - 15

Used as a work register by the system.

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the
caller depends, the caller must save them before issuing the service, and restore
them after the system returns control.

Performance Implications
None.

Syntax
The syntax of the IWMWQRY macro is as follows:

main diagram

��
name

� IWMWQRY � SERVCLS=servcls ,ANSLEN=anslen ,ANSAREA=ansarea �

� ,QUERYLEN=querylen
,RETCODE=retcode ,RSNCODE=rsncode

�

�
,MF=S

,0D
,MF=(L, MFCTRL)

,mfattr
,COMPLETE

,MF=(E, MFCTRL)
,complete

�"

Parameters
The parameters are explained as follows:

IWMWQRY Macro

578 z/OS V1R4.0 MVS Workload Management Services

SERVCLS=servcls
Required input parameter that specifies the token representing the service
class, and if there is one, the report class.

To code: Specify the RS-type name or address (using a register from 2 to 12)
of a 32 bit field containing the service class token.

,ANSLEN=anslen
Required input parameter containing the length of the area provided to hold the
data returned by IWMWQRY.

To code: Specify the RS-type name or address (using a register from 2 to 12)
of a 32 bit field containing the length of the area provided.

,ANSAREA=ansarea
Required output parameter that specifies the area provided to contain the data
being returned by IWMWQRY.

The area is mapped by the IWMSVPCD mapping macro and the service class
period definition section in the IWMSVPOL mapping macro. The IWMSVPCD
part of the answer area contains the offset to the class data, the size of the
class data, and the size of each period entry. The IWMSVPOL part of the
answer area contains the service class definition section, and the service class
period definition of the service class.

To code: Specify the RS-type name or address (using a register from 2 to 12)
of a character field specifying an area to contain the data returned by the query
service.

,QUERYLEN=querylen
Required output parameter that specifies the number of bytes needed to contain
the service class information.

To code: Specify the RS-type name or address (using a register from 2 to 12)
of a fullword field to contain the required number of bytes.

,RETCODE=retcode addr
Optional output parameter that specifies where the system is to store the return
code. The return code is also in GPR 15.

To code: Specify the name (RS-type) or address (using a register from 2 to 12)
of a fullword to contain the return code.

,RSNCODE=rsncode addr
Optional output parameter that specifies where the system is to store the
reason code. The reason code is also in GPR 0.

To code: Specify the name (RS-type) or address (using a register from 2 to 12)
of a fullword to contain the reason code (if any).

,MF=S
,MF=(L,mfctrl,mfattr)
,MF=(E,mfctrl,COMPLETE)

Use MF=S to specify the standard form, which places parameters into an inline
parameter list and invokes the IWMCONN macro service.

Use MF=L to specify the list form of the macro. Use the list form together with
the execute form of the macro for applications that require re-entrant code. The
list form defines an area of storage that the execute form uses to store the
parameters.

Use MF=E to specify the execute form of the macro. Use the execute form with
the list form of the macro for applications that require re-entrant code. The

IWMWQRY Macro

Chapter 69. IWMWQRY – Query Service 579

execute form stores the parameters into the storage area defined by the list
form and generates the macro invocation to transfer control to the service.

,mfctrl
Use this output parameter to specify the name of the storage area to
contain the parameters.

To code: Specify the name (RS-type) or address (using a register from 2 to
12) of the storage area containing the parameter list.

,mfattr
Use this input parameter to specify the name of a 1 to 60 character storage
area that can contain any value that is valid on an assembler DS
pseudo-op. You can use this parameter to force boundary alignment of the
parameter list. If you do not code ,mfattr the system provides a value of 0D,
which forces the parameter on a doubleword boundary.

,COMPLETE
Use this input parameter to specify that the system check for required
parameters and supply defaults for omitted optional parameter.

ABEND Codes
None.

Return and Reason Codes
When IWMWQRY macro returns control to your program, GPR 15 contains a return
code. When the return code is non-zero, then GPR 0 contains a reason code.

Hexadecimal
Return Code

Hexadecimal
Reason Code

Meaning

00 Meaning: Warning.

04 0401 Meaning: Warning. The system does not support work
manager services. The Query output area has not been
modified. This return code is only set when the MVS
release is prior to MVS/ESA SP 5.1.0.

04 040A Meaning: Warning. The output area supplied is too small to
receive all the available information.

04 0410 Meaning: Warning. The input service class token does not
reflect a service class in the current service policy.

08 0801 Meaning: Program error. The caller is in SRB mode.

08 0803 Meaning: Program error. The caller is disabled.

08 0804 Meaning: Program error. The caller is locked.

08 080D Meaning: Program error. Input service class is not valid.

08 0810 Meaning: Program error. Caller has EUT FRR established.

08 0830 Meaning: Program error. Caller has passed an invalid
ALET.

Example
For information related to the service class represented by the service class token
in the SERVCLS field, specify:
IWMWQRY ANSAREA=ANSAREA,ANSLEN=ANSLEN,SERVCLS=SERVCLS

QUERYLEN=QUERYLEN,RETCODE=RCODE,
RSNCODE=RSN,MF=(E,MFWQRY)

IWMWQRY Macro

580 z/OS V1R4.0 MVS Workload Management Services

Chapter 70. IWMWQWRK – Query Work Service

A work manager can use IWMWQWRK to help identify where its transactions may
be executing. A caller can issue this for a work manager address space that is
having trouble executing transactions, and wants to find out where transactions are
abending.

A caller can narrow in on where the problem is occurring by using the LU 6.2 token
information contained in monitoring environments.

With this service, a caller can get:

v A list of LU 6.2 tokens

Specify SEARCH_BY=CONNTKN, and get a list of LU 6.2 tokens for all work
requests reflected in monitoring environments owned by the current home
address space. To do this, the caller should provide the connect token of the
address space in the CONNTKN parameter.

v A list of ASIDs and/or STOKENs

Specify SEARCH_BY=LU62TKN and provide a list of LU 6.2 tokens, and
IWMWQWRK returns a list of ASIDs and/or STOKENs representing owners of
monitoring environments initialized (via IWMMINIT) with an LU 6.2 token in the
list.

The list of LU 6.2 tokens must have been obtained on a previous call to
IWMWQWRK.

Monitoring environments owned by the home address space which are related
(by IWMMRELA) to other monitoring environments are not searched.

Optionally, to narrow the search, a caller can also provide the subsystem type or
the subsystem instance in the SUBSYS and SUBSYSNM parameters.

Environment
The requirements for the caller are:

Minimum authorization: Supervisor state, or problem state. Any PSW key.

Dispatchable unit mode: Task

Cross memory mode: PASN = HASN = SASN, unless all monitoring environments
owned by the current home address space were created only
in system keys. If the current home address space owns any
monitoring environments created in a user key (8-F), then
PASN = HASN = SASN.

AMODE: 31-bit

ASC mode: Primary

Interrupt status: Enabled for I/O and external interrupts

Locks: Unlocked

Control parameters: Control parameters must be in the primary address space.

Programming Requirements
You must include the IWMYCON mapping macro in the calling program.

© Copyright IBM Corp. 1988, 2002 581

Restrictions
None.

Input Register Information
Before issuing the IWMWQWRK macro, the caller does not have to place any
information into any register unless using it in register notation for a particular
parameter, or using it as a base register.

Output Register Information
When control returns to the caller, the GPRs contain:

Register
Contents

0 Reason code if the return code in GPR 15 is not 0, otherwise, used as a
work register by the system.

1 Used as a work register by the system.
2 - 13 Unchanged
14 Used as a work register by the system.
15 Return code

When control returns to the caller, the ARs contain:

Register
Contents

0 - 1 Used as a work register by the system.
2 - 13 Unchanged
14 - 15

Used as a work register by the system.

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the
caller depends, the caller must save them before issuing the service, and restore
them after the system returns control.

Performance Implications
None.

Syntax
The syntax of the IWMWQWRK macro is as follows:

main diagram

��
name

� IWMWQWRK � SEARCH_BY= ;.* changed req to REQ �

IWMWQWRK Macro

582 z/OS V1R4.0 MVS Workload Management Services

� ,RETCODE=retcode ,RSNCODE=rsncode
,MF=S

,0D
,MF=(L, MFCTRL)

,mfattr
,COMPLETE

,MF=(E, MFCTRL)
,complete

�"

;.* changed req to REQ

CONNTKN parameters-1
LU62TKN parameters-2

parameters-1

�� ,CONNTKN=conntkn �

�
,LU62_LIST=NO_LU62_LIST
,LU62_LIST=lu62_list ,LU62_LISTSIZE=lu62_listsize �

� ,QUERYLEN=querylen �"

parameters-2

��
,SUBSYS=NO_SUBSYS
,SUBSYS=subsys

,SUBSYSNM=NO_SUBSYSNM
,SUBSYSNM=subsysnm �

� ,LU62_LIST=lu62_list ,LU62_LISTSIZE=lu62_listsize �

�
,ASID_LIST=NO_ASID_LIST
,ASID_LIST=asid_list parameters-3 �

�
,STOKEN_LIST=NO_STOKEN_LIST
,STOKEN_LIST=stoken_list parameters-4 �

� ,SKIP_REGIONS=skip_regions �"

parameters-3

�� ,ASID_LISTSIZE=asid_listsize ,ASID_SIZENEED=asid_sizeneed �"

parameters-4

�� ,STKN_LISTSIZE=stkn_listsize ,STKN_SIZENEED=stkn_sizeneed �"

IWMWQWRK Macro

Chapter 70. IWMWQWRK – Query Work Service 583

Parameters
The parameters are explained as follows:

SEARCH_BY=CONNTKN
SEARCH_BY=LU62TKN

Required input parameter that specifies the type of search for the information
about work.

Use SEARCH_BY=CONNTKN to indicate that the information about work
associated with the input connect token should be returned. The information
returned is a list of LU 6.2 tokens, contained in LU62_LIST, and a return code.

Use SEARCH_BY=LU62TKN to indicate that information about work associated
with the input list of LU 6.2 tokens (which the caller must provide in the
LU62_LIST=lu62_list) should be returned.

You define the input list with the LU62_LIST and LU62_LISTSIZE keywords.
The list must be the output of a prior call to IWMWQWRK specifying
SEARCH_BY=CONNTKN.

The information returned is a return code indicating whether work reflected in
any monitoring environment owned by the current home address space is
associated with ANY LU 6.2 token in the list of token provided in the
LU62_LIST.

CONNTKN=conntkn
Required input parameter for SEARCH_BY=CONNTKN that specifies the
connect token returned by IWMCONN. The connect token (CONNTKN) must be
owned by the current home address space.

To code: Specify the RS-type name or address in register (2)-(12), of a 32 bit
field containing the connect token.

QUERYLEN=querylen
Required output parameter for SEARCH_BY=CONNTKN that specifies the
number of bytes needed to contain the information for the input connect token
(CONNTKN=conntkn).

To code: Specify the RS-type name or address in register (2)-(12), of a fullword
containing the number of bytes to contain the information.

SUBSYS=subsys
SUBSYS=NO_SUBSYS

Optional input parameter for SEARCH_BY=LU62TKN that specifies the generic
subsystem type (ie CICS, IMS) This keyword helps narrow the search for the
matching LU 6.2 token further.

To code: Specify the RS-type name or address in register (2)-(12), of a 4
character field containing the generic subsystem type.

SUBSYSNM=subsysnm
SUBSYSNM=NO_SUBSYSNM

Optional input parameter for SEARCH_BY=LU62TKN that specifies the
subsystem instance name. This keyword helps narrow the search for the
matching LU 6.2 token further.

To code: Specify the RS-type name or address in register (2)-(12), of an 8
character field containing the subsystem instance name.

LU62_LIST=lu62_list
LU62_LIST=NO_LU62_LIST

Optional input/output parameter specifying the area for the list of LU 6.2 tokens.

IWMWQWRK Macro

584 z/OS V1R4.0 MVS Workload Management Services

To specify an input LU62_LIST, you must have previously invoked this macro to
receive an output LU62_LIST, and provide the list on a subsequent invocation.

To code: Specify the RS-type name or address in register (2)-(12), of a
character field specifying the area for the LU 6.2 token list.

,LU62_LISTSIZE=lu62_listsize
Required input parameter for LU62_LIST=lu62_list specifying the length of the
area provided to contain the data returned by IWMWQWRK.

To code: Specify the RS-type name or address in register (2)-(12), of a fullword
field containing the length of the LU 6.2 token list.

ASID_LIST=asid_list
ASID_LIST=NO_ASID_LIST

Optional input/output parameter that specifies an area for the list of ASIDs.
Each entry (ASID) is 2 bytes. Only ASIDs for regions known to be involved in
some work request are returned. Regions which could not be interrogated are
reflected only in the SKIP_REGIONS parameter.

ASID_LIST=NO_ASID_LIST indicates that no list area is provided.

To code: Specify the RS-type name or address in register (2)-(12), of a
character field specifying the area for the list of ASIDs.

ASID_LISTSIZE=asid_listsize
Required input parameter for ASID_LIST=asid_list that specifies the length of
the area provided for the ASIDs returned by IWMWQWRK.

To code: Specify the RS-type name, or address in register (2)-(12), of a
fullword containing the length of the area.

ASID_SIZENEED=asid_sizeneed
Required output parameter for ASID_LIST=asid_list that specifies the number of
bytes needed for the output list of ASIDs.

To code: Specify the RS-type name or address in register (2)-(12), of a fullword
to contain the number of bytes needed for the ASID list.

STOKEN_LIST=stoken_list
STOKEN_LIST=NO_STOKEN_LIST area is provided.

Option input/output parameter for that specifies the area for the list of
STOKENs. Only STOKENs for regions known to be involved in some work
request are returned. Regions which could not be interrogated are only reflected
in the SKIP_REGIONS variable.

To code: Specify the name (RS-type), or address in register (2)-(12), of a
character field specifying an area for the list of STOKENs.

STKN_LISTSIZE=stkn_listsize
Required input parameter for STOKEN_LIST=stoken_list that contains the
length of the area provided for the STOKEN list being returned by
IWMWQWRK.

To code: Specify the name (RS-type), or address in register (2)-(12), of a
fullword containing the length of the area.

STKN_SIZENEED=stkn_sizeneed
Required input parameter for STOKEN_LIST=stoken_list that specifies the
number of bytes needed for the output list of STOKENs.

To code: Specify the RS-type name or address in register (2)-(12), of a fullword
containing the number of bytes.

IWMWQWRK Macro

Chapter 70. IWMWQWRK – Query Work Service 585

SKIP_REGIONS=skip_regions
Optional output parameter for STOKEN_LIST=stoken_list that contains the
number of address spaces skipped and therefore not included in the output list
of ASIDs/STOKENs. If the caller wants to re-invoke IWMWQWRK when
SKIP_REGIONS is non-zero, it may be desirable to ensure that
ASID_SIZENEED + 2*SKIP_REGIONS <= ASID_LISTSIZE, AND that
STKN_SIZENEED + 8*SKIP_REGIONS <= STKN_LISTSIZE when these output
areas are passed.

,RETCODE=retcode addr
Optional output parameter that specifies where the system is to store the return
code. The return code is also in GPR 15.

To code: Specify the name (RS-type) or address (using a register from 2 to 12)
of a fullword to contain the return code.

,RSNCODE=rsncode addr
Optional output parameter that specifies where the system is to store the
reason code. The reason code is also in GPR 0.

To code: Specify the name (RS-type) or address (using a register from 2 to 12)
of a fullword to contain the reason code (if any).

,MF=S
,MF=(L,mfctrl,mfattr)
,MF=(E,mfctrl,COMPLETE)

Use MF=S to specify the standard form, which places parameters into an inline
parameter list and invokes the IWMCONN macro service.

Use MF=L to specify the list form of the macro. Use the list form together with
the execute form of the macro for applications that require re-entrant code. The
list form defines an area of storage that the execute form uses to store the
parameters.

Use MF=E to specify the execute form of the macro. Use the execute form with
the list form of the macro for applications that require re-entrant code. The
execute form stores the parameters into the storage area defined by the list
form and generates the macro invocation to transfer control to the service.

,mfctrl
Use this output parameter to specify the name of the storage area to
contain the parameters.

To code: Specify the name (RS-type) or address (using a register from 2 to
12) of the storage area containing the parameter list.

,mfattr
Use this input parameter to specify the name of a 1 to 60 character storage
area that can contain any value that is valid on an assembler DS
pseudo-op. You can use this parameter to force boundary alignment of the
parameter list. If you do not code ,mfattr the system provides a value of 0D,
which forces the parameter on a doubleword boundary.

,COMPLETE
Use this input parameter to specify that the system check for required
parameters and supply defaults for omitted optional parameter.

ABEND Codes
None.

IWMWQWRK Macro

586 z/OS V1R4.0 MVS Workload Management Services

Return and Reason Codes
When IWMWQWRK macro returns control to your program, GPR 15 contains a
return code. When the return code is non-zero, then GPR 0 contains a reason
code.

Hexadecimal
Return Code

Hexadecimal
Reason Code

Meaning

00 Meaning: Successful completion.

04 0401 Meaning: Warning. System does not support work manager
services. The query output area has not been modified. This
return code is set only when the MVS release is prior to
MVS/ESA SP 5.1.

04 0408 Meaning: Warning. No work matching the input search
arguments was found.

04 0409 Meaning: Warning. Input connection token does not reflect
an active connection to WLM.

04 040A Meaning: Warning. The output area supplied is too small to
receive all the available information.

08 0802 Meaning: Program error. Caller is in cross memory mode
while some monitoring environments were in user key.

08 0803 Meaning: Program error. Caller is disabled.

08 0804 Meaning: Program error. Caller is locked.

08 080B Meaning: Program error. Error accessing parameter list.

08 0810 Meaning: Program error. Caller has EUT FRR established.

08 0823 Meaning: Program error. Caller invoked service while
dynamic address translation was disabled.

08 0824 Meaning: Program error. Caller invoked service but was in
24-bit addressing mode.

08 0825 Meaning: Program error. Caller invoked service but was not
in primary ASC mode.

08 0827 Meaning: Program error. Reserved field in parameter list
was non-zero.

08 0828 Meaning: Program error. Version number in parameter list
is not valid.

08 0829 Meaning: Program error. Parameter list omits required
parameters or supplies mutually exclusive parameters or
provides data associated with options not selected.

Example
To identify where the transactions associated with the input connect token are
executing, specify:
IWMWQWRK SEARCH_BY=CONNTKN,CONNTKN=(R7),

LU62_LIST=LIST1,LU62_LISTSIZE=SIZE1,
QUERYLEN=(R9),RETCODE=RCODE,RSNCODE=RSN

LIST1 is a field containing the area for the list. SIZE1 is a field containing the length
of the list.

IWMWQWRK Macro

Chapter 70. IWMWQWRK – Query Work Service 587

588 z/OS V1R4.0 MVS Workload Management Services

Chapter 71. IWMWSYSQ – Querying System Information

The purpose of this service is to query information about the systems in the sysplex
that are in goal mode. This service returns a list of systems running in goal mode
and information related to available CPU capacity and resource constraint status.

The caller of IWMWSYSQ must provide storage to contain all of the system
information. This storage area must reside in the caller’s primary address space.

It is possible that the storage required by IWMWSYSQ may change such that
multiple IWMWSYSQ calls are required to obtain data. IWMWSYSQ users should
take this into account when obtaining the amount of storage that the IWMWSYSQ
service can use.

If the caller does not provide enough storage to contain all of the system
information, this service will return a return/reason code pair indicating that the input
SYSINFO_BLOCK is too small. Output data about the amount of storage required
(QUERYLEN) will be set to reflect the required SYSINFO_BLOCK size. However,
no system capacity information is returned.

Applications that schedule work across multiple systems in an MVS sysplex can
use this service to

v Locate the ″best″ (fastest or most idle) system in a sysplex for scheduling
specific work

v Avoid scheduling additional work to systems already critically overloaded

v Factor WLM business importance level information into scheduling decisions

The output of this service is a data area mapped by the IWMWSYSI macro, that
provides a point-in-time snapshot of each system WLM is managing in goal mode
within the sysplex. A scheduling application can interpret and use this information to
schedule one or more types of work to systems with specific operating
characteristics. Some examples of operating characteristics you can identify with
IWMWSYSQ are

v FASTEST CP SPEED - use the IWMWSYSI data area to identify the system
having the fastest single CP speed.

v MULTI-PROCESSING CAPABILITY - use the IWMWSYSI data area to identify
the number of online CPs on each available system.

v IDLE CAPACITY - use the IWMWSYSI data area to identify the system with the
greatest idle capacity.

If a scheduling application can identify the IMPORTANCE LEVEL of the work it
schedules the application can use IWMWSYSI to select the most appropriate
system. IWMWSYSI provides a vector containing the amount of capacity consumed
at each importance level on each system. Thus, if an application is scheduling
importance level 3 work, it can use IWMWSYSI to identify the system that has the
most capacity that is either idle or is handling importance level 4 or lower work.

An important use of a scheduling application is to avoid placing additional work on
systems experiencing contention. IWMWSYSI provides an indicator for each system
that, if on, signifies that the system should be avoided for scheduling additional
work. This contention indicator is set if a auxilliary storage, fixed storage, or SQA

© Copyright IBM Corp. 1988, 2002 589

shortage exists. Also, if work to be scheduled may consume large quantities of
CSA, you can use IWMWSYSI to determine the amount of CSA and ECSA that is
available on each system.

Note that:

v Multiple applications may simultaneously use the same IWMWSYSQ information
to make work scheduling decisions. These multiple applications will have no
direct cooperation and will compete for the available systems. It is recommended
that before an application schedules a large amount of work it activate a small
quantity of work, wait for a built-in delay, and then use IWMWSYSQ to determine
the effect of the added work before scheduling the additional work.

Environment
The requirements for the caller are:

Minimum authorization: Problem state. Any PSW key

Dispatchable unit mode: Task

Cross memory mode: Any PASN, any HASN, any SASN

AMODE: 31-bit

ASC mode: Primary or access register (AR)

Interrupt status: Enabled for I/O and external interrupts

Locks: No locks may be held.

Control parameters: Control parameters must be in the primary address space.

Programming Requirements
1. The macro CVT must be included to use this macro.
2. The macro IWMYCON must be included to use this macro.
3. The macro IWMPB must be in the library concatenation, since it is included by

IWMYCON.
4. Note that the high order halfword of register 0, and the reason code variable

when specified, may be non-zero and represents diagnostic data which is NOT
part of the external interface. The high order halfword should thus be excluded
from comparison with the reason code values described above. The constant,
IWMRSNCODE_MASK_CONST defined in IWMYCON, may be used for this
purpose.

Restrictions
None.

Input Register Information
Before issuing the IWMWSYSQ macro, the caller does not have to place any
information into any register unless using it in register notation for a particular
parameter, or using it as a base register.

Output Register Information
When control returns to the caller, the GPRs contain:

IWMWSYSQ Macro

590 z/OS V1R4.0 MVS Workload Management Services

Register
Contents

0 Reason code if GR15 return code is non-zero
1 Used as work register by the system
2-13 Unchanged
14 Used as work registers by the system
15 Return code

When control returns to the caller, the ARs contain:

Register
Contents

0-1 Used as work registers by the system
2-13 Unchanged
14-15 Used as work registers by the system

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the
caller depends, the caller must save them before issuing the service, and restore
them after the system returns control.

Performance Implications
None.

Syntax

main diagram

��
name

� IWMWSYSQ � SYSINFO_BLOCK=sysinfo_block ,ANSLEN=anslen �

� ,QUERYLEN=querylen
,RETCODE=retcode ,RSNCODE=rsncode

�

�
,PLISTVER=IMPLIED_VERSION

,PLISTVER=MAX
,PLISTVER=2

,MF=S

,0D
,MF=(L ,list addr)

,attr
,COMPLETE

,MF=(E ,list addr)

�"

Parameters
The parameters are explained as follows:

name
An optional symbol, starting in column 1, that is the name on the IWMWSYSQ
macro invocation. The name must conform to the rules for an ordinary
assembler language symbol.

,ANSLEN=anslen
A required input parameter, which contains the length of the SYSINFO_BLOCK
in bytes.

IWMWSYSQ Macro

Chapter 71. IWMWSYSQ – Querying System Information 591

To code: Specify the RS-type address, or address in register (2)-(12), of a
fullword field.

,MF=S
,MF=(L,list addr)
,MF=(L,list addr,attr)
,MF=(L,list addr,0D)
,MF=(E,list addr)
,MF=(E,list addr,COMPLETE)

An optional input parameter that specifies the macro form.

Use MF=S to specify the standard form of the macro, which builds an inline
parameter list and generates the macro invocation to transfer control to the
service. MF=S is the default.

Use MF=L to specify the list form of the macro. Use the list form together with
the execute form of the macro for applications that require reentrant code. The
list form defines an area of storage that the execute form uses to store the
parameters. Only the PLISTVER parameter may be coded with the list form of
the macro.

Use MF=E to specify the execute form of the macro. Use the execute form
together with the list form of the macro for applications that require reentrant
code. The execute form of the macro stores the parameters into the storage
area defined by the list form, and generates the macro invocation to transfer
control to the service.

,list addr
The name of a storage area to contain the parameters. For MF=S and
MF=E, this can be an RS-type address or an address in register (1)-(12).

,attr
An optional 1- to 60-character input string that you use to force boundary
alignment of the parameter list. Use a value of 0F to force the parameter
list to a word boundary, or 0D to force the parameter list to a doubleword
boundary. If you do not code attr, the system provides a value of 0D.

,COMPLETE
Specifies that the system is to check for required parameters and supply
defaults for omitted optional parameters.

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX
,PLISTVER=2

An optional input parameter that specifies the version of the macro. PLISTVER
determines which parameter list the system generates. PLISTVER is an
optional input parameter on all forms of the macro, including the list form. When
using PLISTVER, specify it on all macro forms used for a request and with the
same value on all of the macro forms. The values are:

v IMPLIED_VERSION, which is the lowest version that allows all parameters
specified on the request to be processed. If you omit the PLISTVER
parameter, IMPLIED_VERSION is the default.

v MAX, if you want the parameter list to be the largest size currently possible.
This size might grow from release to release and affect the amount of
storage that your program needs.

If you can tolerate the size change, IBM recommends that you always specify
PLISTVER=MAX on the list form of the macro. Specifying MAX ensures that
the list-form parameter list is always long enough to hold all the parameters

IWMWSYSQ Macro

592 z/OS V1R4.0 MVS Workload Management Services

you might specify on the execute form; in this way, MAX ensures that the
parameter list does not overwrite nearby storage.

v 2, if you use the currently available parameters.

To code: Specify one of the following:
v IMPLIED_VERSION
v MAX
v A decimal value of 2

,QUERYLEN=querylen
A required output parameter, variable which contains the output area size that
must be provided by the caller to contain all of the active systems in the sysplex
that are in goal mode (i.e. the amount of data returned by the IWMWSYSQ
service).

To code: Specify the RS-type address, or address in register (2)-(12), of a
fullword field.

,RETCODE=retcode
An optional output parameter into which the return code is to be copied from
GPR 15.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

,RSNCODE=rsncode
An optional output parameter into which the reason code is to be copied from
GPR 0.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

SYSINFO_BLOCK=sysinfo_block
A required input parameter that is to contain the address of an output area to
contain information provided by this service. The format of this area is mapped
by IWMWSYSI and should only be considered valid upon return code zero from
this service.

To code: Specify the RS-type address, or address in register (2)-(12), of a
pointer field.

ABEND Codes
None.

Return and Reason Codes
When the IWMWSYSQ macro returns control to your program:
v GPR 15 (and retcode, if you coded RETCODE) contains a return code.
v When the value in GPR 15 is not zero, GPR 0 (and rsncode, if you coded

RSNCODE) contains reason code.

The following table identifies the hexadecimal return and reason codes and the
equate symbol associated with each reason code. IBM support personnel may
request the entire reason code, including the xxxx value.

IWMWSYSQ Macro

Chapter 71. IWMWSYSQ – Querying System Information 593

Table 70. Return and Reason Codes for the IWMWSYSQ Macro

Return Code Reason Code Equate Symbol Meaning and Action

0 — Equate Symbol: IwmRetCodeOk

Meaning: Successful completion.

Action: None required.

4 — Equate Symbol: IwmRetCodeWarning

Meaning: Successful completion, unusual conditions noted.

4 xxxx040A Equate Symbol: IwmRsnCodeOutputAreaTooSmall

Meaning: The output area supplied is too small to receive
all the available information.

Action: None required. If necessary, reinvoke the service
with an output area of sufficient size (returned in
QUERYLEN) to receive all information.

4 xxxx0420 Equate Symbol: IwmRsnCodeSysInfoIncomplete

Meaning: System capacity data for one or more systems
running in goal mode is unavailable when the IWMWSYSQ
service is invoked.

Action: None required. If necessary, wait a few minutes
and reinvoke the service to receive all information.

8 — Equate Symbol: IwmRetCodeInvocError

Meaning: Invalid invocation environment or parameters.

8 xxxx0801 Equate Symbol: IwmRsnCodeSrbMode

Meaning: Caller is in SRB mode.

Action: Avoid requesting this function while in SRB mode.

8 xxxx0803 Equate Symbol: IwmRsnCodeDisabled

Meaning: Caller is disabled.

Action: Avoid requesting this function while disabled.

8 xxxx0804 Equate Symbol: IwmRsnCodeLocked

Meaning: Caller is locked.

Action: Avoid requesting this function while locked.

8 xxxx080B Equate Symbol: IwmRsnCodeBadPl

Meaning: Error accessing parameter list.

Action: Check for possible storage overlay.

8 xxxx0823 Equate Symbol: IwmRsnCodeDatoff

Meaning: Caller invoked service while DATOFF

Action: Avoid requesting this function in this environment.

8 xxxx0824 Equate Symbol: IwmRsnCodeAmode24

Meaning: Caller invoked service but was in 24 bit
addressing mode.

Action: Request this function only when you are in 31 bit
addressing mode.

IWMWSYSQ Macro

594 z/OS V1R4.0 MVS Workload Management Services

Table 70. Return and Reason Codes for the IWMWSYSQ Macro (continued)

Return Code Reason Code Equate Symbol Meaning and Action

8 xxxx0828 Equate Symbol: IwmRsnCodeBadVersion

Meaning: Version number in parameter list is not valid or
the length specified is incorrect.

Action: Check for possible storage overlay of the parameter
list.

8 xxxx083C Equate Symbol: IwmRsnCodeMissingAcro

Meaning: Required parameter list acronym (eye catcher)
not found or a zero SYSINFO_BLOCK pointer is found to
be associated with a non-zero ANSLEN.

Action: Check for possible storage overlay of the parameter
list after ensuring that the acronym was correctly set.

C — Equate Symbol: IwmRetCodeEnvError

Meaning: Environmental error.

C xxxx0C12 Equate Symbol: IwmRsnNoGoalModeSystems

Meaning: There are no goal mode systems in the sysplex

Action: No action required.

10 — Equate Symbol: IwmRetCodeCompError

Meaning: Component error.

Action: No action required. The function may be successful
if invoked again.

Examples
To query system information:
IWMWSYSQ SYSINFO_BLOCK=SYSINFO,ANSLEN=ANSLEN, X

QUERYLEN=QUERYLEN,RETCODE=RC,RSNCODE=RSN

Where the following are declared:
SYSINFO DS F SYSINFO_BLOCK address
ANSLEN DS F Length of the SYSINFO_BLOCK area
QUERYLEN DS F Query length
RC DS F Return code
RSN DS F Reason code

IWMWSYSQ Macro

Chapter 71. IWMWSYSQ – Querying System Information 595

596 z/OS V1R4.0 MVS Workload Management Services

Part 3. Appendixes

© Copyright IBM Corp. 1988, 2002 597

598 z/OS V1R4.0 MVS Workload Management Services

Appendix A. SMF Type 99 Action Codes
Table 71. SMF Type 99 Action Codes

Trace
Code

Trace Code Name Description

1 STA_RECOVERY_RETRY Retry

2 STA_RECOVERY_PERC Percolation

3 STA_RECOVERY_REDRIVE Tell wlm to set to same policy again_SET

10 RA_AUXP_DEC_MPL Resource adjustment, too much auxiliary storage
paging, decrease mpl

20 RA_AUXP_NO_ACTION Resource adjustment, too much auxiliary storage
paging, no action

30 RA_MP_NO_ACTION Resource adjustment, managed paging, no action

40 RA_OU_DEC_MPL Resource adjustment, overutilized, decrease mpl

50 RA_OU_NO_ACTION Resource adjustment, overutilized, no action

60 RA_SWAP_FOR_MPL Resource adjustment, working set management
picked this address space to swap out

70 RA_UP_DECREASE_MPL Resource adjustment, unmanaged paging decrease
mpl

80 RA_UP_NEW_CAND Resource adjustment, squeeze and swap, new
management candidate

90 RA_UP_NO_ACTION Resource adjustment, unmanaged paging no action

100 RA_UU_INC_MPL Resource adjustment, underutilized, increase mpl

105 RA_UU_ADD_SRV_GR Resource adjustment, underutilized, add server

106 RA_UU_ADD_SRV_RR Resource adjustment, underutilized, add server

110 RA_UU_NO_ACTION Resource adjustment, underutilized, no action

120 RA_UP_SWAP_OUT Resource adjustment, squeeze and swap, swap out

130 SWAP_DETECTED_WAIT Detected wait swap

140 SWAP_EXCHANGE Exchange swap

150 SWAP_LONG_WAIT Long wait swap

160 SWAP_UNILATERAL Unilateral swap

170 RA_MON_PAG_COST_HI Resource adjustment, monitor this space because
paging cost is high

180 RA_MON_POLICY_DIR Resource adjustment, policy code directed us to
monitor this space

190 RA_UNMON_ALL_P_OK Resource adjustment, unmonitor this space
because the last 10 plotted points were ok

195 RA_UNMON_NO_CAPT Resource adjustment, unmonitor this space
because insufficient capture time accumulated in
last 5 minutes to plot a point

200 TX_END_UNMON Unmonitor because of transaction end, initiator
detach, or address space termination

210 NS_STOR_TAR_ACTION Storage target action, no specific reason

220 PA_ADD_DISP Add transaction server dynamic internal service
period

© Copyright IBM Corp. 1988, 2002 599

Table 71. SMF Type 99 Action Codes (continued)

Trace
Code

Trace Code Name Description

222 PA_AS_BET_DISPS Move address space between server internal
service periods

224 PA_AS_FROM_DISP Move address space from server internal service
period

226 PA_AS_TO_DISP Move address space to server internal service
period

227 PA_AS2_NONTRX_DISP Move address space to server internal service
period

230 PA_DELETE_DISP Delete server internal service period

232 PA_ADDDISP_MT_EN_Q Add a non transaction server dynamic internal
service period for multi-threaded enclave queue
servers

233 PA_ADD_DISP_MT_EN Add a non transaction server dynamic internal
service period for multi-threaded enclave
non_queue servers

235 PA_ADDDISP_ST_EN_Q Add a non transaction server dynamic internal
service period for single-threaded enclave queue
servers

240 PA_GREC_CAND Policy adjustment, goal receiver candidate selected

245 PA_NA_NO_MPL Policy adjustment, no action taken because period
had an mpl out target of 0 and the delay was other
than mpl

250 PA_NA_NO_PROBLEM Policy adjustment, no action taken because receiver
did not have a problem

251 PA_ADDDISP_SCSP Add a non-transaction server dynamic internal
service period for a single class/single period
enclave server

252 PA_ADDDISP_SCSP_Q Add a non transaction server dynamic internal
service period for a single class/single period
enclave and queue server

253 PA_ADDDISP_SCMP Add a non transaction server dynamic internal
service period for a single class/multi-period
enclave server

254 PA_ADDDISP_SCMP_Q Add a non transaction server dynamic internal
service period for a single class/multi-period
enclave and queue server

255 PA_ADDDISP_MCMP Add a non transaction server dynamic internal
service period for a multi-class/multi-period enclave
server

256 PA_ADDDISP_MCMP_Q Add a non transaction server dynamic internal
service period for a single class/multi-period
enclave and queue server

260 PA_NA_UNKNOW_DELAY Policy adjustment, no action taken because delay is
not known

265 PA_NA_SYSPLEX_ONLY Policy adjustment, because resource only
addressed on sysplex pass and this is the local
pass

270 PA_REC_CAND Policy adjustment, receiver candidate selected

600 z/OS V1R4.0 MVS Workload Management Services

Table 71. SMF Type 99 Action Codes (continued)

Trace
Code

Trace Code Name Description

280 PA_RREC_CAND Policy adjustment, resource receiver candidate
selected

290 PA_USE_DISC_CENT Policy adjustment, use discretionary central

300 PA_USE_DISC_EXP Policy adjustment, use discretionary expanded

310 WLM_Q_REQ WLM queue sysevent issued. Begin/end are not
traced.

320 PA_CAL_PI_NO_FOREIGN_FACTORPolicy adjustment, calculate PI.

500 HSK_FROM_SPC_DP Housekeeping, move from small processor
consumer priority, period is no longer small
consumer

510 HSK_TO_SPC_DP Housekeeping, move to small processor consumer
priority

520 HSK_XFROM_SPC_DP Housekeeping, exchange from small processor
consumer priority to make room for another small
consumer

525 HSK_UNBUNCH_PRTY Housekeeping, unbunch priorities

530 PA_PMDO_DON Policy adjustment, assess moving primary
processor donor down to occupied priority

540 PA_PMDU_DON Policy adjustment, assess moving primary
processor donor down to unoccupied priority

550 PA_PMD_DON_NETVAL Policy adjustment, processor move down, rejected
for no net value, donor trace

560 PA_PMD_GDON_NETVAL Policy adjustment, processor move down, rejected
for no net value, goal donor trace

565 PA_PMD_GREC_NETVAL Policy adjustment, processor move down, rejected
for no net value, goal receiver trace

570 PA_PMD_RDON_NETVAL Policy adjustment, processor move down, rejected
for no net value, resource donor trace

573 PA_PMD_REC_NETVAL Policy adjustment, processor move down, rejected
for no net value, receiver trace

576 PA_PMD_RREC_NETVAL Policy adjustment, processor move down, rejected
for no net value, resource receiver trace

580 PA_PMD_SEC_DON Policy adjustment, assess moving secondary
processor donor down

590 PA_PMU_DON_NETVAL Policy adjustment, processor move up, rejected for
no net value, donor trace

595 PA_PMU_DON_SEC_REC Policy adjustment, processor assess moving donor
up as secondary receiver

600 PA_PMU_GDON_NETVAL Policy adjustment, processor move up, rejected for
no net value, goal donor trace

605 PA_PMU_GREC_NETVAL Policy adjustment, processor move up, rejected for
no net value, goal receiver trace

610 PA_PMU_RDON_NETVAL Policy adjustment, processor move up, rejected for
no net value, resource donor trace

613 PA_PMU_REC_NETVAL Policy adjustment, processor move up, rejected for
no net value, receiver trace

Appendix A. SMF Type 99 Action Codes 601

Table 71. SMF Type 99 Action Codes (continued)

Trace
Code

Trace Code Name Description

616 PA_PMU_RREC_NETVAL Policy adjustment, processor move up, rejected for
no net value, resource donor trace

620 PA_PMUO_REC Policy adjustment, assess moving primary
processor receiver up to occupied priority

630 PA_PMUUA_REC Policy adjustment, assess moving primary
processor receiver up to unoccupied priority above
donor

635 PA_PMUUB_REC Policy adjustment, assess moving primary
processor receiver up to unoccupied priority
between donor and receiver’s current priorities

640 PA_PMU_SEC_REC Policy adjustment, assess moving secondary
processor receiver up

650 PA_PMU_TO_SPC_DP Policy adjustment, move up to small processor
consumer priority

660 PA_PRO_DECP_DON Policy adjustment, decrease priority for donor

665 PA_PRO_DECP_MPL Policy adjustment, decrease priority because of an
mpl increase

670 PA_PRO_DECP_SEC Policy adjustment, decrease priority for secondary
donor or receiver

690 PA_PRO_DON_DEPEN Policy adjustment, no further processor action
because of donor dependency relationship

720 PA_PRO_GREC_NETVAL Policy adjustment, no processor action because
insufficient net value, goal receiver trace

730 PA_PRO_GREC_RECVAL Policy adjustment, no processor action because
insufficient receiver value, goal receiver trace

740 PA_PRO_INCP_DON Policy adjustment, increase priority for donor

750 PA_PRO_INCP_REC Policy adjustment, increase priority for receiver

760 PA_PRO_INCP_SEC Policy adjustment, increase priority for secondary
donor or receiver

850 PA_PRO_NA_NO_DONOR Policy adjustment, no processor action because no
donor selected

870 PA_PRO_NA_SPC_DP Policy adjustment, no processor action because
period is at or just moved from small processor
consumer priority

880 PA_PRO_RDON_CAND Policy adjustment, processor resource donor
candidate selected

890 PA_PRO_REC_DEPEN Policy adjustment, no further processor action
because of receiver dependency relationship

900 PA_PRO_REC_NETVAL Policy adjustment, no processor action because
insufficient net value, receiver trace

910 PA_PRO_REC_RECVAL Policy adjustment, no processor action because
insufficient receiver value, receiver trace

920 PA_PRO_RREC_NETVAL Policy adjustment, no processor action because
insufficient net value, resource receiver trace

930 PA_PRO_RREC_RECVAL Policy adjustment, no processor action because
insufficient receiver value, resource receiver trace

602 z/OS V1R4.0 MVS Workload Management Services

Table 71. SMF Type 99 Action Codes (continued)

Trace
Code

Trace Code Name Description

933 PA_PRO_SERVED_GDON Policy adjustment, served goal donor selected

936 PA_PRO_SERVED_GREC Policy adjustment, served goal receiver selected

938 PA_PRO_TO_SPC_DP Policy moved to small processor consumer

940 PA_PRO_UNC_DON Policy adjustment, unchanged donor

950 PA_PRO_UNC_REC Policy adjustment, unchanged receiver

960 PA_PRO_UNC_SEC_DON Policy adjustment, unchanged secondary donor

970 PA_PRO_UNC_SEC_REC Policy adjustment, unchanged secondary receiver

980 PA_TA_EA_MOV_UBA Policy adjustment, tuning alias, efficiency-based
adjustment, move unbound alias

981 PA_TA_EA_MOV_BDEV Policy adjustment, tuning alias, efficiency-based
adjustment, move base device

982 PA_TA_EA_NA_TIME Policy adjustment, tuning alias, efficiency-based
adjustment, no action due to PAV subsystem time
since last alias move not exceeding one minute

983 PA_TA_EA_NA_DONPIO Policy adjustment, tuning alias, efficiency-based
adjustment, donor not selected because donor
projected increase in queued I/O requests exceeds
threshold.

984 PA_TA_EA_NA_IOSQL Policy adjustment, tuning alias, efficiency-based
adjustment, receiver not selected because of
insufficient average queued I/O requests.

987 PA_TA_EA_DON_L1MIN Policy adjustment, tuning alias, efficiency-based
adjustment, donor not selected because donor
donated recently.

988 PA_TA_EA_REC_L1MIN Policy adjustment, tuning alias, efficiency-based
adjustment, receiver not selected because receiver
was helped recently.

989 PA_TA_EA_NA_CUQDT Policy adjustment, tuning alias, efficiency-based
adjustment, receiver not selected due to excessive
control unit queueing delay

990 PA_TA_GA_MOV_UBA Policy adjustment, tuning alias, goal-based
adjustment, move unbound alias

991 PA_TA_GA_MOV_BDEV Policy adjustment, tuning alias, goal-based
adjustment, move base device

992 PA_TA_GA_INV_RDEV Policy adjustment, tuning alias, goal-based
adjustment, invalid receiver device

993 PA_TA_GA_NA_DONPIO Policy adjustment, tuning alias, goal-based
adjustment, donor not selected because donor
projected increase in queued I/O requests exceeds
threshold.

994 PA_TA_GA_NA_IOSQL Policy adjustment, tuning alias, goal-based
adjustment, receiver not selected because of
insufficient average queued I/O requests.

995 PA_TA_GA_DON_L1MIN Policy adjustment, tuning alias, goal-based
adjustment, donor not selected because donor
donated recently.

Appendix A. SMF Type 99 Action Codes 603

Table 71. SMF Type 99 Action Codes (continued)

Trace
Code

Trace Code Name Description

996 PA_TA_GA_REC_L1MIN Policy adjustment, tuning alias, goal-based
adjustment, receiver not selected because receiver
was helped recently.

997 PA_TA_RRPATOD RRPATOD when tuning alias adjustment was
entered

998 PA_TA_GA_DONGTREC Policy adjustment, tuning alias, goal-based
adjustment, no action due to donor’s importance
greater than receiver’s or donor belongs to a
system service class

999 PA_TA_GA_NA_CUQDT Policy adjustment, tuning alias, goal-based
adjustment, receiver not selected due to excessive
control unit queueing delay.

2010 PA_DEC_PSI_TAR Policy adjustment, decrease period protective
processor storage target for this resource period

2011 PA_DEC_PSI_TAR_GP Policy adjustment, decrease period protective
processor storage target for a rescource period
associated with this goal period. The goal period is
different than the resource period.

2020 PA_INC_PSI_TAR Policy adjustment, increase period protective
processor storage target for this resource period

2021 PA_INC_PSI_TAR_GR Policy adjustment, increase period protective
processor storage target to the resource receiver
associated with this goal receiver. The goal receiver
is different than the resouce receiver.

2030 PA_PSI_NA_NET_VAL Policy adjustment, no period protective processor
storage action because insufficient net value.
Resource receiver trace.

2031 PA_PSI_GREC_NETVAL Policy adjustment, no period protective processor
storage action because insufficient net value. Goal
receiver trace. The goal receiver is different than
the resource receiver.

2040 PA_PSI_NA_REC_VAL Policy adjustment, no period protective processor
storage action because insufficient receiver value.
Goal receiver trace.

2041 PA_PSI_RREC_RECVAL Policy adjustment, no period protective processor
storage action because insufficient receiver value.
Resource receiver trace. The resource receiver is
different than the goal receiver.

2050 PA_PSI_TAR_UNAB Policy adjustment, no period protective processor
storage action because current target not absorbed

2060 PA_REM_PSI_TAR Policy adjustment, remove period protective
processor storage target for this resource period

2061 PA_REM_PSI_TAR_GP Policy adjustment, remove period protective
processor storage target for the resource period
associated with this goal period. The goal period is
different than the resource period.

2070 PLOT_X_REM_PSI_TAR Plot expansion, remove period protective processor
storage target for this resource period

604 z/OS V1R4.0 MVS Workload Management Services

Table 71. SMF Type 99 Action Codes (continued)

Trace
Code

Trace Code Name Description

2071 PLOT_X_REM_PSI_GP Plot expansion, remove period protective processor
storage target for a resource period associated with
this goal period. The goal period is different than
the resource period.

2075 PLOT_X_REM_RCS_TAR Plot expansion, remove restrictive central storage
target

2080 SH_DEC_PSI_TAR Storage shortage, decrease period protective
processor storage target for this resource period

2081 SH_DEC_PSI_TAR_GP Storage shortage, decrease period protective
processor storage target for a resource period
associated with this goal period. The goal period is
different than the resource period.

2090 SH_REM_PSI_TAR Storage shortage, remove period protective
processor storage target for this resource period

2091 SH_REM_PSI_TAR_GP Storage shortage, remove period protective
processor storage target from a resource period
associated with this goal period. The goal period is
different than the resource period.

2100 TDH_AS_DEC_PSI_TAR Time driven housekeeping, decrease period
protective processor storage target for this resource
period

2101 TDH_AS_DEC_PSI_GP Time driven housekeeping, decrease period
protective processor storage target for a resource
period associated with this goal period. The goal
period is different than the resource period.

2110 TDH_AS_REM_PSI_TAR Time driven housekeeping, remove period
protective processor storage target from this
resoucre period

2111 TDH_AS_REM_PSI_GP Time driven housekeeping, remove period
protective processor storage target from a resource
period associated with this goal period. The goal
period is different than the resource period.

2120 TDH_ME_DEC_PSI_TAR Time driven minimal effect housekeeping, decrease
period protective processor storage target for this
resource period.

2121 TDH_ME_DEC_PSI_GP Time driven minimal effect housekeeping, decrease
period protective processor storage target for a
resource period associated with this goal period.
The goal period is different than the resource
period.

2130 TDH_ME_REM_PSI_TAR Time driven minimal effect housekeeping, remove
period protective processor storage target from this
resource period

2131 TDH_ME_REM_PSI_GP Time driven minimal effect housekeeping, remove
period protective processor storage target from a
resource period associated with this goal period.
The goal period is different than the resource
period.

Appendix A. SMF Type 99 Action Codes 605

Table 71. SMF Type 99 Action Codes (continued)

Trace
Code

Trace Code Name Description

2140 TDH_UA_DEC_PSI_TAR Time driven unassessable housekeeping, decrease
period protective processor storage target for this
resource period

2141 TDH_UA_DEC_PSI_GP Time driven unassessable housekeeping, decrease
period protective processor storage target for a
resource period associated with this goal period.
The goal period is different than the resource
period.

2150 TDH_UA_REM_PSI_TAR Time driven unassessable housekeeping, remove
period protective processor storage target from this
resource period

2151 TDH_UA_REM_PSI_GP Time driven unassessable housekeeping, remove
period protective processor storage target from a
resource period associated with the goal period.
The goal period is different than the resource
period.

2160 RV_HSK_INC_PSI_TAR Reverse housekeeping, increment period protective
processor storage target for this resource receiver

2161 RV_HSK_INC_PSI_GR Reverse housekeeping, increment period protective
processor storage target for a resource receiver
associated with this goal receiver. The goal receiver
is different than the resource receiver.

2170 WSM_DEC_PSI_TAR Working set management, decrease period
protective processor storage target for this resource
period

2171 WSM_DEC_PSI_TAR_GP Working set management, decrease period
protective processor storage target for a resource
period associated with this goal period. The goal
period is different than the resource period.

2180 WSM_REM_PSI_TAR Working set management, remove period protective
processor storage target from this resource period.

2181 WSM_REM_PSI_TAR_GP Working set management, remove period protective
processor storage target from a resource period
associated with this goal period. The goal period is
different than the resource period.

2510 PA_DEC_PRT Policy adjustment, decrease swap protect time

2520 PA_INC_PRT Policy adjustment, increase swap protect time

2530 PA_PRT_NA_NET_VAL Policy adjustment, no swap protect time action
because insufficient net value

2540 PA_PRT_NA_REC_VAL Policy adjustment, no swap protect time action
because insufficient receiver value

2550 PA_PRT_NA_SRVR_UD Policy adjustment, no swap protect time action
because period is a server or a universal donor

2555 PA_PRT_NA_ENCLAVE Policy adjustment, no swap protect time action
because no policy adjustment actions for enclave
swap delay

2560 PA_PRT_NO_WSS Policy adjustment, no swap protect time action
because no average working set size to calculate
frame projections

606 z/OS V1R4.0 MVS Workload Management Services

Table 71. SMF Type 99 Action Codes (continued)

Trace
Code

Trace Code Name Description

2570 PA_PRT_TAR_UNAB Policy adjustment, no swap protect time action
because current target not absorbed

2580 PA_REM_PRT Policy adjustment, remove swap protect time

2590 RV_HSK_INC_PRT Reverse housekeeping increment swap protect time

2600 SH_DEC_PRT Storage shortage, decrease swap protect time

2610 SH_REM_PRT Storage shortage, remove swap protect time

2620 TDH_DEC_PRT Time driven housekeeping, decrease swap protect
time

2630 TDH_REM_PRT Time driven housekeeping, remove swap protect
time

2640 WSM_DEC_PRT Working set management, decrease swap protect
time

2650 WSM_REM_PRT Working set management, remove swap protect
time

3010 PA_CSI_NA_NET_VAL Policy adjustment, no common area protective
processor storage target action because insufficient
net value

3020 PA_CSI_NA_REC_VAL Policy adjustment, no common area protective
processor storage target action because insufficient
receiver value

3030 PA_CSI_TAR_UNAB Policy adjustment, no common area protective
processor storage target action because current
target not absorbed

3040 PA_INC_CSI_TAR Policy adjustment, increase common area
protective processor storage target

3050 TDH_DEC_CSI_TAR Time driven housekeeping, decrease common area
protective processor storage target

3060 TDH_REM_CSI_TAR Time driven housekeeping, remove common area
protective processor storage target

3070 PA_INC_XMEM_TAR Increase protective processor storage target to
reduce cross memory paging

3080 PA_XMEM_NA_NET_VAL Did not increase protective processor storage target
for cross memory paging because of insufficient net
value

3090 PA_XMEM_NA_REC_VAL Did not increase protective processor storage target
for cross memory paging because of insufficient
receiver value

3095 PA_XMEM_NA_SRT Did not increase protective processor storage target
for cross memory paging because address space
faulted or was in a service period with short
response time goals

3100 PA_XMEM_TAR_UNAB Did not increase protective processor storage target
for cross memory paging because target was
unabsorbed

3110 TDH_DEC_SSI_TAR Time driven housekeeping, decrease shared area
protective processor storage target

Appendix A. SMF Type 99 Action Codes 607

Table 71. SMF Type 99 Action Codes (continued)

Trace
Code

Trace Code Name Description

3120 PA_SHR_TAR_UNAB Policy adjustment, no shared area protective
processor storage target action because current
target not absorbed

3130 PA_SHR_NA_REC_VAL Policy adjustment, no shared area protective
processor storage target action because insufficient
receiver value

3140 PA_SHR_NA_NET_VAL Policy adjustment, no shared area protective
processor storage target action because insufficient
net value

3150 PA_INC_SHR_TAR Policy adjustment, increase shared area protective
processor storage target

3160 PA_DEC_SHR_DEL Policy adjustment, decrease shared area protective
processor storage target by delta in SPTE

3510 B16M_SHORT_DEC_MPL Below 16 meg storage shortage, decrease mpl

3520 PA_DEC_MPL Policy adjustment, decrease mpl

3521 PA_DEC_MPL_GP Policy adjustment, decrease mpl for a resource
period that is associated with this goal period. The
goal period is different than the resource period.

3530 PA_INC_MPL Policy adjustment, increase mpl

3531 PA_INC_MPL_TS Policy adjustment, increase mpl for transaction
servers

3540 PA_INC_MPL_GR Policy adjustment, increase mpl for storage
managed enclave goal period

3541 PA_INC_MPL_RR Policy adjustment, increase mpl for storage
managed enclave resource period

3550 PA_MPL_NA_NET_VAL Policy adjustment, no mpl action because
insufficient net value

3551 PA_MPL_NETVAL_RR Policy adjustment, no mpl action because
insufficient net value for storage managed enclave
server periods

3552 PA_MPL_NETVAL_GR Policy adjustment, no mpl action because
insufficient net value for storage managed enclave
goal periods

3560 PA_MPL_NA_REV_VAL Policy adjustment, no mpl action because
insufficient receiver value

3561 PA_MPL_RECVAL_RR Policy adjustment, no mpl action because
insufficient receiver value for storage managed
enclave servers

3562 PA_MPL_RECVAL_GR Policy adjustment, no mpl action because
insufficient receiver value for storage managed
enclave goal periods

3580 PA_MPL_NA_SHORTAGE Policy adjustment, no mpl action because system is
in a storage shortage

3590 PA_SWAP_FOR_MPL Policy adjustment, mpl assess picked this address
space to swap out

3600 TDH_DEC_MPL Time driven housekeeping, decrease mpl

608 z/OS V1R4.0 MVS Workload Management Services

Table 71. SMF Type 99 Action Codes (continued)

Trace
Code

Trace Code Name Description

3601 TDH_DEC_MPL_FOR_GR Time driven housekeeping, decrease mpl for goal
receiver

3602 TDH_DEC_MPL_FOR_RR Time driven housekeeping, decrease mpl for
resource receiver

3603 TDH_DEC_QMPL_GR Time driven housekeeping, decrease QMPL for goal
receiver

3604 TDH_DEC_QMPL_RR Time driven housekeeping, decrease QMPL for
resource receiver

3610 RV_HSK_INC_MPL Reverse housekeeping, increment mpl

4010 ESPOL_NSW_LRU Change non-swap expanded access policy to lru

4020 ESPOL_NSW_SP_AVAIL Change non-swap expanded access policy to space
available

4050 ESPOL_SWP_LRU Change swap expanded access policy to lru

4060 ESPOL_SWP_SP_AVAIL Change swap expanded access policy to space
available

4090 HSK_ROLL_EXP_SPA Housekeep address space to space available
because it is rolling expanded storage

4510 ALL_OK_REM_ISI_TAR All points ok, remove individual protective processor
storage target for this address space

4511 ALL_OK_REM_ISI_GP All points ok, remove individual protective processor
storage target from an address space in a resource
period associated with this goal period. The goal
period is different than the resource period.

4520 HSK_SL_DEC_ISI_TAR Slow mode housekeeping, decrement individual
protective processor storage target for this address
space

4521 HSK_SL_DEC_ISI_GP Slow mode housekeeping, decrement individual
protective processor storage target space for an
address space in a resource period associated with
this goal period. The goal period is different than
the resource period.

4530 HSK_SL_REM_ISI_TAR Slow mode housekeeping, remove individual
protective processor storage target for this address
space

4531 HSK_SL_REM_ISI_GP Slow mode housekeeping, remove individual
protective processor storage target for an address
space in a resource period associated with this goal
period. The goal period is different than the
resource period.

4540 OK1_INC_ISI_TAR Ok1 increment individual protective processor
storage target for this address space

4541 OK1_INC_ISI_TAR_GR Ok1 increment individual protective processor
storage target for an address space in a resource
receiver associated with this goal receiver. The goal
period is different than the resource period.

4550 PA_DEC_ISI_TAR Policy adjustment, decrease individual protective
processor storage target for this address space

Appendix A. SMF Type 99 Action Codes 609

Table 71. SMF Type 99 Action Codes (continued)

Trace
Code

Trace Code Name Description

4551 PA_DEC_ISI_TAR_GP Policy adjustment, decrease individual proetctive
processor storage target for an address space in a
resource period associated with this goal period.
The goal period is different than the resource
period.

4560 PA_INC_ISI_TAR Policy adjustment, increase individual protective
processor storage target for this address space

4561 PA_INC_ISI_TAR_GR Policy adjustment, increase individual protective
processor storage target for an address space in a
resource receiver associated with this goal receiver.
The goal receiver is different than the resource
receiver.

4570 PA_ISI_NA_NET_VAL Policy adjustment, no individual protective
processor storage action because insufficient net
value. Resource receiver trace.

4571 PA_ISI_GREC_NETVAL Policy adjustment, no individual protective
processor storage action because insufficient net
value. Goal receiver trace.

4580 PA_ISI_NA_REC_VAL Policy adjustment, no individual protective
processor storage action because insufficient
receiver value for the goal receiver. Resource
receiver trace.

4581 PA_ISI_GREC_RECVAL Policy adjustment, no individual protective
processor storage action because insufficient
receiver value for the goal receiver. Goal receiver
trace.

4590 PA_REM_ISI_TAR Policy adjustment, remove individual protective
processor storage target for this address space

4591 PA_REM_ISI_TAR_GP Policy adjustment, remove individual protective
processor storage target from an address space in
a resource period associated with this goal period.
The goal period is different than the resource
period.

4592 PA_DEC_ISI_GDON Goal donor trace when ISI target is reduced

4600 PLOT_X_REM_ISI_TAR Plot expansion, remove individual protective
processor storage target for this address space

4601 PLOT_X_REM_ISI_GP Plot expansion, remove individual protective
processor storage target from an address space in
a resource period associated with this goal period.
The goal period is different than the resource
period.

4610 ROLL_EXP_REM_ISI Remove individual protective processor storage
target because address space target is rolling
expanded for this address space

4611 ROLL_EXP_REM_ISIGP Remove individual protective processor storage
target because address space target is rolling
expanded for this address space, which is in a
resource period associated with this goal period.
The goal period is defferent than the resource
period.

610 z/OS V1R4.0 MVS Workload Management Services

Table 71. SMF Type 99 Action Codes (continued)

Trace
Code

Trace Code Name Description

4620 RV_HSK_INC_ISI_TAR Reverse housekeeping, increment individual
protective processor storage target for this address
space

4621 RV_HSK_INC_ISI_GR Reverse housekeeping, increment individual
protective processor storage target for an address
space in a resource receiver associated with this
goal receiver. The goal receiver is different than the
resource receiver.

4630 SH_DEC_ISI_TAR Storage shortage, decrease individual protective
processor storage target for this address space

4631 SH_DEC_ISI_TAR_GP Storage shortage, decrease individual protective
processor storage target for an address space in a
resource period associated with this goal period.
The goal period is different than the resource
period.

4640 SH_REM_ISI_TAR Storage shortage, remove individual protective
processor storage target for this address space

4641 SH_REM_ISI_TAR_GP Storage shortage, remove individual protective
processor storage target from an address space in
a resource period associated with this goal period.
The goal period is different than the resource
period.

4650 TDH_ME_DEC_ISI_TAR Time driven minimal effect housekeeping, decrease
individual protective processor storage target for
this address space

4653 TDH_ME_DEC_ISI_GP Time driven housekeeping, minimal effect on goal
period when housekeeping down the individual
protective processor storage target for a transaction
server period address space

4660 TDH_ME_REM_ISI_TAR Time driven minimal effect housekeeping, remove
individual protective processor storage target for
this address space

4661 TDH_ME_REM_ISI_GP Time driven minimal effect housekeeping, remove
individual protective processor storage target from
an address space in a resource period associated
with this goal period. The goal period is different
than the resource period.

4670 TDH_UA_DEC_ISI_TAR Time driven unassessable housekeeping, decrease
individual protective processor storage target for
this address space

4671 TDH_UA_DEC_ISI_GP Time driven unassessable housekeeping, decrease
individual protective processor storage target for an
address space in a resource period associated with
this goal period. The goal period is different than
the resource period.

4680 TDH_UA_REM_ISI_TAR Time driven unassessable housekeeping, remove
individual protective processor storage target for
this address space

Appendix A. SMF Type 99 Action Codes 611

Table 71. SMF Type 99 Action Codes (continued)

Trace
Code

Trace Code Name Description

4681 TDH_UA_REM_ISI_GP Time driven unassessable housekeeping, remove
individual protective processor storage target from
an address space in a resource period associated
with this goal period. The goal period is different
than the resource period.

4690 WSM_DEC_ISI_TAR Working set management, decrease individual
protective processor storage target for this address
space

4691 WSM_DEC_ISI_TAR_GP Working set management, decrease individual
protective processor storage target for an address
space in a resource period associated with this goal
period. The goal period is different than the
resource period.

4700 WSM_INC_ISI_TAR Working set management, increase individual
protective processor storage target for this address
space

4701 WSM_INC_ISI_TAR_GR Working set management, increase individual
protective processor storage target for an address
space in a resource receiver associated with this
goal receiver. The goal receiver is different than the
resource receiver.

4710 WSM_REM_ISI_TAR Working set management, remove individual
protective processor storage target for this address
space

4711 WSM_REM_ISI_TAR_GP Working set management, remove individual
protective processor storage target from an address
space in a resource period associated with this goal
period. The goal period is different than the
resource period.

5010 RUN_OK_REM_RPS_TAR Remove restrictive processor storage target
because address space running ok

5020 PA_DEC_RPS_TAR Policy adjustment, decrease the restrictive
processor storage target

5030 PA_INC_RPS_TAR Increase restrictive processor storage target

5040 PA_REM_RPS_TAR Policy adjustment, remove the restrictive processor
storage target

5050 PA_SET_RPS_TAR Policy adjustment, set the restrictive processor
storage target

5060 PC_REM_RPS_TAR Remove restrictive processor target for phase
change

5070 SH_DEC_RPS_TAR Storage shortage, decrease the restrictive
processor storage target

5080 SH_REM_RPS_TAR Storage shortage, remove the restrictive processor
storage target

5090 SH_SET_RPS_TAR Storage shortage, set the restrictive processor
storage target

5100 WSM_DEC_RPS_TAR Working set management, decrease restrictive
processor storage target

612 z/OS V1R4.0 MVS Workload Management Services

Table 71. SMF Type 99 Action Codes (continued)

Trace
Code

Trace Code Name Description

5110 WSM_INC_RPS_TAR Working set management, increase restrictive
processor storage target

5120 WSM_REM_RPS_TAR Working set management, remove restrictive
processor storage target

5130 WSM_SET_RPS_TAR Working set management, set restrictive processor
storage target

6510 HSK_SL_DEC_ICI_TAR Slow mode housekeeping, decrement protective
central storage target

6520 HSK_SL_REM_ICI_TAR Slow mode housekeeping, remove protective
central storage target

6530 OK1_INC_ICI_TAR Ok1 increment individual protective central storage
target

6540 PA_DEC_ICI_TAR Policy adjustment, decrease the protective central
storage target

6550 PA_INC_ICI_TAR Increase protective central storage target

6560 PA_REM_ICI_TAR Policy adjustment, remove the protective central
storage target

6570 PLOT_X_REM_ICI_TAR Remove restrictive processor target for phase
change

6580 SH_DEC_ICI_TAR Shortage, decrease protective central storage target

6590 SH_REM_ICI_TAR Shortage, remove protective central storage target

6600 SWAPIN_DEC_ICI_TAR Decrease protective central storage target at swap
in because we cannot get enough frames to run
address space at target

6610 SWAPIN_REM_ICI_TER Remove protective central storage target at swap in
because we cannot get enough frames to run
address space at target

6620 WSM_DEC_ICI_TAR Working set management, decrease protective
central storage target

6630 WSM_INC_ICI_TAR Working set management, increase protective
central storage target

6640 WSM_REM_ICI_TAR Working set management, remove protective
central storage target

7010 PA_DEC_RCS_TAR Policy adjustment, decrease the restrictive central
storage target

7020 PA_INC_RCS_TAR Increase restrictive central storage target

7030 PA_REM_RCS_TAR Policy adjustment, remove the restrictive central
storage target

7040 PA_SET_RCS_TAR Policy adjustment, set the restrictive central storage
target

7050 PC_REM_RCS_TAR Remove restrictive central target for phase change

7060 RA_UP_SQUEEZE Resource adjustment, squeeze and swap, squeeze

7070 RUN_OK_REM_RCS_TAR Remove restrictive central storage target because
address space running ok

7080 SH_DEC_RCS_TAR Storage shortage, decrease restrictive central
storage target

Appendix A. SMF Type 99 Action Codes 613

Table 71. SMF Type 99 Action Codes (continued)

Trace
Code

Trace Code Name Description

7090 SH_REM_RCS_TAR Storage shortage, remove the restrictive central
storage target

7100 SH_SET_RCS_TAR Storage shortage, set the restrictive central storage
target

7110 SWAPIN_REM_RCS_TAR Remove restrictive central target because we can
swap address space in at ok1 point

7120 SWAPIN_SET_RCS_TAR Set restrictive central storage target at swap in
because we cannot get enough frames to run
address space at ok1

7130 WSM_DEC_RCS_TAR Working set management, decrease restrictive
central storage target

7140 WSM_INC_RCS_TAR Working set management, increase restrictive
central storage target

7150 WSM_REM_RCS_TAR Working set management, remove restrictive central
storage target

7160 WSM_SET_RCS_TAR Working set management, set restrictive central
storage target

7510 OTL_USE_DISC_CENT Working set management, out too long use
discretionary central

7520 WSM_DEC_MPL Working set management, decrease mpl

7521 WSM_DEC_MPL_GP Working set management, decrease mpl for a
resource period associated with this goal period.
The goal period and the resource period are
different.

7530 WSM_END_A2B_CNT Working set management, end a’s frames to b
central storage interval

7540 WSM_END_A2B_PSTOR Working set management, end a’s frames to b
processor storage interval

7550 WSM_END_OK1 Working set management, end ok1 interval

7560 WSM_END_OK1_BY_STL Working set management, end ok1 interval

7570 WSM_END_OK1_RUN_OK Working set management, end ok1 interval

7580 WSM_END_PHASE_CHG Working set management, end phase change
interval

7590 WSM_END_SWAPIN Working set management, end a’s frames to b
swapping interval

7600 WSM_END_TRYLRU Working set management, end trylru interval

7610 WSM_NA_MP1 Working set management, no action was taken in
MP1

7620 WSM_NA_NET_VAL Working set management, find_storage couldn’t find
enough storage for the action

7630 WSM_NA_NPCR_VAL Working set management, not enough net
productive time gain from this action

7640 WSM_STRT_A2B_CNT Working set management, start a’s frames to b
central storage interval

7650 WSM_STRT_S2B_PSTOR Working set management, start a’s frames to b
prcessor storage interval

614 z/OS V1R4.0 MVS Workload Management Services

Table 71. SMF Type 99 Action Codes (continued)

Trace
Code

Trace Code Name Description

7660 WSM_STRT_OK1 Working set management, start ok1 interval

7670 WSM_START_OTL_IN Working set management, start out too long swap
in interval

7680 WSM_STRT_PHASE_CHG Working set management, start phase change
interval

7690 WSM_STRT_SWAPIN Working set management, start a’s frames to b
swapping interval

7700 WSM_STRT_TRYLRU Working set management, start trylru interval

7710 WSM_USE_DISC_CENT Working set management, use discretionary central

7720 WSM_USE_DISC_EXP Working set management, use discretionary
expanded

8010 PA_CAP_DECS Decrease cap slices

8020 PA_CAP_INCS Increase cap slices

8500 HSK_FROM_SPC_IODP Housekeeping, move from small I/O consumer
priority, period is no longer small consumer

8510 HSK_TO_SPC_IODP Housekeeping, move to small I/O consumer priority

8520 HSK_XFROM_SPC_IODP Housekeeping, exchange from small I/O consumer
priority to make room for another small consumer

8525 HSK_UNBUNCH_IOPRTY Housekeeping, unbunch I/O priorities

8530 PA_IMDO_DON Policy adjustment, assess moving primary I/O donor
down to occupied priority

8540 PA_IMDU_DON Policy adjustment, assess moving primary I/O donor
down to unoccupied priority

8550 PA_IMD_DON_NETVAL Policy adjustment, I/O move down, rejected for no
net value, donor trace

8560 PA_IMD_GDON_NETVAL Policy adjustment, I/O move down, rejected for no
net value, goal donor trace

8565 PA_IMD_GREC_NETVAL Policy adjustment, I/O move down, rejected for no
net value, goal receiver trace

8570 PA_IMD_RDON_NETVAL Policy adjustment, I/O move down, rejected for no
net value, resource donor trace

8573 PA_IMD_REC_NETVAL Policy adjustment, I/O move down, rejected for no
net value, receiver trace

8576 PA_IMD_RREC_NETVAL Policy adjustment, I/O move down, rejected for no
net value, resource receiver trace

8580 PA_IMD_SEC_DON Policy adjustment, assess moving secondary I/O
donor down

8590 PA_IMU_DON_NETVAL Policy adjustment, I/O move up, rejected for no net
value, donor trace

8595 PA_IMU_DON_SEC_REC Policy adjustment, I/O assess moving donor up as
secondary receiver

8600 PA_IMU_GDON_NETVAL Policy adjustment, I/O move up, rejected for no net
value, goal donor trace

8605 PA_IMU_GREC_NETVAL Policy adjustment, I/O move up, rejected for no net
value, goal receiver trace

Appendix A. SMF Type 99 Action Codes 615

Table 71. SMF Type 99 Action Codes (continued)

Trace
Code

Trace Code Name Description

8610 PA_IMU_RDON_NETVAL Policy adjustment, I/O move up, rejected for no net
value, resource donor trace

8613 PA_IMU_REC_NETVAL Policy adjustment, I/O move up, rejected for no net
value, receiver trace

8616 PA_IMU_RREC_NETVAL Policy adjustment, I/O move up, rejected for no net
value, resource donor trace

8620 PA_IMUO_REC Policy adjustment, assess moving primary I/O
receiver up to occupied priority

8630 PA_IMUUA_REC Policy adjustment, assess moving I/O processor
receiver up to unoccupied priority above donor

8635 PA_IMUUB_REC Policy adjustment, assess moving I/O processor
receiver up to unoccupied priority between donor
and receiver’s current priorities

8640 PA_IMU_SEC_REC Policy adjustment, assess moving secondary I/O
donor up

8650 PA_IMU_TO_SPC_DP Policy adjustment, move up to small I/O consumer
priority

8660 PA_IO_DECP_DON Policy adjustment, decrease priority for donor

8670 PA_IO_DECP_SEC Policy adjustment, decrease priority for secondary
donor or receiver

8690 PA_IO_DON_DEPEN Policy adjustment, no further I/O action because of
donor dependency relationship

8720 PA_IO_GREC_NETVAL Policy adjustment, no I/O action because
insufficient net value, goal receiver trace

8730 PA_IO_GREC_RECVAL Policy adjustment, no I/O action because
insufficient receiver value, goal receiver trace

8740 PA_IO_INCP_DON Policy adjustment, increase priority for donor

8750 PA_IO_INCP_REC Policy adjustment, increase priority for receiver

8760 PA_IO_INCP_SEC Policy adjustment, increase priority for secondary
donor or receiver

8850 PA_IO_NA_NO_DONOR Policy adjustment, no processor action because no
donor selected

8870 PA_IO_NA_SPC_DP Policy adjustment, no I/O action because period is
at or just moved from small processor consumer
priority

8880 PA_IO_RDON_CAND Policy adjustment, I/O resource donor candidate
selected

8890 PA_IO_REC_DEPEN Policy adjustment, no further I/O action because of
receiver dependency relationship

8900 PA_IO_REC_NETVAL Policy adjustment, no I/O action because
insufficient net value, receiver trace

8910 PA_IO_REC_RECVAL Policy adjustment, no I/O action because
insufficient receiver value, receiver trace

8920 PA_IO_RREC_NETVAL Policy adjustment, no I/O action because
insufficient net value, resource receiver trace

616 z/OS V1R4.0 MVS Workload Management Services

Table 71. SMF Type 99 Action Codes (continued)

Trace
Code

Trace Code Name Description

8930 PA_IO_RREC_RECVAL Policy adjustment, no I/O action because
insufficient receiver value, resource receiver trace

8933 PA_IO_SERVED_GDON Policy adjustment, served goal donor selected

8936 PA_IO_SERVED_GREC Policy adjustment, served goal receiver selected

8938 PA_IO_TO_SPC_DP Policy moved to small I/O consumer

8940 PA_IO_UNC_DON Policy adjustment, unchanged donor

8950 PA_IO_UNC_REC Policy adjustment, unchanged receiver

8960 PA_IO_UNC_SEC_DON Policy adjustment, unchanged secondary donor

8970 PA_IO_UNC_SEC_REC Policy adjustment, unchanged secondary receiver

8975 PA_IO_NO_TOO_SOON Policy adjustment, no I/O action, too soon since last
change

8980 PA_IO_NA_NO_CLUST Policy adjustment, no I/O action, no clusters have
been built

8985 PA_IO_NA_REC_INEL Policy adjustment, no I/O action, receiver not
eligible

8990 PA_IO_IMPLEMENT Policy adjustment, implement I/O changes. The
changes are only trace on the system that made
the change.

9010 PA_DEC_BP_TAR Policy adjustment, decrease bp

9020 PA_INC_BP_TAR Policy adjustment, increase bp storage target

9030 PA_BP_NA_NET_VAL Policy adjustment, no period bp storage action
because insufficient net value

9040 PA_BP_NA_REC_VAL Policy adjustment, no period bp storage action
because insufficient receiver value

9050 PA_BP_TAR_UNAB Policy adjustment, no bp storage action because
current target not absorbed

9060 PA_BP_NA_EXIT_FAIL Policy adjustment, no bp storage action because
exit called failed

9170 WSM_DEC_BP_TAR Working set management, decrease bp storage
target

9180 PA_QMPL_NA_REC Qmpl recommendations not allowed

9190 PA_QMPL_NA_STOR No qmpl actions taken because a critical shortage
condition exists

9195 PA_QMPL_NA_RUA0 No qmpl actions taken because a ready user
average is zero

9200 PA_QMPL_NA_MPL No qmpl actions taken because a mpl problem
exists for this period

9202 PA_QMPL_NA_MPL No qmpl actions taken because already idle inits
and there is queued work. Let queued work be
picked up by the idle inits before starting more.

9205 PA_QMPL_NA_QUEUE No qmpl actions taken because the resource period
isn’t a queue server

9210 PA_QMPL_NA_PEND No qmpl actions taken because previous qmpl
recommendation(s) exists

Appendix A. SMF Type 99 Action Codes 617

Table 71. SMF Type 99 Action Codes (continued)

Trace
Code

Trace Code Name Description

9220 PA_QMPL_NA_UNMGED No qmpl actions taken because queue is
unmanaged

9230 PA_QMPL_NA_REC_RR No qmpl actions taken because there is no receiver
value

9240 PA_QMPL_NA_REC_GR No qmpl actions taken because there is no receiver
value

9245 PA_QMPL_NA_SYSLOC No qmpl actions taken because there is a better
system to start initiators

9246 PA_QMPL_NA_NOSYS No qmpl actions taken because there is no system
to start initiators

9250 PA_INC_QMPL_GR Policy adjustment, increase qmpl for queue servers,
goal receiver

9260 PA_INC_QMPL_RR Policy adjustment, increase qmpl for queue servers,
resource receiver

9270 PA_QMPL_NA_NETVAL Policy adjustment, no qmpl action because
insufficient net value for queue servers

9280 PA_QMPL_NA_NO_REQ Policy adjustment, no qmpl action because no
requests queued

9295 RA_INC_QMPL_AFF Start an initiator for a batch work queue because of
a specific affinity requirement

9296 PA_QMPL_LIMIT_NUM The number of initiators started was limited to not
more than twice the current number of initiators

9297 PA_QMPL_IMPACT_PER Period most impacted by starting the initiators on
this system

9298 PA_QMPL_CPU_DON Period whose CPU assess will be reduced by
adding initiators on this system

618 z/OS V1R4.0 MVS Workload Management Services

Appendix B. Application Validation Reason Codes
Table 72. SERVD validation reason codes

Section Reason Offset Description

SERVD 3201 0 Beginning or end of some section as governed by the
offset and length fields lies beyond the end of the
SERVD

3202 0 Beginning of some section as governed by the offset
field lies within the middle of some other section

3203 0 End of some section as governed by the offset and
length fields lies within the middle of some other section

3204 0 Some section, as governed by offset and length fields,
straddles some other section

3303 0 The SERVD has either an SVDEF, SVNPA, SVDCR,
SVAEA, or an SVSEA offset as zeros.

SERVDHDR 3301 0 Eyecatcher (SERVD_EYECATCHER) is not ’SERVD ’

3302 0 Version (SERVD_VERSION) is 0

SVAEA 3701 SVAEA Beginning or end of some section as governed by the
offset and length fields lies beyond the end of the
SVAEA.

3702 SVAEA Beginning of some section as governed by the offset
field lies within the middle of some other section.

3703 SVAEA End of some section as governed by the offset and
length fields lies within the middle of some other
section.

3704 SVAEA Some section, as governed by offset and length fields,
straddles some other section.

SVAEAHDR 3801 SVAEA Eyecatcher (SVAEA_EYECATCHER) is not ’SVAE’.

3802 SVAEA Functionality level (SVAEA_FUNCTIONALITY_LEVEL)
is zeros.

3803 SVAEA Header length (SVAEA_SIZE_OF_HEADER) is
incorrect. Does not match the compiled size.

3804 SVAEA Application environment entry size (SVAEA_SIZE_AE) is
incorrect. Does not match the compiled size.

3805 SVAEA Application environment offset
(SVAEA_EXT_DATA_OFF) is incorrect. The offset is
zero when SVAEA_EXT_DATA_LEN is non-zero.

3806 SVAEA The functionality level is less than SVAEA_LEVEL003
and the application environment entry offset or number
are non-zero.

SVAEAAE B901 entry Duplicate application environment entry.

3902 entry Application environment
(SVAEA_APPLICATION_ENVIRONMENT_NAME) is not
specified.

3903 entry Application environment
(SVAEA_APPLICATION_ENVIRONMENT_NAME) name
is incorrect.

3904 entry Sybsystem type (SVAEA_SUBSYSTEM_TYPE) is not
specified or is incorrect.

© Copyright IBM Corp. 1988, 2002 619

Table 72. SERVD validation reason codes (continued)

Section Reason Offset Description

3905 entry Procedure name (SVAEA_PROCEDURE_TYPE) is not
specified or is incorrect.

3906 entry WLM options (SVAEA_WLM_OPTIONS) has some
reserved flags on.

3907 entry WLM options (SVAEA_WLM_OPTIONS) has the single
server flag (SVAEA_SINGLE_SERVER) on for a
subsystem type that does not support the option.

3908 entry WLM options (SVAEA_WLM_OPTIONS) has the single
sysplex flag (SVAEA_SINGLE_SYSPLEX) on for a
subsystem type that does not support the option.

SVAEAEXT 3A01 entry Extension entry refers to an object (SVAEAROB) that
does not exist.

3A02 entry End of data (SVAEAEDO + SVAEAEDL) extends
beyond the size of the extended data setcion.

3A03 entry Use extension information found and the functionality
level is less than LEVEL003. For user extensions, you
must be at least at functionality LEVEL003 (LEVEL003
in SVAEA_FUNCTIONALITY_LEVEL).

SVDEF 0001 SVDEF Beginning or end of some section as governed by the
offset and length fields lies beyond the end of the
SVDEF

0002 SVDEF Beginning of some section as governed by the offset
field lies within the middle of some other section

0003 SVDEF End of some section as governed by the offset and
length fields lies within the middle of some other section

0004 SVDEF Some section, as governed by offset and length fields,
straddles some other section

SVDEFHDR 0101 SVDEF Eyecatcher (SVDEFNAM) is not ’SVDE’

0102 SVDEF Functionality level is 0 (SVDEFLVL)

0103 SVDEF Only checked if releases match - Policy entry size
(SVDEFPS) does not match compiled size

0104 SVDEF Only checked if releases match - Workload entry size
(SVDEFWS) does not match compiled size

0105 SVDEF Only checked if releases match - Service class entry
size (SVDEFCS) does not match compiled size

0106 SVDEF Only checked if releases match - Resource group entry
size (SVDEFGS) does not match compiled size

0107 SVDEF Only checked if releases match - Report class entry size
(SVDEFRS) does not match compiled size

0108 SVDEF Only checked if releases match - Service class attribute
entry size (SVDEFCAS) does not match compiled size

0109 SVDEF Only checked if releases match - Resource group
attribute section size (SVDEFGAS) does not match
compiled size

010A SVDEF Only checked if releases match - Constant entry size
(SVDEFCNS) does not match compiled size

010B SVDEF Only checked if releases match - Period entry size
(SVDEFCPS) does not match compiled size

620 z/OS V1R4.0 MVS Workload Management Services

Table 72. SERVD validation reason codes (continued)

Section Reason Offset Description

010C SVDEF Size of the extended data (SVDEF_EXT_DATA_LEN) is
nonzero, but the offset to the extended data
(SVDEF_EXT_DATA_OFF) is zero

SVDEFPOL 8201 section Number of policies (SVDEFPN) is 0

8202 section Number of policies (SVDEFPN) exceeds 99

8203 offset Duplicate policy names were found

0201 entry Name field (SVDEFPNM) has leading or imbedded
blanks or contains a reserved character: * ? / , . ' () & +
- = ; -, =, ;)

0202 entry Name field (SVDEFPNM) starts with the letters SYS

SVDEFWKL 8301 offset Duplicate workload names were found

8302 section Number of workloads (SVDEFWN) exceeds 999

0301 entry Name field (SVDEFWNM) has leading or imbedded
blanks or contains a reserved character: * ? / , . ' () & +
- = ; -, =, ;)

0302 entry Name field (SVDEFWNM) starts with the letters SYS

SVDEFSCL 8401 offset Duplicate service class names were found

8402 section Number of service classes (SVDEFCN) exceeds 100

0401 entry Name field (SVDEFCNM) has leading or imbedded
blanks or contains a reserved character: * ? / , . ' () & +
- = ; -, =, ;)

0402 entry Workload name (SVDEFCWN) not found in the SVDEF

0403 entry Name field (SVDEFCNM) starts with the letters SYS

0404 entry Base attribute for this service class not found in the
SVDEF

SVDEFGRP 8601 offset Duplicate resource group names were found

8602 section Number of resource groups (SVDEFGN) exceeds 32

0601 entry Name field (SVDEFGNM) has leading or imbedded
blanks or contains a reserved character: * ? / , . ' () & +
- = ; -, =, ;)

0602 entry Base attribute for this service class not found in the
SVDEF

SVDEFRCL 8701 offset Duplicate report class names were found

8702 section Number of report classes (SVDEFRN) exceeds 100

0701 entry Name field (SVDEFRNM) has leading or imbedded
blanks or contains a reserved character: * ? / , . ' () & +
- = ; -, =, ;)

SVDEFCLA 0801 entry Named service class (SVDEFSCN) not found in service
class list

0802 entry Named policy (SVDEFSPN) not found in policy list

0803 entry Named resource group (SVDEFCGN) not found in
resource group list

0804 entry Number of periods (SVDEFCPN) out of bounds (must
be from 1 to 8)

Appendix B. Application Validation Reason Codes 621

Table 72. SERVD validation reason codes (continued)

Section Reason Offset Description

0805 entry CPU critical option is used (YES) and the service class
contains more than 1 period.

0806 entry CPU critical option is used (YES) and the current
functionality level in svdef is less than LEVEL011.

0807 entry Service class is used in CICS or IMS and other
subsystem type in a service definition that is LEVEL011
or above.

SVDEFRGA 0901 entry Named resource group (SVDEFRGN) not found in
resource group list

0902 entry Named policy (SDVEFRPN) not found in policy list

0903 entry Specified minimum value (SVDEFGMN) exceeds
999,999

0904 entry Specified maximum value (SVDEFGMX) exceeds
999,999

0905 entry Specified minimum value (SVDEFGMN) exceeds
maximum value (SVDEFGMX)

SVDEFPDA 8501 entry A period other than the last period has a duration
(SVDEFDUR) of 0

8502 entry A period other than the last period has a discretionary
goal (SVDEFDSC)

8503 entry Last period has a nonzero duration (SVDEFDUR)

0501 0502 0503
0504

entry More than one goal type specified (SVDEFTYP)

0505 entry Only checked if releases match - no known goal type
(SVDEFTYP) specified

0506 entry Percentile or average response time goal specified
(SVDEFPRC, SVDEFAVG), but response time units
(SVDEFRTU) not between 1 and 4.

0507 entry Percentile, average response time, or velocity goal
specified (SVDEFPRC, SVDEFAVG, SVDEFVEL), but
importance (SVDEFIMP) is not between 1 and 5.

0508 entry Percentile or average response time goal (SVDEFPRC,
SVDEFAVG) but response time value (SVDEFVAL) is
less than 15 milliseconds.

0509 entry Percentile or average response time goal (SVDEFPRC,
SVDEFAVG) and response time is greater than 24
hours

050A entry Percentile goal (SVDEFPRC) and percentile value
(SVDEFPER) exceeds 99

050B entry Velocity goal (SVDEFVEL), and value (SVDEFVAL)
exceeds maximum of 99

050C entry Duration (SVDEFDUR) exceeds limit of 999,999,999

050D entry For service definition with functionality LEVEL011 or
above, a service class cannot contain any periods that
have higher importance levels than previous periods

SVDEFCNS 0A01 section CPU coefficient (SDVEFCPU) exceeds maximum of
999,000

622 z/OS V1R4.0 MVS Workload Management Services

Table 72. SERVD validation reason codes (continued)

Section Reason Offset Description

0A02 section I/O coefficient (SVDEFIOC) exceeds maximum of
999,000

0A03 section MSO coefficient (SVDEFMSO) exceeds maximum of
999,999

0A04 section SRB coefficient (SVDEFSRB) exceeds maximum of
999,000

0A05 section The dynamic alias management option is set to YES
and the functionality level in the SVDEFLVL is not set to
LEVEL008 or higher

0A06 entry The I/O priority management option is set to ’YES’ and
the functionality level in the SVDEFLVL is not set to
LEVEL003 or higher.

SVDEFEXT 0B01 entry Extension entry refers to an object (SVDEFROB) that
does not exist

0B02 entry End of data (SVDEFEDO + SVDEFEDL) extends
beyond the size of the extended data section

0B03 entry User extension information found and the functionality
level is less than LEVEL002. For user extensions, you
must be at least at functionality LEVEL002 (LEVEL002
in SVDEFLVL).

SVDCR 1901 SVDCR Beginning or end of some section as governed by the
offset and length fields lies beyond the end of the
SVDCR

1902 SVDCR Beginning of some section as governed by the offset
field lies within the middle of some other section

1903 SVDCR End of some section as governed by the offset and
length fields lies within the middle of some other section

1904 SVDCR Some section, as governed by offset and length fields,
straddles some other section

SVDCRHDR 1A01 SVDCR Eyecatcher (SVDCRNAM) is not ’SVDC’

1A02 SVDCR Functionality level is 0 (SVDCRLVL)

1A03 SVDCR Only checked if releases match - Nesting level
(SVDCRLN) does not match compiled nesting level limit
(must be <= 4)

1A04 SVDCR Only checked if releases match - Subsystem entry size
(SVDCRSS) does not match compiled size

1A05 SVDCR Only checked if releases match - Rule entry size
(SVDCRRS) does not match compiled size

1A06 SVDCR Only checked if releases match - Group entry size
(SVDCRGS) does not match compiled size

1A07 SVDCR Only checked if releases match - Group value entry size
(SVDCRVS) does not match compiled size

1A08 SVDCR Size of the extended data (SVDCR_EXT_DATA_LEN) is
nonzero, but the offset to the extended data
(SVDCR_EXT_DATA_OFF) is zero

1A09 SVDCR WLM version number (SVDCRWVN) is wrong. The
functionality level is LEVEL002 or greater, and the WLM
version number is 0.

Appendix B. Application Validation Reason Codes 623

Table 72. SERVD validation reason codes (continued)

Section Reason Offset Description

SVDCRSST 9B01 offset Duplicate subsystem type names were found

1B01 entry Service class for the subsystem type (SVDCRSCN) not
found in the SVDEF

1B02 entry Report class for the subsystem type (SVDCRSPN) not
found in the SVDEF

1B03 entry Number of classification rules (SVDCRSRN) is nonzero,
but the offset (SVDCRSRO) is 0

SVDCRRUL 1C01 entry More than one qualifier type (SVDCRRQT) bit is on

1C02 entry Group value specified (SVDCRRGI = ’1’B) for an
accounting information (SVDCRRAC) or subsystem
parameter (SVDCRRSP) type rule - this is unsupported.

1C03 entry Qualifier value (SVDCRRQV) has leading or imbedded
blanks

1C04 entry Substring (SVDCRRSU) wildcard (SVDCRRWI) or mask
characters (SVDCRRSU) used on a rule that refers to a
group (SVDCRRGI).

1C05 entry Nesting level of rule (SVDCRRLV) exceeds maximum
nesting level indicated in the header (SVDCRLN)

1C06 entry Substring (SVDCRRSU) specified for a qualifier type
that does not support substringing (hint: only
acccounting information (SVDCRRAC), subsystem
parameter (SVDCRRSP), collection name
(SVDCRRQT_COLL_NAME), correllation information
(SVDCRRQT_CORR_INFO), procedure name
(SVDCRRQT_PROC_NAME), or process name
(SVDCRRQT_PROCESS_NAME) support substringing
for this WLM MVS version).

1C07 entry Substring specified for accounting information extends
beyond the end of the maximum size accounting
information (143 characters)

1C08 entry Substring specified for subsystem parameter extends
beyond the end of the maximum size subsystem
parameter (255 characters) list

1C09 entry Substring specified for collection name extends beyond
the end of the maximum size collection name (18
characters) list

1C0A entry Substring specified for correlation information extends
beyond the end of the maximum size correlation
information (12 characters) list

1C0B entry Service class (SVDCRRCN) was not found in the
SVDEF service class list

1C0C entry Service class (SVDCRRPN) was not found in the
SVDEF report class list

1C0D entry Substring specified (SVDCRRSU) but value
(SVDCRRSV) is 0

1C0E entry Group specified (SVDCRRGI) but named group
(SVDCRRQV) not found in group list

624 z/OS V1R4.0 MVS Workload Management Services

Table 72. SERVD validation reason codes (continued)

Section Reason Offset Description

1C0F entry Classification rule was found that has indicators on in
the SVDCR reserved for future qualifier bytes. The
reserved for future qualifier types are in
SVDCRRQT_BYTE3 and SVDCRRQT_BYTE4.

1C10 entry No classification rule found. SVDCRRQT is zeros.

1C11 entry LEVEL002 classification rules found and the
functionality level in the SVDCRLVL is not LEVEL002.

1C12 entry LEVEL003 classification rules found and the
functionality level in the SVDCRLVL is not LEVEL003.

1C13 entry For the procedure name the substring value is greater
than 18 or the substring value plus the number of
characters is greater than 18.

1C14 entry LEVEL004 classification rules found and the
functionality level in the SVDCRLVL is not LEVEL004.

1C15 entry SVDCRRQV contains characters that are not allowed
for a qualifier that takes numeric data. SVDCRRQV
must contain a number (in EBCDIC) optionally preceded
by one of the supported relational operators.

1C16 entry Classification rule comment is found that has description
information in the SVDCR, but SVDCR is not at
LEVEL006.

1C17 entry The PC (process name) classification type was found
and the functionality level in the SVDCRLVL is not set to
LEVEL007.

1C18 entry For the process name the substring value is greater
than 32 or the substring value plus the number of
characters is greater than 32.

1C19 entry Classification rules that uses LEVEL011 qualifier types
were found and the functionality level in SVDCRLVL is
set to less than LEVEL011.

1C1A entry The SCHEDULING_ENVIRONMENT (SE) qualifier type
pecified is greater than 16, or the substring value plus
the number of character is greater than 16.

1C1B entry Subsystem type that doesn’t support storage protection
has a classification rule whose storage protection option
is set to YES.

1C1C entry The storage protection option is chosen within a
classification rule, and the rule is using a service class
with a short response time goal.

1C1D entry The storage protection option is chosen within a
classification rule, and the rule is using a service class
with more than one period.

1C1E entry The storage protection option is chosen within a
classification rule, and the rule is using a service class
with a discretionary goal.

1C1F entry LEVEL011 classification rule that uses storage critical
option was found, and the functionality level in the
SVDCRLVL is set to less than LEVEL011.

Appendix B. Application Validation Reason Codes 625

Table 72. SERVD validation reason codes (continued)

Section Reason Offset Description

1C20 entry LEVEL011 classification rule that uses transaction and
region management options were found, and the
functionality level in the SVDCRLVL is set to less than
LEVEL011.

1C21 entry Subsystem type that doesn’t support transaction region
option has a classification rule set to region
management.

SVDCRGRP 9D01 entry Duplicates exist in the list of groups

1D01 entry Name field (SVDCRGNM) has leading or imbedded
blanks or contains a reserved character: * ? / , . ' () & +
- = ; -, =, ;)

1D02 entry More than one qualifier type (SVDCRGTY) bit is on

1D03 entry Number of group values (SVDCRGVN) is 0

1D04 entry Offset to group values (SVDCRGVO) is 0

1D05 entry Group exists that has indicators on in the SVDCR that
are reserved for future qualifier bytes
(SVDCRGTY_BYTE3 and SVDCRGTY_BYTE4).

1D06 entry No groups found. SVDCRGTY is zeroes.

1D07 entry LEVEL002 classification groups found and the service
definition functionality level (SVDCRLVL) is not
LEVEL002.

ID08 entry LEVEL003 classification rules (SVDCRGTY_PERFORM)
found and the functionality level in the SVDCRLVL is not
LEVEL003.

1D09 entry LEVEL011 classification rules found and the functionality
level in the SVDCRLVL is less than LEVEL011.

SVDCRGVS 9E01 entry Duplicates exist in the list of group values for a given
group

1E01 entry Group value (SVDCRGVV) has leading or imbedded
blanks

1E02 entry LEVEL006 classification group comment found, but the
functionality level in the SVDCRLVL is not set to
LEVEL006.

SVDCREXT 1F01 entry Extension entry refers to an object (SVDCRROB) that
does not exist

SVDCREXT 1F02 entry End of data (SVDCREDO + SVDCREDL) extends
beyond the size of the extended data section

SVDCREXT 1F03 entry User extension information found and the functionality
level is less than LEVEL002. To use user extensions,
you must be at least at LEVEL002 (LEVEL002 in
SVDCRLVL).

SVNPA 2801 SVNPA Beginning or end of some section as governed by the
offset and length fields lies beyond the end of the
SVDCR

2802 SVNPA Beginning of some section as governed by the offset
field lies within the middle of some other section

2803 SVNPA End of some section as governed by the offset and
length fields lies within the middle of some other section

626 z/OS V1R4.0 MVS Workload Management Services

Table 72. SERVD validation reason codes (continued)

Section Reason Offset Description

2804 SVNPA Some section, as governed by offset and length fields,
straddles some other section

SVNPAHDR 2901 SVNPA Eyecatcher (SVNPANAM) is not ’SVNP’

2902 SVNPA Functionality level is 0 (SVNPALVL)

2903 SVNPA Only checked if releases match - Number of notepad
entries (SVNPANPN) exceeds maximum allowed (500)

2904 SVNPA Only checked if releases match - Notepad data entry
size (SVDEFNDS) does not match compiled size

SVSEA 3B01 SVSEA Beginning or end of some section as governed by the
offset and length fields lies beyond the end of the
SVSEA.

3B02 SVSEA Beginning of some section as governed by the offset
field lies within the middle of some other section.

3B03 SVSEA End of some section as governed by the offset and
length fields lies within the middle of some other
section.

3B04 SVSEA Some section, as governed by offset and length fields,
straddles some other section.

SVSEAHDR 3C01 SVSEA Eyecatcher (SVSEA_EYECATCHER) is not ’SVSE’.

3C02 SVSEA Functionality level (SVSEA_FUNCTIONALITY_LEVEL)
is zeros.

3C03 SVSEA Header length (SVSEA_SIZE_OF_HEADER) is
incorrect. Does not match the compiled size.

3C04 SVSEA Scheduling environment entry size (SVSEA_SIZE_SE)
is incorrect. Does not match the compiled size.

3C05 SVSEA Scheduling environment to resource connection size
(SVSEA_SIZE_SR) is incorrect. Does not match the
compiled size.

3C06 SVSEA Resource size (SVSEA_SIZE_RE) is incorrect. Does not
match the compiled size.

3C05 SVSEA Scheduling environment extension size
(SVSEA_SIZE_EXT) is incorrect. Does not match the
compiled size.

3C08 SVSEA The functionality level is less than SVSEA_LEVEL004
and the scheduling environment entry offset or number
are non-zero.

SVSEASE BD10 entry Too many scheduling environment entries.

BD11 entry Duplicate scheduling environment entry.

3D12 entry Scheduling environment name
(SVSEA_SE_SCHENV_NAME) is not specified.

3D13 entry Scheduling environment name
(SVSEA_SE_SCHENV_NAME) is incorrect.

3D14 entry Scheduling environment name
(SVSEA_SE_SCHENV_NAME) is reserved (cannot start
with SYS).

SVSEASR 3D20 entry In the scheduling environment to resource connection,
the scheduling environment name
(SVSEA_SR_SCHENV_NAME) is not specified.

Appendix B. Application Validation Reason Codes 627

Table 72. SERVD validation reason codes (continued)

Section Reason Offset Description

3D21 entry In the scheduling environment to resource connection,
the scheduling environment name
(SVSEA_SR_SCHENV_NAME) is incorrect.

3D22 entry In the scheduling environment to resource connection,
the resource name (SVSEA_SR_RESOURCE_NAME)
is not specified.

3D23 entry In the scheduling environment to resource connection,
the resource state (SVSEA_SR_RESOURCE_STATE) is
not specified.

3D24 entry In the scheduling environment to resource connection,
the resource state (SVSEA_SR_RESOURCE_STATE) is
not valid.

3D25 entry In the scheduling environment to resource connection,
the scheduling environment name
(SVSEA_SR_SCHENV_NAME) is not in the list of
defined scheduling environments.

3D26 entry In the scheduling environment to resource connection,
the the resource name
(SVSEA_SR_RESOURCE_NAME) is not in the list of
defined resources.

SVSEARE BD30 entry Too many resource entries.

BD31 entry Duplicate resource entry.

3D32 entry Resource name (SVSEA_RE_RESOURCE_NAME) is
not specified.

3D33 entry Resource name (SVSEA_RE_RESOURCE_NAME) is
incorrect.

3D34 entry Resource name (SVSEA_RE_RESOURCE_NAME) is
reserved (cannot start with SYS).

SVSEAEXT 3E01 entry Extension entry refers to an object (SVSEAROB) that
does not exist is not found.

3E02 entry End of data (SVSEAEDO + SVSEAEDL) extends
beyond the size of the extended data section

3E03 entry User extension information found and the functionality
level is less than LEVEL004. For user extensions, you
must be at least at functionality LEVEL004 (LEVEL004
in SVDEFLVL).

628 z/OS V1R4.0 MVS Workload Management Services

Appendix C. C Language Interfaces for Workload Management
Services

The following Table 73 shows C language interfaces with their associated Workload
Management service. See the OS/390 C/C++ Run-Time Library Reference for more
information on these and other C language interfaces.

See also “Interfaces for Sysplex Routing Services” on page 631 for the four C
interfaces for accessing the WLM sysplex routing services, and “Interface for
Querying a Virtual Server” on page 631 for the C interface to querying a virtual
server.

Table 73. C Language Interfaces

C Language Interface Associated WLM Service Reference Chapter

CheckSchEnv IWMSEDES Chapter 49, “IWMSEDES
– Scheduling
Environments Determine
Execution Service” on
page 433

ConnectExportImport IWMCONN WORK_MANAGER=NO
ROUTER=NO
QUEUE_MANAGER=NO
SERVER_MANAGER=NO
EXPTIMPT=YES

Chapter 13, “IWMCONN
– Connecting to
Workload Management”
on page 147

ConnectServer IWMCONN WORK_MANAGER=NO
ROUTER=NO
QUEUE_MANAGER=YES
SERVER_MANAGER=YES

Chapter 13, “IWMCONN
– Connecting to
Workload Management”
on page 147

ConnectWorkMgr IWMCONN WORK_MANAGER=YES
ROUTER=NO
QUEUE_MANAGER=YES
SERVER_MANAGER=NO
EXPTIMPT=YES

Chapter 13, “IWMCONN
– Connecting to
Workload Management”
on page 147

ContinueWorkUnit IWMCREA TYPE=DEPENDENT Chapter 20, “IWMECREA
– Create an Enclave” on
page 213

CreateWorkUnit IWMCREA TYPE=INDEPENDENT Chapter 20, “IWMECREA
– Create an Enclave” on
page 213

DeleteWorkUnit IWMEDELE Chapter 21, “IWMEDELE
– Delete an Enclave” on
page 223

DisconnectServer IWMDISC Chapter 18, “IWMDISC –
Disconnecting from
Workload Management”
on page 199

ExportWorkUnit IWMEXPT Chapter 29, “IWMEXPT –
WLM Export Service” on
page 275

ExtractWorkUnit IWMESQRY Chapter 28, “IWMESQRY
– Query Enclave State”
on page 269

© Copyright IBM Corp. 1988, 2002 629

Table 73. C Language Interfaces (continued)

C Language Interface Associated WLM Service Reference Chapter

ImportWorkUnit IWMIMPT Chapter 30, “IWMIMPT –
WLM Import Service” on
page 283

JoinWorkUnit IWMJOIN Chapter 23, “IWMEJOIN
– Join an Enclave” on
page 235

LeaveWorkUnit IWMELEAV Chapter 24, “IWMELEAV
– Leave an Enclave” on
page 243

QueryMetrics IWMWSYSQ Chapter 71,
“IWMWSYSQ – Querying
System Information” on
page 589

QuerySchEnv IWMSEQRY Chapter 50, “IWMSEQRY
– Scheduling
Environments Query
Service” on page 439

QueryWorkUnitClassification IWMECQRY Chapter 19, “IWMECQRY
– Query Enclave
Classification Attributes”
on page 207

UnDoExportWorkUnit IWMUEXPT Chapter 65, “IWMUEXPT
– WLM Undo Export
Service” on page 549

UnDoImportWorkUnit IWMUIMPT Chapter 66, “IWMUIMPT
– WLM Undo Import
Service” on page 555

_server_classify IWMCLSFY

_server_classify_create IWMCLSFY

_server_classify_init IWMCONN, IWMDISC

_server_classify_pwu IWMQINS, IWMSSEL, IWMSTEND,
IWMESQRY,IWMSREF,IWMSTBGN,
IWMEDELE, IWMECREA , IWMCLSFY,IWMDISC

_server_thread_query IWMSINF

630 z/OS V1R4.0 MVS Workload Management Services

Interfaces for Sysplex Routing Services
The following table shows the C language interfaces that can be used to access
WLM sysplex routing services.

Note: You need to include the header file IWMWDNSH before invoking these
functions.

Table 74. C Language Interfaces for WLM Sysplex Routing Services

C Language Interface Associated WLM Sysplex
Routing Service

Reference Chapter

IWMDNREG IWMSRSRG Chapter 58, “IWMSRSRG
– Register a Server for
Sysplex Routing” on
page 493

IWMDNDRG IWMSRDRS Chapter 56, “IWMSRDRS
– De-register a Server for
Sysplex Routing” on
page 479

IWMDNGRP IWMSRDNS Chapter 55, “IWMSRDNS
– Get Sysplex Routing
Location List” on
page 473

IWMDNSRV IWMSRSRS Chapter 59, “IWMSRSRS
– Determine Where to
Route Work” on page 501

Interface for Querying a Virtual Server
Products can use the query virtual server interface to obtain a virtual server’s ID
and capacity. The C interface for this query is IWMQVS, and the assembler
interface is SYSEVENT QVS. Both forms of this query return a QVS structure which
maps the returned identification and capacity information. See z/OS MVS
Programming: Authorized Assembler Services Reference SET-WTO for more
information.

Appendix C. C Language Interfaces for Workload Management Services 631

632 z/OS V1R4.0 MVS Workload Management Services

Appendix D. Notices

This information was developed for products and services offered in the USA.

IBM® may not offer the products, services, or features discussed in this document
in other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may be
used instead. However, it is the user’s responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you any
license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
USA

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not apply to
you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements and/or
changes in the product(s) and/or the program(s) described in this publication at any
time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those
Web sites. The materials at those Web sites are not part of the materials for this
IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes
appropriate without incurring any obligation to you.

© Copyright IBM Corp. 1988, 2002 633

Licensees of this program who wish to have information about it for the purpose of
enabling: (i) the exchange of information between independently created programs
and other programs (including this one) and (ii) the mutual use of the information
which has been exchanged, should contact:

IBM Corporation
Mail Station P300
2455 South Road
Poughkeepsie, NY 12601-5400
USA

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement, or any equivalent agreement
between us.

If you are viewing this information softcopy, the photographs and color illustrations
may not appear.

Information concerning non-IBM products was obtained from the suppliers of those
products, their published announcements or other publicly available sources. IBM
has not tested those products and cannot confirm the accuracy of performance,
compatibility or any other claims related to non-IBM products. Questions on the
capabilities of non-IBM products should be addressed to the suppliers of those
products.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrates programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to IBM,
for the purposes of developing, using, marketing or distributing application programs
conforming to the application programming interface for the operating platform for
which the sample programs are written. These examples have not been thoroughly
tested under all conditions. IBM, therefore, cannot guarantee or imply reliability,
serviceability, or function of these programs. You may copy, modify, and distribute
these sample programs in any form without payment to IBM for the purposes of
developing, using, marketing, or distributing application programs conforming to
IBM’s application programming interfaces.

Programming Interface Information
This book documents intended Programming Interfaces that allow the customer to
write programs to obtain the services of z/OS.

634 z/OS V1R4.0 MVS Workload Management Services

Trademarks
The following terms are trademarks for the IBM Corporation in the United States
and/or other countries:
v AD/Cycle
v C/370
v CBIPO
v CICS
v CICS/ESA
v DB2
v DFSMS/MVS
v ESCON
v Extended Services
v Hiperbatch
v Hiperspace
v IBM
v IBMLink
v IMS/ESA
v MVS/ESA
v OpenEdition
v OS/2
v OS/390
v PR/SM
v RACF
v Resource Link
v Resource Measurement Facility
v RETAIN
v RMF
v S/390
v SAA
v Sysplex
v System/390
v VTAM
v z/Architecture
v z/OS
v z/OS.e
v zSeries
v z/VM

LINUX is a registered trademark of Linus Torvalds and others.

Other company, product, and service names may be trademarks or service marks
of others.

Appendix D. Notices 635

636 z/OS V1R4.0 MVS Workload Management Services

Appendix E. Accessibility

Accessibility features help a user who has a physical disability, such as restricted
mobility or limited vision, to use software products successfully. The major
accessibility features in z/OS enable users to:

v Use assistive technologies such as screen-readers and screen magnifier
software

v Operate specific or equivalent features using only the keyboard

v Customize display attributes such as color, contrast, and font size

Using assistive technologies
Assistive technology products, such as screen-readers, function with the user
interfaces found in z/OS. Consult the assistive technology documentation for
specific information when using it to access z/OS interfaces.

Keyboard navigation of the user interface
Users can access z/OS user interfaces using TSO/E or ISPF. Refer to z/OS TSO/E
Primer, z/OS TSO/E User’s Guide, and z/OS ISPF User’s Guide Volume I for
information about accessing TSO/E and ISPF interfaces. These guides describe
how to use TSO/E and ISPF, including the use of keyboard shortcuts or function
keys (PF keys). Each guide includes the default settings for the PF keys and
explains how to modify their functions.

© Copyright IBM Corp. 1988, 2002 637

638 z/OS V1R4.0 MVS Workload Management Services

Index

Special characters
$SRMBEST 103
$SRMDI00 103
$SRMDInn 103
$SRMDUMP 103
$SRMGOOD 103
$SRMSnnn 103

A
accessibility 637
Address Space Paging Plots 112
administrative application services

definition 14
installing a service definition 91
summary 14
using 91

application environment
definition 56

audit information
SMF type 99 13

C
C interfaces 629
calculation of server weights 77
cap slices 108
CheckSchEnv, C interface 629
classification rules

querying 98
client

definition 73
command

syntax diagrams xxvii
ConnectExportImport, C interface 629
ConnectServer, C interface 629
ConnectWorkMgr, C interface 629
ContinueWorkUnit, C interface 629
CreateWorkUnit, C interface 629

D
DeleteWorkUnit, C interface 629
dependent enclave 32

using 47
disability 637
DisconnectServer, C interface 629
dispatching priority 106
distributed work

services 26
DNS C interfaces 631
documents, licensed xxvi
donors 104

E
enclave

creating 29, 31
delays 29
deleting 47
dependent 32
dependent, using 47
independent 31
independent, using 46
leaving 30
managing work in 46
multisystem 33
performance management of address spaces 43
querying classification information 29, 47
querying enclave status of dispatchable units 47
resource accounting 44
resource use 29
scheduling SRBs 29
using 29

enclave services
definition 6
summary 6

ENF event code
for reporting intervals 79

ENF event code 41 79
ENQ SYSZWLM QNAME 96
execution delay monitoring services

definition 4
single address space transaction manager 18
summary 5

expanded storage policy 107
ExportWorkUnit, C interface 629
extracting a service definition

example 97
ExtractWorkUnit, C interface 629

I
ImportWorkUnit, C interface 629
independent enclave 31

using 46
installing a service definition

example 96
interfaces, C 629
internal service class

names 103
IWMCLSFY macro 123, 136
IWMCNTN macro 137, 147
IWMCONN

using 49, 61
IWMCONN macro 147, 165
IWMCPAFN macro 165, 173
IWMCQRY macro 173, 181
IWMDEXTR macro 181, 189
IWMDINST macro 189, 199
IWMDISC

using 49, 61

© Copyright IBM Corp. 1988, 2002 639

IWMDISC macro 199, 207
IWMDNDRG, C interface 631
IWMDNGRP, C interface 631
IWMDNREG, C interface 631
IWMDNSRV, C interface 631
IWMECQRY macro 207, 213

example 47
IWMECREA

using 49, 61
IWMECREA macro 213, 223
IWMEDELE

using 49, 61
IWMEDELE macro 223, 229
IWMEDREG macro 229, 235
IWMEJOIN macro 235, 243
IWMELEAV macro 243, 251
IWMEQTME macro 251, 255
IWMEREG macro 255, 261
IWMERES macro 261, 269
IWMESQRY 47

using 49
IWMESQRY macro 269, 275
IWMEXPT macro 275, 283
IWMIMPT macro 283, 291
IWMMABNL macro 291, 294
IWMMCHST macro 295, 303
IWMMCREA macro 303, 313
IWMMDELE macro 313, 317
IWMMEXTR macro 317, 323
IWMMINIT macro 323, 337
IWMMNTFY macro 337, 345
IWMMRELA macro 345, 353
IWMMSWCH macro 353, 359
IWMMXFER macro 359, 367
IWMPACT macro 367, 375
IWMPQRY macro 375, 381
IWMQDEL

using 49
IWMQDEL macro 381, 387
IWMQINS

using 49
IWMQINS macro 387, 399
IWMQVS, C interface 631
IWMqxit

using 49
IWMRCOLL macro 81, 399, 405

delay state information 82, 84
response time information 82, 86

IWMRESET macro 405, 415
IWMRPT macro 415, 425
IWMRQRY macro 425, 433

address space information 89
IWMSEDES

using 67
IWMSEDES macro 433, 439
IWMSEQRY

using 67
IWMSEQRY macro 439, 445
IWMSESET

using 67
IWMSESET macro 445, 451

IWMSEVAL
using 67

IWMSEVAL macro 451, 457
IWMSINF

using 54
IWMSINF macro 457, 465
IWMSLIM macro 465, 473
IWMSRDNS macro 473, 479
IWMSRDRS macro 479, 485
IWMSRFSV

using 61
IWMSRFSV macro 485, 493
IWMSRSRG macro 493, 501
IWMSRSRS macro 501, 511
IWMSSEL

using 49
IWMSSEL macro 511, 519
IWMSSEM macro 519, 527
IWMSTBGN

using 49
IWMSTBGN macro 527, 535
IWMSTEND

using 49
IWMSTEND macro 535, 541
IWMSVDEF data area

adding extensions 92
IWMTAFF

using 55
IWMTAFF macro 541, 549
IWMUEXPT macro 549, 555
IWMUIMPT macro 555, 561
IWMWDNSH header file 631
IWMWMBCL macro 561, 569
IWMWMCON

description 26
IWMWMCON macro 569, 577
IWMWQRY macro 577, 581
IWMWQWRK macro 581, 587
IWMWSYSQ macro 589, 595

J
JoinWorkUnit, C interface 629

K
keyboard 637

L
LeaveWorkUnit, C interface 629
licensed documents xxvi
LookAt message retrieval tool xxvi

M
message retrieval tool, LookAt xxvi
MPL out target 106
MPL-in target 106
multisystem enclave 33

640 z/OS V1R4.0 MVS Workload Management Services

N
Notices 633
number of server address spaces 108

P
performance index 104
performance monitors

services 11
period MPL delay plot 109
period paging rate plot 110
period proportional aggregate speed plot 111
period ready user average plot 110
period swap delay plot 110
policy adjustment 103
policy management

application services 14
priority unbunching 106

Q
query virtual server, C interfaces 631
QueryMetrics, C interface 629
QuerySchEnv, C interface 629
QueryWorkUnitClassification, C interface 629
queueing manager

definition 49
services 49

queueing manager services
definition 7
guidance information 49
summary 8, 49
using the queueing manager connect exit 57

QVS 631

R
receivers 104
resource adjustment 104
resource requirements 67
resource states 67
routing manager

definition 61
services 61

routing manager services
definition 9
guidance information 61
summary 9, 10, 61
using the routing manager server connect exit 65

S
scheduling environment services

definition 10, 67
guidance information 67
services 67

server
calculation of server weights 77
de-registration 75
definition 73

server (continued)
registration 74

server address spaces, number of 108
service definition

adding extensions 91
data validation 94
data validity checking 94
extracting 97
installing 91

service policy
activating 97

services
multiple address space work managers 22
work manager calling data manager 20

shortcut keys 637
SMF record type 99

action codes 599
identifying work 102
management policy data 106
priority table data 113
when to use 102

SMF record Type 99
examples 115
plots 109

subsystem work manager
guidance information 15
services 3

swap protect time 107
syntax diagrams

how to read xxvii
sysplex routing services

de-registering 75
definition 10, 73
example 75
routing work 74
server registration 74
summary 11
using 73
workload distribution 76

sysplex routing services, C interfaces 631
system paging delay plot 109

U
UnDoExportWorkUnit, C interface 629
UnDoImportWorkUnit, C interface 629

W
work manager services

definition 3
single address space work manager 16
summary 4

workload reporting services
definition 12
when to use 79

Index 641

642 z/OS V1R4.0 MVS Workload Management Services

Readers’ Comments — We’d Like to Hear from You

z/OS
MVS Programming: Workload
Management Services

Publication No. SA22-7619-03

Overall, how satisfied are you with the information in this book?

Very Satisfied Satisfied Neutral Dissatisfied Very Dissatisfied
Overall satisfaction h h h h h

How satisfied are you that the information in this book is:

Very Satisfied Satisfied Neutral Dissatisfied Very Dissatisfied
Accurate h h h h h

Complete h h h h h

Easy to find h h h h h

Easy to understand h h h h h

Well organized h h h h h

Applicable to your tasks h h h h h

Please tell us how we can improve this book:

Thank you for your responses. May we contact you? h Yes h No

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments in any
way it believes appropriate without incurring any obligation to you.

Name Address

Company or Organization

Phone No.

Readers’ Comments — We’d Like to Hear from You
SA22-7619-03

SA22-7619-03

����
Cut or Fold
Along Line

Cut or Fold
Along Line

Fold and Tape Please do not staple Fold and Tape

Fold and Tape Please do not staple Fold and Tape

NO POSTAGE
NECESSARY
IF MAILED IN THE
UNITED STATES

BUSINESS REPLY MAIL
FIRST-CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

POSTAGE WILL BE PAID BY ADDRESSEE

IBM Deutschland Entwicklung GmbH
Department 3248
Schoenaicher Strasse 220
D-71032 Boeblingen
Federal Republic of Germany

_ _

_ _

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_

����

Program Number: 5694-A01, 5655-G52

Printed in U.S.A.

SA22-7619-03

Sp
in

e
in

fo
rm

at
io

n:

�
�

�
z/

O
S

z/
O
S

V
1R

4.
0

M
V
S

W
or

kl
oa

d
M

an
ag

em
en

t
Se

rv
ic
es

SA
22

-7
61

9-
03

	Contents
	Figures
	Tables
	About This Document
	Who Should Use This Document
	Where to Find More Information
	The WLM/SRM Web Page
	Accessing z/OS™ licensed documents on the Internet
	Using LookAt to look up message explanations

	How to Read a Syntax Diagram
	How to read syntax diagrams
	Symbols
	Syntax items
	Syntax examples

	Summary of Changes
	Part 1. Using the Workload Management Services
	Chapter 1. Introducing the Workload Management Services
	Services for Subsystem Work Managers
	Why Use the Work Manager Services
	Why Use the Execution Delay Monitoring Services
	Why Use the Enclave Services
	Comparison to Other Services

	Why Use the Queueing Manager Services
	Why Use the Routing Manager Services
	Why Use the Scheduling Environment Services
	Why Use the Sysplex Routing Services
	Why Use the Query System Information Service

	Services for Performance Monitors
	Why Use the Workload Reporting Services
	Getting Information from SMF Type 99

	Services for Application Programs

	Chapter 2. Using The Subsystem Work Manager Services
	Considerations Before Using the Services
	Suggested Services for a Single Address Space Transaction Manager
	Using the Execution Delay Monitoring Services

	Suggested Services for a Work Manager Calling a Data Manager
	Services for Multiple Address Space Work Managers
	Execution Delay Monitoring Services for Multiple Address Space Work Managers

	Services for Work Managers that Distribute Work Requests
	Determining the Subsystem Name and Type
	Using IWMWMCON When Distributing Work in a Sysplex
	Example of Using IWMWMCON
	Considerations for Mixed Releases

	Chapter 3. Creating and Using Enclaves
	Why Would You Use an Enclave?
	SRBs in Enclaves
	Tasks in Enclaves
	Comparison of Enclaves and Execution Delay Services

	Creating an Enclave
	Independent Versus Dependent Enclaves
	Registering an Enclave
	Multisystem Enclaves
	Scheduling an SRB in an Independent Enclave
	Joining Tasks to an Independent Enclave
	Using Dependent Enclaves
	Using a Multisystem Enclave
	Performance Management of Address Spaces with Enclaves
	Using ENQ/DEQ or Latch Manager Services with Enclaves

	Enclave Resource Accounting
	Managing the Performance of Work in Enclaves
	Using Independent Enclaves
	Using Dependent Enclaves

	Querying an Enclave's Classification Information
	Querying a Dispatchable Unit's Enclave Status
	Deleting an Enclave

	Chapter 4. Using the Queueing Manager Services
	Example of Using the Queueing Manager Services
	Managing the Number of Server Instances per Server Address Space
	Directing Work Requests to a Specific Server Region

	Updating a Service Definition with Application Environment Information
	Using the Queueing Manager Connect Exit
	Exit Routine Environment
	Register Usage
	Restrictions

	Chapter 5. Using the Routing Manager Services
	A Routing Manager Model
	Using the Routing Server Connect Exit
	Exit Routine Environment
	Register Usage

	Chapter 6. Using the Scheduling Environment Services
	Obtaining Scheduling Environment Definitions
	Manipulating Resource State Settings
	A Model Work Flow

	Chapter 7. Using the Sysplex Routing Services
	Why Use the Sysplex Routing Services?
	When to Use the Sysplex Routing Services
	Registering as an Eligible Server
	Determining Where to Route Work
	Deregistering as an Eligible Server

	Example of Using the Sysplex Routing Services
	WLM Sysplex Workload Distribution
	Calculation of server weights
	Example

	Chapter 8. Using the Workload Reporting Services
	When to Use the Workload Reporting Services
	Using ENF Signals to Guide Data Collection
	ENF Event Code 41

	Using the IWMRCOLL Service
	Using the Information in IWMWRCAA
	Using the Subsystem Work Manager Delay State Information
	Using the Continued State Information

	Using Delay States to Report Subsystem Interactions
	Using the Response Time Information
	Interpreting Report Class Data

	Using the IWMRQRY Service

	Chapter 9. Using the Administrative Application Services
	Installing a Service Definition
	Mapping a Service Definition
	Adding Program-Specific Extensions to a Service Definition
	Example of Service Definition Extensions
	Maintaining the Service Definition

	Checking a Service Definition Using IWMDINST
	Recommended Validity Checking
	Preventing Service Definition Overlays
	Using the COND Parameter on IWMDINST
	Using the ENQ Macro

	Example of Using IWMDINST to Install a Service Definition

	Extracting a Service Definition
	Example of Using IWMDEXTR to Extract a Service Definition

	Activating a Service Policy
	Example of Activating a Policy using IWMPACT

	Querying the Active Classification Rules
	Example of IWMCQRY

	Chapter 10. Using SMF Record Type 99
	When to Start SMF Record Type 99
	Starting SMF Record Type 99

	Identifying Work in SMF Type 99 Records
	Identifying Server Service Classes
	Identifying Internal Service Classes

	Interpreting Trace Table Entries
	Policy Adjustment
	Resource Adjustment
	Receivers and Donors
	Performance Index
	Receiver Value
	Net Value
	Small Processor Consumer
	Storage Housekeeping
	Reverse Housekeeping
	Working Set Management

	Interpreting Management Policy Data
	Dispatching Priority
	MPL Targets
	Swap Protect Time
	Expanded Storage Policies
	Storage Targets
	Cap Slices
	I/O Priority
	Number of Server Address Spaces

	Interpreting Plots
	System Paging Delay Plot
	Period MPL Delay Plot
	Period Ready User Average Plot
	Period Swap Delay Plot
	Period Paging Rate Plot
	Period Proportional Aggregate Speed Plot
	I/O Delay Plot
	Queue Delay Plot
	Address Space Paging Plots
	Central Storage Plot
	Processor Storage Plot

	I/O Velocity Plot

	Interpreting Priority Table Data
	Interpreting Lack of Action
	Examples of Interpreting SMF Record Type 99
	Action Trace Example
	Interpreting the Trace Data

	MPL Policy Example

	Part 2. Reference: Workload Management Services
	Chapter 11. IWMCLSFY – Assign Work Request to a Service Class
	Environment
	Programming Requirements
	Restrictions
	Input Register Information
	Output Register Information
	Performance Implications
	Syntax
	Parameters
	ABEND Codes
	Return and Reason Codes
	Examples

	Chapter 12. IWMCNTN macro — WLM Contention Notification
	Environment
	Programming Requirements
	Restrictions
	Input Register Information
	Output Register Information
	Performance Implications
	Syntax
	Parameters
	ABEND Codes
	Return and Reason Codes
	Example

	Chapter 13. IWMCONN – Connecting to Workload Management
	Environment
	Programming Requirements
	Restrictions
	Input Register Information
	Output Register Information
	Performance Implications
	Syntax
	Parameters
	ABEND Codes
	Return and Reason Codes
	Examples

	Chapter 14. IWMCPAFN – WLM CPU Affinity Service
	Environment
	Programming Requirements
	Restrictions
	Input Register Information
	Output Register Information
	Performance Implications
	Syntax
	Parameters
	ABEND Codes
	Return and Reason Codes
	Example

	Chapter 15. IWMCQRY – Query Classification Attributes
	Environment
	Programming Requirements
	Restrictions
	Input Register Information
	Output Register Information
	Performance Implications
	Syntax
	Parameters
	ABEND Codes
	Return and Reason Codes

	Chapter 16. IWMDEXTR – Extract Service Definition
	Environment
	Programming Requirements
	Restrictions
	Input Register Information
	Output Register Information
	Performance Implications
	Syntax
	Parameters
	ABEND Codes
	Return and Reason Codes

	Chapter 17. IWMDINST – Install Service Definition
	Environment
	Programming Requirements
	Restrictions
	Input Register Information
	Output Register Information
	Performance Implications
	Syntax
	Parameters
	ABEND Codes
	Return and Reason Codes

	Chapter 18. IWMDISC – Disconnecting from Workload Management
	Environment
	Programming Requirements
	Restrictions
	Input Register Information
	Output Register Information
	Performance Implications
	Syntax
	Parameters
	ABEND Codes
	Return and Reason Codes

	Chapter 19. IWMECQRY – Query Enclave Classification Attributes
	Environment
	Programming Requirements
	Restrictions
	Input Register Information
	Output Register Information
	Performance Implications
	Syntax
	Parameters
	ABEND Codes
	Return and Reason Codes

	Chapter 20. IWMECREA – Create an Enclave
	Environment
	Programming Requirements
	Restrictions
	Input Register Information
	Output Register Information
	Performance Implications
	Syntax
	Parameters
	ABEND Codes
	Return and Reason Codes

	Chapter 21. IWMEDELE – Delete an Enclave
	Environment
	Programming Requirements
	Restrictions
	Input Register Information
	Output Register Information
	Performance Implications
	Syntax
	Parameters
	ABEND Codes
	Return and Reason Codes
	Example

	Chapter 22. IWMEDREG — WLM Enclave Deregister Service
	Environment
	Programming Requirements
	Restrictions
	Input Register Information
	Output Register Information
	Performance Implications
	Syntax
	Parameters
	ABEND Codes
	Return and Reason Codes
	Example

	Chapter 23. IWMEJOIN – Join an Enclave
	Environment
	Programming Requirements
	Restrictions
	Input Register Information
	Output Register Information
	Performance Implications
	Syntax
	Parameters
	ABEND Codes
	Return and Reason Codes
	Example

	Chapter 24. IWMELEAV – Leave an Enclave
	Environment
	Programming Requirements
	Restrictions
	Input Register Information
	Output Register Information
	Performance Implications
	Syntax
	Parameters
	ABEND Codes
	Return and Reason Codes
	Example

	Chapter 25. IWMEQTME – Enclave CPU Time Query
	Environment
	Programming Requirements
	Restrictions
	Input Register Information
	Output Register Information
	Performance Implications
	Syntax
	Parameters
	ABEND Codes
	Return and Reason Codes

	Chapter 26. IWMEREG — WLM Enclave Register Service
	Environment
	Programming Requirements
	Restrictions
	Input Register Information
	Output Register Information
	Performance Implications
	Syntax
	Parameters
	ABEND Codes
	Return and Reason Codes
	Example

	Chapter 27. IWMERES macro — Change an Enclave
	Environment
	Programming Requirements
	Restrictions
	Input Register Information
	Output Register Information
	Performance Implications
	Syntax
	Parameters
	ABEND Codes
	Return and Reason Codes
	Example

	Chapter 28. IWMESQRY – Query Enclave State
	Environment
	Programming Requirements
	Restrictions
	Input Register Information
	Output Register Information
	Performance Implications
	Syntax
	Parameters
	ABEND Codes
	Return and Reason Codes
	Example

	Chapter 29. IWMEXPT – WLM Export Service
	Environment
	Programming Requirements
	Restrictions
	Input Register Information
	Output Register Information
	Performance Implications
	Syntax
	Parameters
	ABEND Codes
	Return and Reason Codes
	Example

	Chapter 30. IWMIMPT – WLM Import Service
	Environment
	Programming Requirements
	Restrictions
	Input Register Information
	Output Register Information
	Performance Implications
	Syntax
	Parameters
	ABEND Codes
	Return and Reason Codes
	Example

	Chapter 31. IWMMABNL – Record Abnormal Event
	Environment
	Programming Requirements
	Restrictions
	Input Register Information
	Output Register Information
	Performance Implications
	Syntax
	Parameters
	ABEND Codes
	Return and Reason Codes
	Example

	Chapter 32. IWMMCHST – Change State of Work Request Service
	Environment
	Programming Requirements
	Restrictions
	Input Register Information
	Output Register Information
	Performance Implications
	Syntax
	Parameters
	ABEND Codes
	Return and Reason Codes

	Chapter 33. IWMMCREA – Create Monitoring Environment Service
	Environment
	Programming Requirements
	Restrictions
	Input Register Information
	Output Register Information
	Performance Implications
	Syntax
	Parameters
	ABEND Codes
	Return and Reason Codes

	Chapter 34. IWMMDELE – Delete Monitoring Environment
	Environment
	Programming Requirements
	Restrictions
	Input Register Information
	Output Register Information
	Performance Implications
	Syntax
	Parameters
	ABEND Codes
	Return and Reason Codes
	Example

	Chapter 35. IWMMEXTR – Delay Monitoring Extract Service
	Environment
	Programming Requirements
	Restrictions
	Input Register Information
	Output Register Information
	Performance Implications
	Syntax
	Parameters
	ABEND Codes
	Return and Reason Codes

	Chapter 36. IWMMINIT – Monitor Environment Initialization
	Environment
	Programming Requirements
	Restrictions
	Input Register Information
	Output Register Information
	Performance Implications
	Syntax
	Parameters
	ABEND Codes
	Return and Reason Codes
	Examples

	Chapter 37. IWMMNTFY – Notify of Work Execution Completion
	Environment
	Programming Requirements
	Restrictions
	Input Register Information
	Output Register Information
	Performance Implications
	Syntax
	Parameters
	ABEND Codes
	Return and Reason Codes

	Chapter 38. IWMMRELA – Relate Monitoring Environment Service
	Environment
	Programming Requirements
	Restrictions
	Input Register Information
	Output Register Information
	Performance Implications
	Syntax
	Parameters
	ABEND Codes
	Return and Reason Codes
	Example

	Chapter 39. IWMMSWCH – Switch Monitoring Environment
	Environment
	Programming Requirements
	Restrictions
	Input Register Information
	Output Register Information
	Performance Implications
	Syntax
	Parameters
	ABEND Codes
	Return and Reason Codes
	Example

	Chapter 40. IWMMXFER – Transfer Monitoring Environment
	Environment
	Programming Requirements
	Restrictions
	Input Register Information
	Output Register Information
	Performance Implications
	Syntax
	Parameters
	ABEND Codes
	Return and Reason Codes

	Chapter 41. IWMPACT – Activate Service Policy
	Environment
	Programming Requirements
	Restrictions
	Input Register Information
	Output Register Information
	Performance Implications
	Syntax
	Parameters
	ABEND Codes
	Return and Reason Codes

	Chapter 42. IWMPQRY – Query Active Service Policy
	Environment
	Programming Requirements
	Restrictions
	Input Register Information
	Output Register Information
	Performance Implications
	Syntax
	Parameters
	ABEND Codes
	Return and Reason Codes

	Chapter 43. IWMQDEL – Deleting a Request from the Queue for An Execution Address Space
	Environment
	Programming Requirements
	Restrictions
	Input Register Information
	Output Register Information
	Performance Implications
	Syntax
	Parameters
	ABEND Codes
	Return and Reason Codes
	Example

	Chapter 44. IWMQINS – Inserting a Request Onto the Queue for An Execution Address space
	Environment
	Programming Requirements
	Restrictions
	Input Register Information
	Output Register Information
	Performance Implications
	Syntax
	Parameters
	ABEND Codes
	Return and Reason Codes
	Example

	Chapter 45. IWMRCOLL – Collecting Workload Activity Data
	Specifying the Answer Areas
	Workload Activity Answer Area

	Environment
	Programming Requirements
	Restrictions
	Input Register Information
	Output Register Information
	Performance Implications
	Syntax
	Parameters
	ABEND Codes
	Return and Reason Codes
	Example

	Chapter 46. IWMRESET – Change a Job
	Environment
	Programming Requirements
	Restrictions
	Input Register Information
	Output Register Information
	Performance Implications
	Syntax
	Parameters
	ABEND Codes
	Return and Reason Codes
	Example

	Chapter 47. IWMRPT – Reporting on Work Request Completion
	Environment
	Programming Requirements
	Restrictions
	Input Register Information
	Output Register Information
	Performance Implications
	Syntax
	Parameters
	ABEND Codes
	Return and Reason Codes

	Chapter 48. IWMRQRY – Collecting Address Space Delay Information
	Environment
	Programming Requirements
	Restrictions
	Input Register Information
	Output Register Information
	Performance Implications
	Syntax
	Parameters
	ABEND Codes
	Return and Reason Codes

	Chapter 49. IWMSEDES – Scheduling Environments Determine Execution Service
	Environment
	Programming Requirements
	Restrictions
	Input Register Information
	Output Register Information
	Performance Implications
	Syntax
	Parameters
	ABEND Codes
	Return and Reason Codes
	Example

	Chapter 50. IWMSEQRY – Scheduling Environments Query Service
	Environment
	Programming Requirements
	Restrictions
	Input Register Information
	Output Register Information
	Performance Implications
	Syntax
	Parameters
	ABEND Codes
	Return and Reason Codes
	Example

	Chapter 51. IWMSESET – Scheduling Environments Set Resource
	Environment
	Programming Requirements
	Restrictions
	Input Register Information
	Output Register Information
	Performance Implications
	Syntax
	Parameters
	ABEND Codes
	Return and Reason Codes
	Example

	Chapter 52. IWMSEVAL – Scheduling Environments Validate Service
	Environment
	Programming Requirements
	Restrictions
	Input Register Information
	Output Register Information
	Performance Implications
	Syntax
	Parameters
	ABEND Codes
	Return and Reason Codes
	Example

	Chapter 53. IWMSINF — WLM Server Manager Inform Service
	Environment
	Programming Requirements
	Restrictions
	Input Register Information
	Output Register Information
	Performance Implications
	Syntax
	Parameters
	ABEND Codes
	Return and Reason Codes
	Example

	Chapter 54. IWMSLIM – Application Environment Limit Service
	Environment
	Programming Requirements
	Restrictions
	Input Register Information
	Output Register Information
	Performance Implications
	Syntax
	Parameters
	ABEND Codes
	Return and Reason Codes
	Example

	Chapter 55. IWMSRDNS – Get Sysplex Routing Location List
	Environment
	Programming Requirements
	Restrictions
	Input Register Information
	Output Register Information
	Performance Implications
	Syntax
	Parameters
	ABEND Codes
	Return and Reason Codes
	Example

	Chapter 56. IWMSRDRS – De-register a Server for Sysplex Routing
	Environment
	Programming Requirements
	Restrictions
	Performance Implications
	Syntax
	Parameters
	ABEND Codes
	Return and Reason Codes

	Chapter 57. IWMSRFSV – Finding a Sysplex Routing Server
	Environment
	Programming Requirements
	Restrictions
	Input Register Information
	Output Register Information
	Performance Implications
	Syntax
	Parameters
	ABEND Codes
	Return and Reason Codes
	Example

	Chapter 58. IWMSRSRG – Register a Server for Sysplex Routing
	Environment
	Programming Requirements
	Restrictions
	Input Register Information
	Output Register Information
	Performance Implications
	Syntax
	Parameters
	ABEND Codes
	Return and Reason Codes
	Example

	Chapter 59. IWMSRSRS – Determine Where to Route Work
	Environment
	Programming Requirements
	Restrictions
	Input Register Information
	Output Register Information
	Performance Implications
	Syntax
	Parameters
	ABEND Codes
	Return and Reason Codes
	Example

	Chapter 60. IWMSSEL – Selecting a Request from a Caller's Work Manager Queue
	Environment
	Programming Requirements
	Restrictions
	Input Register Information
	Output Register Information
	Performance Implications
	Syntax
	Parameters
	ABEND Codes
	Return and Reason Codes
	Example

	Chapter 61. IWMSSEM – WLM Server Select Secondary Service
	Environment
	Programming Requirements
	Restrictions
	Input Register Information
	Output Register Information
	Performance Implications
	Syntax
	Parameters
	ABEND Codes
	Return and Reason Codes
	Example

	Chapter 62. IWMSTBGN – Beginning a Request from a Caller's Work Manager Queue
	Environment
	Programming Requirements
	Restrictions
	Input Register Information
	Output Register Information
	Performance Implications
	Syntax
	Parameters
	ABEND Codes
	Return and Reason Codes
	Example

	Chapter 63. IWMSTEND – End a Request from a Caller's Work Manager Queue
	Environment
	Programming Requirements
	Restrictions
	Input Register Information
	Output Register Information
	Performance Implications
	Syntax
	Parameters
	ABEND Codes
	Return and Reason Codes
	Example

	Chapter 64. IWMTAFF — WLM Temporal Affinity Service
	Environment
	Programming Requirements
	Restrictions
	Input Register Information
	Output Register Information
	Performance Implications
	Syntax
	Parameters
	ABEND Codes
	Return and Reason Codes
	Example

	Chapter 65. IWMUEXPT – WLM Undo Export Service
	Environment
	Programming Requirements
	Restrictions
	Input Register Information
	Output Register Information
	Performance Implications
	Syntax
	Parameters
	ABEND Codes
	Return and Reason Codes
	Example

	Chapter 66. IWMUIMPT – WLM Undo Import Service
	Environment
	Programming Requirements
	Restrictions
	Input Register Information
	Output Register Information
	Performance Implications
	Syntax
	Parameters
	ABEND Codes
	Return and Reason Codes
	Example

	Chapter 67. IWMWMBCL — Build Classification Structures
	Environment
	Programming Requirements
	Restrictions
	Performance Implications
	Syntax
	Parameters
	ABEND Codes
	Return and Reason Codes

	Chapter 68. IWMWMCON – Modify Connect Information
	Environment
	Programming Requirements
	Restrictions
	Input Register Information
	Output Register Information
	Performance Implications
	Syntax
	Parameters
	ABEND Codes
	Return and Reason Codes
	Examples

	Chapter 69. IWMWQRY – Query Service
	Environment
	Programming Requirements
	Restrictions
	Input Register Information
	Output Register Information
	Performance Implications
	Syntax
	Parameters
	ABEND Codes
	Return and Reason Codes
	Example

	Chapter 70. IWMWQWRK – Query Work Service
	Environment
	Programming Requirements
	Restrictions
	Input Register Information
	Output Register Information
	Performance Implications
	Syntax
	Parameters
	ABEND Codes
	Return and Reason Codes
	Example

	Chapter 71. IWMWSYSQ – Querying System Information
	Environment
	Programming Requirements
	Restrictions
	Input Register Information
	Output Register Information
	Performance Implications
	Syntax
	Parameters
	ABEND Codes
	Return and Reason Codes
	Examples

	Part 3. Appendixes
	Appendix A. SMF Type 99 Action Codes
	Appendix B. Application Validation Reason Codes
	Appendix C. C Language Interfaces for Workload Management Services
	Interfaces for Sysplex Routing Services
	Interface for Querying a Virtual Server

	Appendix D. Notices
	Programming Interface Information
	Trademarks

	Appendix E. Accessibility
	Using assistive technologies
	Keyboard navigation of the user interface

	Index
	Readers’ Comments — We'd Like to Hear from You

